Study of the first excited state of the ⁴He nucleus in halo effective field theory

Vinícius Bruno Bet Ader Renato Higa Bira van Kolck Gautam Rupak

Physics Institute - University of São Paulo

October 14, 2025

Overview

- 1 Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory

- **4** $p+^3H$ and $n+^3He$ Scattering
- **6** Simultaneous Fitting
- 6 Final Remarks

Overview

- 1 Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory

- 4 $p+^3H$ and $n+^3He$ Scattering
- Simultaneous Fitting
- 6 Final Remarks

Motivation

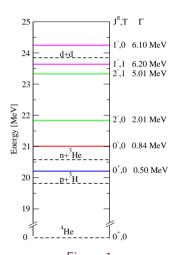


Figure 1

Motivation

▶ Efimov physics: in the unitary regime, for each three-body Efimov state, one has two corresponding four-body Efimov states, one tightly bound and the other with a halo (3 + 1) structure (Wu et al., PRA, 2024)

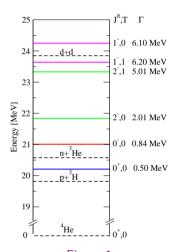


Figure 1

Motivation

- ▶ Efimov physics: in the unitary regime, for each three-body Efimov state, one has two corresponding four-body Efimov states, one tightly bound and the other with a halo (3 + 1) structure (Wu et al., PRA, 2024)
- ▶ **ATOMKI** anomaly: the $p+^3H$ and $n+^3H$ e systems play an important role in the ATOMKI anomaly description, where an excess of events in the angular distribution of the $^3H(p,e^+e^-)^4H$ e reaction could only be explained by a possible new boson, deemed as a dark matter candidate (Krasznahorkay et al., PRC, 2021)

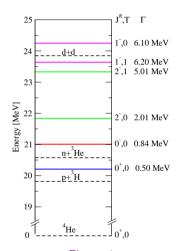


Figure 1

Overview

- 1 Motivation
- Quantum Scattering Theory
 - Partial-Wave Expansion
 - Charged Particles
- 3 Effective Field Theory

- $\Phi p+^3H$ and $n+^3He$ Scattering
- **6** Simultaneous Fitting
- 6 Final Remarks

Partial-Wave Expansion

In two-body scattering in the centre-of-mass (CM) frame, the asymptotic behaviour of the Schrödinger equation solution for a system subjected to a spherically symmetric short-ranged interaction potential V(r) is, when expanded in spherical harmonics,

$$\Phi_{\boldsymbol{k}}(\boldsymbol{r}) \approx \frac{1}{(2\pi)^3} \sum_{\ell=0}^{\infty} \frac{(2\ell+1)}{2ik} \left[\left[1 + 2ikf_{\ell}(k) \right] \frac{e^{ikr}}{r} - \frac{e^{-i(kr-l\pi)}}{r} \right] P_{\ell}(\cos\theta) \,.$$

The radial solution defines the ℓ -th element of the S-matrix

$$S_{\ell}(k) \equiv 1 + 2ikf_{\ell}(k)$$
.

Partial-Wave Expansion

Through conservation of flux and angular momentum, which enforces unitarity, we may define

$$S_\ell(k) \equiv e^{2i\delta_\ell(k)} \quad \Rightarrow \quad T_\ell(k) \equiv rac{2\pi}{\mu} f_\ell(k) = rac{2\pi}{\mu} rac{1}{k\cot\delta_\ell - ik} \, .$$

In the low-energy limit, the first term in the denominator above is analytic in k^2 and has the general expansion, valid for each angular momentum ℓ ,

$$K_\ell(k^2) \equiv k^{2\ell+1} \cot \delta_\ell(k) = -rac{1}{\mathsf{a}_\ell} + rac{1}{2} \mathsf{r}_\ell k^2 + \mathcal{O}(k^4)\,,$$

known as the effective range expansion (ERE).

