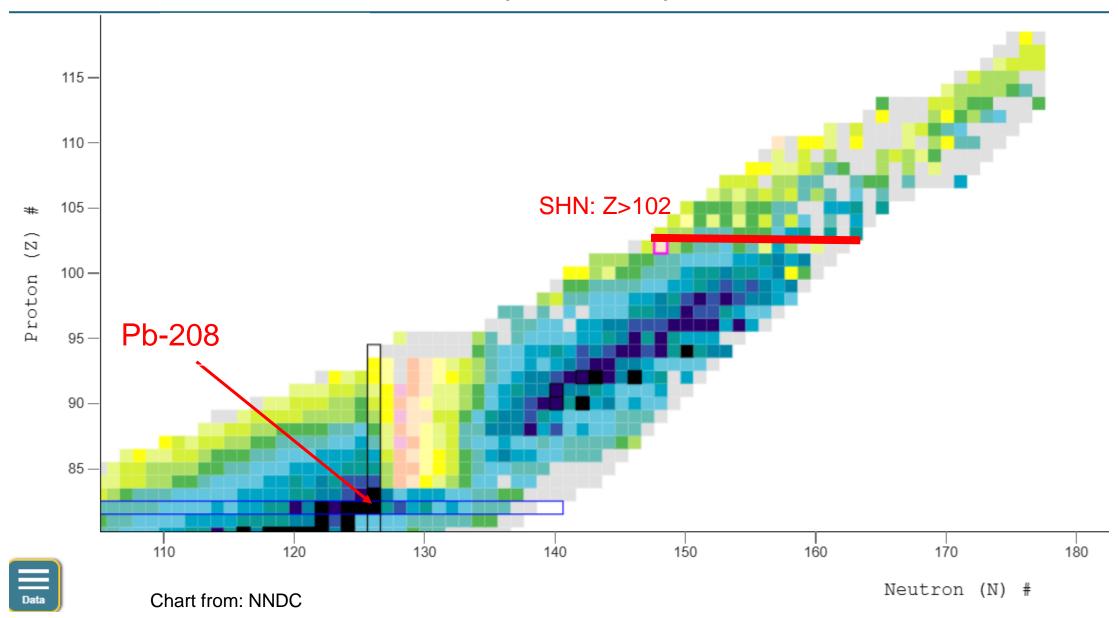
Fusion hindrance