Charged Particles

When working with Coulomb and strong interactions, we may make use of the twopotential formalism, which states that we can separate the total amplitude as

$$T(\mathbf{k}',\mathbf{k}) = T_C(\mathbf{k}',\mathbf{k}) + T_{SC}(\mathbf{k}',\mathbf{k}).$$

By imposing that $\delta_\ell = \sigma_\ell + \delta_\ell'$, the partial wave decomposition becomes

$$T_C(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\mu} \sum_{\ell=0}^{\infty} (2\ell+1) \left[\frac{e^{2i\sigma_{\ell}}-1}{2i\mathbf{k}} \right] P_{\ell}(\cos\theta),$$

$$T_{SC}({m k}',{m k}) = rac{2\pi}{\mu} \sum_{\ell=0}^{\infty} (2\ell+1) e^{2i\sigma_\ell} \Bigg[rac{\mathrm{e}^{2i\delta_\ell'}-1}{2ik}\Bigg] P_\ell(\cos heta)\,.$$

Charged Particles

Therefore, the S-matrix elements can be written as

$$egin{aligned} S_\ell(k) &= e^{2i(\sigma_\ell + \delta'_\ell)} = 1 + 2ik \Big[f_\ell^C(k) + f_\ell^{SC}(k) \Big] \ &= e^{2i\sigma_\ell} + irac{\mu k}{2\pi} T_\ell^{SC}(k) \,. \end{aligned}$$

In the low-energy limit, we must define the Coulomb-modified effective range function

$$egin{split} \mathcal{K}_{\ell}^{C}(k^2) &\equiv k^{2\ell+1} rac{C_{\eta}^{(\ell)2}}{C_{\eta}^{(0)2}} \Big[2 \eta \mathcal{H}(\eta) + C_{\eta}^{(0)2}(\cot \delta_{\ell}' - i) \Big] \ &pprox -rac{1}{a_{\ell}} + rac{1}{2} r_{\ell} \, k^2 - rac{1}{4} \mathcal{P}_{\ell} \, k^4 + \mathcal{O}(k^6) \,. \end{split}$$

Charged Particles

Therefore, the S-wave ($\ell=0$) Coulomb-modified strong interaction transition amplitude, is given by

$$T_0^{SC}(k) = \frac{2\pi}{\mu} \left[\frac{C_{\eta}^{(0)^2} e^{2i\sigma_0}}{K_0^C(k^2) - 2k_C H(\eta)} \right]$$
$$\approx \frac{2\pi}{\mu} \frac{C_{\eta}^{(0)^2} e^{2i\sigma_0}}{-1/a_0 + r_0 k^2/2 + \dots - 2k_C H(\eta)},$$

where

$$C_{\eta}^{(0)^2} = \frac{2\pi\eta}{e^{2\pi\eta}-1}\,,\quad \eta(k) = \frac{Z_1Z_2\alpha_{
m em}\mu}{k} \equiv \frac{k_C}{k}\,,\quad H(x) = \psi(ix) + \frac{1}{2ix} - \ln(ix)\,.$$

Overview

- Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory
 - Few Nucleon Systems

Bira van Kolck

- Φ p+3H and n+3He Scattering
- Simultaneous Fitting
- 6 Final Remarks

Effective Field Theory

Effective field theories (EFTs) describe the overall behaviour of the low-energy degrees of freedom in a compatible way with the desired symmetries.

In nuclear physics, the underlying theory is QCD, whose symmetries are well-known. Instead of working with quarks and gluons, one uses hadrons instead. An effective Lagrangian has the form (Hammer et al., RMP, 2020)

$$\mathcal{L} = \sum_{i} g_i(M_{\mathsf{lo}}, M_{\mathsf{hi}}, \kappa) \ O_i(\phi_j) \,.$$

Observables are computed through expansions in $Q/M_{\rm hi}$ and $M_{\rm lo}/M_{\rm hi}$, which are dictated by a scheme known as *power counting*.

Below pion production, i.e., $M_{\rm hi}\sim m_\pi\approx 140\,{\rm MeV}$, we can construct an EFT with nucleons as the only degrees of freedom. With the strong interaction symmetries, the effective Lagrangian reads as

$$\mathcal{L} = \Psi^{\dagger} \left(i \partial_0 + \frac{\nabla^2}{2m_N} \right) \Psi + \sigma d^{\dagger} \left[\left(i \partial_0 + \frac{\nabla^2}{4m_N} \right) - \xi \right] d - g \left[d^{\dagger} \Psi \Psi + \text{h.c.} \right] + \cdots,$$

where d is the auxiliary dimeron field.

To add physical meaning to the effective Lagrangian, we must establish a power counting by connecting the low-energy observables, related to the ERE parameters, to the EFT ones. The ERE description of the scattering amplitude is given by

$$T(k) = \frac{4\pi}{m_N} \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^2 + \cdots - ik}$$
.

Whilst from QFT the LO scattering amplitude is computed via the Feynman diagram

Figure 2

From QFT, the scattering amplitude is proportional to the dressed interaction field (dimeron) two-point function. In leading order, it goes as

$$T^{(LO)}(k) = -g^2 \mathcal{D}^{(LO)}\left(\frac{k^2}{m_N}, \mathbf{0}\right),$$

where

$$i\mathcal{D}^{(\text{LO})}(q_0, \boldsymbol{q}) = \frac{i\sigma}{-\xi - g^2 l_0(\sqrt{m_N q_0 - \boldsymbol{q}^2/4}) + i\epsilon},$$

and $I_0(k)$ is the two-body "bubble integral".

To incorporate electromagnetic interactions, we perform the minimal substitution, where $\partial_{\mu} \rightarrow \partial_{\mu} + ieA_{\mu}$ and add to the Lagrangian the appropriate Coulombic terms. The LO amplitude, from the figure below, is given by (Higa et al., NPA, 2008)

$$T_{SC}^{(\text{LO})}(k) = \frac{2\pi}{\mu} \left[\frac{C_{\eta}^{(0)^2} e^{2i\sigma_0}}{\sigma \frac{2\pi\xi}{\mu g^2} - i\varepsilon + \frac{2\pi}{\mu} J_0(k_C, k)} \right] \equiv \frac{2\pi}{\mu} \left[\frac{C_{\eta}^{(0)^2} e^{2i\sigma_0}}{\sigma \frac{2\pi\xi^{(R)}}{\mu g^2} - 2k_C H(\eta_k)} \right],$$

where, by using the *power divergence subtraction* (PDS) (Kaplan et al., PLB, 1998) scheme, we have

$$J_0(\beta, x) = \frac{\mu \beta}{\pi} \left[\frac{1}{4 - D} + \ln \left(\frac{\kappa \sqrt{\pi}}{2\beta} \right) + 1 - \frac{3}{2} \gamma_E - H \left(\frac{\beta}{x} \right) \right] - \frac{\mu \kappa}{2\pi}.$$

Figure 3

Overview

- Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory

- **4** $p+^3H$ and $n+^3He$ Scattering
- **6** Simultaneous Fitting
- 6 Final Remarks

$p+^3H$ and $n+^3He$ Scattering

To study of the 0^+_2 state we consider two channels:

- ► Channel I: $p + {}^{3}H$
- ightharpoonup Channel II: $n + {}^{3}$ He

Therefore, we have $Q \ll m_{\pi}$. The breakdown scale is set by the average three-nucleon binding energy

$$M_{hi} \sim \sqrt{m_N B_{3N}} \approx 86.7 \,\mathrm{MeV}$$
,

The low-momentum scale is set by the unnaturally small threshold difference $\Delta \approx 0.764\,\text{MeV}$, which yields

$$M_{lo} \sim Q \sim \gamma_{\Delta} \equiv \sqrt{2\mu_1\Delta} \approx 32.783 \, {
m MeV}$$
 .

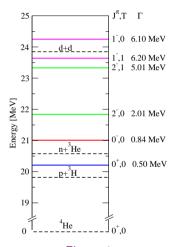


Figure 4

Motivation Quantum Scattering Theory Effective Field Theory $p+^3H$ and $n+^3He$ Scattering Simultaneous Fitting Final Remarks

$p+^3H$ and $n+^3He$ Scattering

The free non-relativistic effective Lagrangian is written as

$$\mathcal{L}_0 = \Psi_p^{\dagger} \left[i \partial_0 + rac{
abla^2}{2m_n}
ight] \Psi_p + \Psi_n^{\dagger} \left[i \partial_0 - (m_n - m_p) + rac{
abla^2}{2m_n}
ight] \Psi_n \ + \Psi_t^{\dagger} \left[i \partial_0 + rac{
abla^2}{2m_h}
ight] \Psi_t + \Psi_h^{\dagger} \left[i \partial_0 - (m_h - m_t) + rac{
abla^2}{2m_h}
ight] \Psi_h \, .$$

Using scalar S-wave dimeron interactions, the interaction Lagrangian is (Higa et al., PRC, 2022)

$$\mathcal{L}_{int} = \sum_{\zeta,\zeta'} \chi^{(\zeta)\dagger} \left[\Xi^{(\zeta\zeta')} + \tau^{(\zeta\zeta')} \left(i\partial_0 + \frac{\nabla^2}{2M} \right)^{(\zeta\zeta')} \right] \chi^{(\zeta')}$$

$$+ \sqrt{\frac{2\pi}{\mu}} \left[\chi^{(1)\dagger} \Psi_{\rho}^T \sigma_2 \Psi_t + \chi^{(2)\dagger} \Psi_{\rho}^T \sigma_2 \Psi_h + \text{h.c.} \right].$$

Motivation Quantum Scattering Theory Effective Field Theory $\rho + {}^{3}H$ and $n + {}^{3}He$ Scattering Simultaneous Fitting Final Remarks

$p+^3H$ and $n+^3He$ Scattering

As shown earlier, electromagnetism can be added straightforwardly to the Lagrangian. The Sommerfeld parameter $\eta(k)$ dictates its strength, which in turn is related to the inverse Bohr radius

$$k_C = \alpha_{\rm em} Z_p Z_t \mu_1 \approx 5.132 \, {\rm MeV}$$
 .

However, only the first channel has both scatterers charged. To this end, the Coulomb-subtracted T-matrix is written as

$$\mathcal{T}(k) = -\frac{2\pi}{\mu} \begin{bmatrix} C_{\eta}^{(0)} e^{i\sigma_0} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathcal{D}_{11}(E,0) & \mathcal{D}_{12}(E,0) \\ \mathcal{D}_{21}(E,0) & \mathcal{D}_{22}(E,0) \end{bmatrix} \begin{bmatrix} C_{\eta}^{(0)} e^{i\sigma_0} & 0 \\ 0 & 1 \end{bmatrix}.$$

$p+^3H$ and $n+^3He$ Scattering

The propagator matrix is obtained from the following equation

$$\mathcal{D}^{-1}(E,0) = \mathcal{D}_0^{-1}(E,0) - \Sigma(E,0),$$

where the free propagator matrix is given by

$$\mathcal{D}_0^{-1}(E,0) = \begin{bmatrix} \Xi^{(11)} + \tau^{(11)}E & \Xi^{(12)} + \tau^{(12)}E \\ \Xi^{(21)} + \tau^{(21)}E & \Xi^{(22)} + \tau^{(22)}E \end{bmatrix}.$$

and the self-energy matrix by

$$-\Sigma(E,0) = -rac{2\pi}{\mu} egin{bmatrix} J_0(k_C,k) & 0 \ 0 & J_0(0,k_\star) \end{bmatrix} \, ,$$

with
$$k_{\star}(k) = \sqrt{k^2 - \gamma_{\Delta}^2 + i0^+}$$
.

Motivation Quantum Scattering Theory Effective Field Theory $p+^3H$ and $n+^3He$ Scattering Simultaneous Fitting Final Remarks

$$p+^3H$$
 and $n+^3He$ Scattering

To rid the T-matrix of κ -dependencies, proper renormalisation group conditions are imposed, introducing ERE parameters analogues. This way, the inverse propagator matrix becomes

$$\mathcal{D}^{-1}(E,0) = \begin{bmatrix} \frac{1}{a_{11}} + 2k_C H(\eta_k) & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \frac{1}{a_{22}} + ik_{\star} \end{bmatrix} - \frac{1}{2}k^2 \begin{bmatrix} r_{11} & r_{12} \\ r_{12} & r_{22} \end{bmatrix},$$

which when the inverse is taken yields

$$\mathcal{D}(E,0) = \frac{1}{G(k)} \begin{bmatrix} \frac{1}{a_{22}} - \frac{1}{2}k^2r_{22} + ik_{\star} & -\frac{1}{a_{12}} + \frac{1}{2}k^2r_{12} \\ -\frac{1}{a_{12}} + \frac{1}{2}k^2r_{12} & \frac{1}{a_{11}} - \frac{1}{2}k^2r_{11} + 2k_CH(\eta_k) \end{bmatrix},$$

where

$$G(k) = \left[\frac{1}{a_{11}} - \frac{1}{2}k^2r_{11} + 2k_CH(\eta_k)\right] \left[\frac{1}{a_{22}} - \frac{1}{2}k^2r_{22} + ik_{\star}\right] - \left[\frac{1}{a_{12}} - \frac{1}{2}k^2r_{12}\right]^2.$$

40 h 4 🗇 h 4 🖹 h 4 🖹 la 40 0 0

$p+^3H$ and $n+^3He$ Scattering

Therefore, the *T*-matrix elements are

$$\begin{split} \mathcal{T}_{11}(k) &= \frac{2\pi}{\mu} \frac{C_{\eta}^{(0)2} e^{2i\sigma_0} \left[\frac{1}{a_{22}} - \frac{1}{2} k^2 r_{22} + i k_{\star} \right]}{\left[\frac{1}{a_{12}} - \frac{1}{2} k^2 r_{12} \right]^2 - \left[\frac{1}{a_{11}} - \frac{1}{2} k^2 r_{11} + 2 k_C H(\eta_k) \right] \left[\frac{1}{a_{22}} - \frac{1}{2} k^2 r_{22} + i k_{\star} \right]} \,, \\ \mathcal{T}_{12}(k) &= \frac{2\pi}{\mu} \frac{C_{\eta}^{(0)} e^{i\sigma_0} \left[-\frac{1}{a_{12}} + \frac{1}{2} k^2 r_{12} \right]}{\left[\frac{1}{a_{12}} - \frac{1}{2} k^2 r_{12} \right]^2 - \left[\frac{1}{a_{11}} - \frac{1}{2} k^2 r_{11} + 2 k_C H(\eta_k) \right] \left[\frac{1}{a_{22}} - \frac{1}{2} k^2 r_{22} + i k_{\star} \right]} \,, \\ \mathcal{T}_{22}(k) &= \frac{2\pi}{\mu} \frac{\left[\frac{1}{a_{11}} - \frac{1}{2} k^2 r_{11} + 2 k_C H(\eta_k) \right]}{\left[\frac{1}{a_{12}} - \frac{1}{2} k^2 r_{12} \right]^2 - \left[\frac{1}{a_{11}} - \frac{1}{2} k^2 r_{11} + 2 k_C H(\eta_k) \right] \left[\frac{1}{a_{22}} - \frac{1}{2} k^2 r_{22} + i k_{\star} \right]} \,. \end{split}$$

Motivation Quantum Scattering Theory Effective Field Theory $\rho + {}^{3}H$ and $n + {}^{3}He$ Scattering Simultaneous Fitting Final Remarks

$$p+^3H$$
 and $n+^3He$ Scattering

To connect our theory with the observables, the S-matrix is defined as

$$S \equiv egin{bmatrix} e^{2i\sigma_0} + irac{\mu k}{\pi}\mathcal{T}_{11}(k) & irac{\mu\sqrt{kk_*}}{\pi}\mathcal{T}_{12}(k) \ irac{\mu\sqrt{kk_*}}{\pi}\mathcal{T}_{21}(k) & 1 + irac{\mu k_*}{\pi}\mathcal{T}_{22}(k) \end{bmatrix} \,.$$

In multichannel scattering, there are several ways of defining phase shifts. We're going to use the one due to Stapp, Ypsilantis and Metropolis (Stapp et al., PR, 1957)

$$S^{\mathsf{SYM}} = egin{pmatrix} e^{2i\delta_1}\cos 2\epsilon & ie^{i(\delta_1+\delta_2)}\sin 2\epsilon \ ie^{i(\delta_1+\delta_2)}\sin 2\epsilon & e^{2i\delta_2}\cos 2\epsilon \end{pmatrix}\,,$$

where δ_i are the total phase shift.

Overview

- 1 Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory

- 4 $p+^3H$ and $n+^3He$ Scattering
- 5 Simultaneous Fitting
 - Fitting Scheme
 - $p+^3H$ and $n+^3He$ Fitting
- **6** Final Remarks

Fitting Scheme

We first define the data that we will use, along with the uncertainty of the data

```
\begin{split} & \text{In}[1] \! := & \text{Chan1Data} = \big\{ \big\{ x_0^1, y_0^1 \big\}, \big\{ x_1^1, y_1^1 \big\}, \dots, \big\{ x_2^1, y_2^1 \big\} \big\}; \\ & \text{Chan2Data} = \big\{ \big\{ x_0^2, y_0^2 \big\}, \big\{ x_1^2, y_1^2 \big\}, \dots, \big\{ x_m^m, y_m^m \big\} \big\}; \\ & \text{FullData} = & \text{Sort}[\text{Join}[\text{Chan1Data}, \{\#1\ 10^6, \ \#2\} \& @@@ \text{Chan2Data}]]; \\ & \text{Uncertainty} = & \text{Table}[1/(\text{Error})^2, \ i, \ \text{Length}[\text{FullData}]]; \end{split}
```

If you wish to plot the data with error bars, run the following code:

```
In[2]:= Chan1WithUncert = {#1, Around[ #2, YourUncertainty]} & @@@ Chan1Data;
Chan2WithUncert = {#1, Around[ #2, YourUncertainty]} & @@@ Chan2Data;
Chan1DataPlot = ListPlot[{Chan1WithUncert}];
Chan2DataPlot = ListPlot[{Chan2WithUncert}];
```

Fitting Scheme

If your first (or any) channel function is composed of different functions, you may use

```
\begin{split} & \ln[3] := & \quad \text{Chan1Function[x\_, ci\_]} := \text{Piecewise[} \{ & \quad \quad \{ \text{Func1[...], x} \leq \text{Threshold} \}, \\ & \quad \quad \quad \{ \text{Func2[...], x} > \text{Threshold} \} \\ & \quad \quad \} ]; \end{split}
```

The function that will be used to fit is the following:

Fitting Scheme

For the curve fitting, we are going to use

```
\label{eq:ln[5]:= ln[5]:= ln
```

The fitted parameters can be found via

```
In[6]:= Print[nlfSimultaneous["BestFitParameters"]];
```

while the adjusted curves are shown by running

$p+^3H$ and $n+^3He$ Fitting

Below the second threshold, we have single-channel scattering for the first channel, whilst the second is completely closed:

$$\delta_1'(k) = -rac{i}{2} \ln \left\{ 1 - rac{2ikC_\eta^{(0)^2} \Big[rac{1}{a_{22}} - rac{1}{2}k^2r_{22} + ik_\star\Big]}{G(k)}
ight\}, \ \delta_2'(k) = 0 \, .$$

$p+^3H$ and $n+^3He$ Fitting

Above the second threshold, the SYM nuclear phase shifts are given by

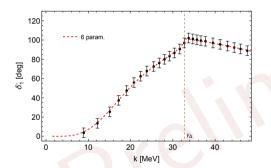
$$\delta_1'(k) = -\frac{i}{2} \ln \left\{ \left[1 - \frac{2ikC_\eta^{(0)^2} \left[\frac{1}{a_{22}} - \frac{1}{2}k^2r_{22} + ik_\star \right]}{G(k)} \right] \sqrt{1 + \frac{4kk_\star C_\eta^{(0)^2}}{f(k)} \left[\frac{1}{a_{12}^2} - \frac{1}{2}k^2r_{12} \right]^2} \right\},$$

$$\delta_2'(k) = -\frac{i}{2} \ln \left\{ \left[1 - \frac{2ik_\star \left[\frac{1}{a_{11}} - \frac{1}{2}k^2r_{11} + 2k_CH(\eta_k) \right]}{G(k)} \right] \sqrt{1 + \frac{4kk_\star C_\eta^{(0)^2}}{f(k)} \left[\frac{1}{a_{12}^2} - \frac{1}{2}k^2r_{12} \right]^2} \right\},$$

where

$$f(k) = \left\{ G(k) - 2ikC_{\eta}^{(0)^{2}} \left[\frac{1}{a_{22}} - \frac{1}{2}k^{2}r_{22} + ik_{\star} \right] \right\} \times \left\{ G(k) - 2ik_{\star} \left[\frac{1}{a_{11}} - \frac{1}{2}k^{2}r_{11} + 2k_{C}H(\eta_{k}) \right] \right\}.$$

6 parameters fit



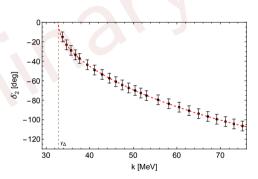


Figure 5: 6 parameters fit.

Motivation Quantum Scattering Theory Effective Field Theory $p+^3H$ and $n+^3H$ e Scattering Simultaneous Fitting Final Remarks

6 parameters fit

	a ₁₁ [fm]	a ₁₂ [fm]	a ₂₂ [fm]	<i>r</i> ₁₁ [fm]	r ₁₂ [fm]	r ₂₂ [fm]	$\chi^2_{\rm red}$
6 param.	17.6316	14.6473	4.91499	4.43759	-0.735538	4.91578	0.299296

Table 1: Parameter values obtained from the 6 parameters fit.

	a ₁₁	a ₁₂	a ₂₂	<i>r</i> ₁₁	r_{12}	<i>r</i> ₂₂
	1.	0.77678	0.45989	-0.96549	-0.18913	-0.69455
<i>a</i> ₁₂	0.77678	1.	0.90042	-0.71620	-0.66858	-0.85771
a ₂₂	0.45989	0.90042	1.	-0.37018	-0.71838	-0.82498
r_{11}	-0.96549	-0.71620	-0.37018	1.	0.25363	0.62622
<i>r</i> ₁₂	-0.18913	-0.66858	-0.71838	0.25363	1.	0.48159
r ₂₂	-0.69455	-0.85771	-0.82498	0.62622	0.48159	1.

Table 2: Correlation matrix for the 6 parameters fit and a second second

5 parameters fit

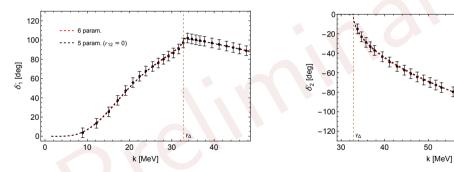


Figure 6: 6 and 5 parameters fit.

70

60

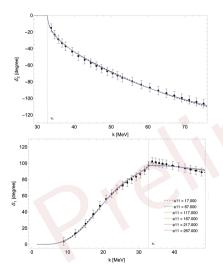
5 parameters fit

	a ₁₁ [fm]	a ₁₂ [fm]	a ₂₂ [fm]	<i>r</i> ₁₁ [fm]	r ₁₂ [fm]	r ₂₂ [fm]	$\chi^2_{\rm red}$
6 param.	17.6316	14.6473	4.91499	4.43759	-0.735538	4.91578	0.299296
5 param.	17.0013	12.5768	4.68341	4.6593	0	5.07597	0.59096

Table 3: Parameter values obtained from the 6 and 5 parameters fits.

	a_{11}	a ₁₂	a ₂₂	r_{11}	r ₂₂
a ₁₁	1.	0.90816	0.48354	-0.96945	-0.62379
a ₁₂	0.90816	1.	0.79579	-0.79377	-0.79834
a ₂₂	0.48354	0.79579	1.	-0.30233	-0.84921
r_{11}	-0.96945	-0.79377	-0.30233	1.	0.49932
<i>r</i> ₂₂	-0.62379	-0.79834	-0.84921	0.49932	1.

5 parameters fit



Plot	a ₁₁	a ₁₂	a ₂₂	r ₁₁	r ₁₂	r ₂₂	$\chi^2_{\rm red.}$
	17.00	12.58	4.68	4.66	0	5.08	_
	67.00	16.24	4.88	3.08	0	4.79	0.83
	117.00	17.01	4.91	2.84	0	4.75	0.90
	167.00	17.35	4.92	2.74	0	4.73	0.93
	217.00	17.53	4.93	2.69	0	4.72	0.95
	267.00	17.65	4.93	2.66	0	4.72	0.96

Table 5

a₁₁ enters as a higher order correction!

Figure 7: 6 and 5 parameters fits and residues.

4 parameters fit

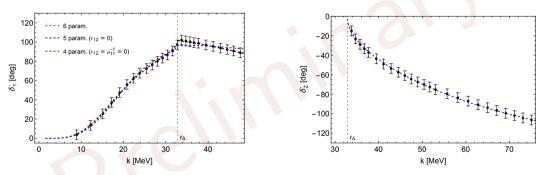


Figure 8: 6,5 and 4 parameters fit.

4 parameters fit

	a ₁₁ [fm]	a ₁₂ [fm]	a ₂₂ [fm]	<i>r</i> ₁₁ [fm]	<i>r</i> ₁₂ [fm]	r ₂₂ [fm]	$\chi^2_{\rm red}$
6 param.	17.6316	14.6473	4.91499	4.43759	-0.735538	4.91578	0.299296
5 param.	17.0013	12.5768	4.68341	4.6593	0	5.07597	0.59096
4 param.	10^{10}	18.1906	4.95336	2.51666	0	4.69215	1.01797

Table 6: Parameter values obtained from the 6, 5 and 4 parameters fits.

	a ₁₂	a ₂₂	r_{11}	r ₂₂
a ₁₂	1.	0.960538	0.762616	-0.758696
a ₂₂	0.960538	1.	0.664053	-0.846256
r_{11}	0.762616	0.664053	1.	-0.517207
r_{22}	-0.758696	-0.846256	-0.517207	1.

Table 7: Correlation matrix for the 4 parameters fit

Overview

- 1 Motivation
- Quantum Scattering Theory
- 3 Effective Field Theory

- 4 $p+^3H$ and $n+^3He$ Scattering
- Simultaneous Fitting
- 6 Final Remarks
 - Conclusion
 - Future Prospects

Conclusion

▶ The theory is capable of describing the data with all it's details;

Motivation Quantum Scattering Theory Effective Field Theory p^{-3} H and n^{+3} He Scattering Simultaneous Fitting Final Remarks

Conclusion

- ▶ The theory is capable of describing the data with all it's details;
- Considering both scattering lengths and effective ranges, there is a clear overparameterisation of the theory;

Motivation Quantum Scattering Theory Effective Field Theory p+3H and n+3He Scattering Simultaneous Fitting Final Remarks

Conclusion

- ▶ The theory is capable of describing the data with all it's details;
- Considering both scattering lengths and effective ranges, there is a clear overparameterisation of the theory;
- ► A systematic reduction on the number of parameters leads to a better understanding of the theory's power counting.

Future Prospects

 \triangleright One might study the evolution of the 0_2^+ resonance to a bound Efimov descendant as one artificially turns off the isospin-breaking terms;

Motivation Quantum Scattering Theory Effective Field Theory p+3H and n+3He Scattering Simultaneous Fitting Final Remarks

Future Prospects

- \triangleright One might study the evolution of the 0_2^+ resonance to a bound Efimov descendant as one artificially turns off the isospin-breaking terms;
- We intend to calculate the radiative capture of the reactions ${}^3H(p,\gamma){}^4He^*$ and ${}^3He(n,\gamma){}^4He^*$, as it may shed light on the ATOMKI anomaly.

Thank you!

Residues

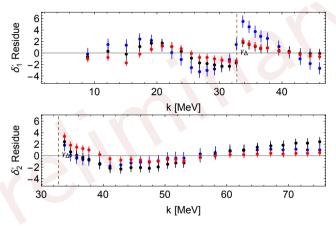


Figure 9: 6, 5 and 4 parameters fits and residues in red, black and blue respectively.

3 parameters fit (with a)

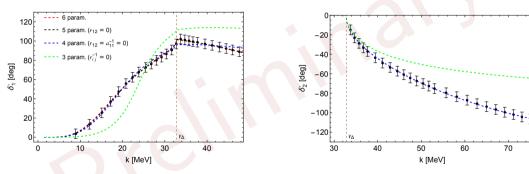


Figure 10: 6, 5, 4 and 3 parameters fit.

3 parameters fit (with a)

	a ₁₁ [fm]	a ₁₂ [fm]	a ₂₂ [fm]	<i>r</i> ₁₁ [fm]	<i>r</i> ₁₂ [fm]	r ₂₂ [fm]	$\chi^2_{\rm red.}$
6 param.	12.544	11.158	4.54173	4.9517	-0.475504	4.70458	0.1327
5 param.	11.9718	10.2827	4.41197	5.21726	0	4.83437	0.2721
4 param.	∞	16.4758	4.77115	2.37467	0	4.29	0.97711
3 param.	7.20×10^{8}	14.2843	5.95597	0	0	0	115.109
				7			

Table 8: Parameter values obtained from the 6, 5, 4 and 3 parameters fits.

	a ₁₁	a_{12}	a ₂₂
a ₁₁	1.	-0.999808	-0.915999
a ₁₂	-0.999808	1.	0.907956
a ₂₂	-0.915999	0.907956	1.

Table 9: Correlation matrix for the 3 parameters fit (using $|a_{ij}|_{\mathbb{P}}$) $|a_{ij}|_{\mathbb{P}}$ $|a_{ij}|_{\mathbb{P}}$ $|a_{ij}|_{\mathbb{P}}$ $|a_{ij}|_{\mathbb{P}}$

3 parameters fit (with $\alpha = a^{-1}$)

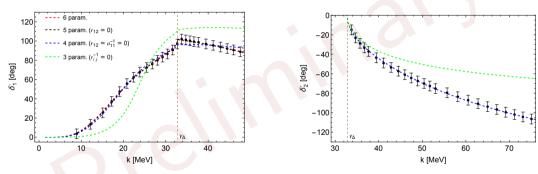


Figure 11: 6,5,4 and 3 parameters fit.

3 parameters fit (with $\alpha = a^{-1}$)

	a ₁₁ [fm]	a ₁₂ [fm]	a ₂₂ [fm]	<i>r</i> ₁₁ [fm]	<i>r</i> ₁₂ [fm]	r ₂₂ [fm]	$\chi^2_{\rm red.}$
6 param.	12.544	11.158	4.54173	4.9517	-0.475504	4.70458	0.1327
5 param.	11.9718	10.2827	4.41197	5.21726	0	4.83437	0.2721
4 param.	∞	16.4758	4.77115	2.37467	0	4.29	0.97711
3 param.	-14.053	-2.27×10^9	13.032	0	0	0	33.477

Table 10: Parameter values obtained from the 6, 5, 4 and 3 parameters fits.

	α_{11}	$lpha_{12}$	α_{22}
α_{11}	1.	0.254501	-2.05×10^{-9}
α_{12}	0.254501	1.	-5.23959×10^{-10}
α_{22}	-2.05 ×10 ⁻⁹	-5.23959×10^{-10}	1.

Table 11: Correlation matrix for the 3 parameters fit (using α_{ij}). α_{ij}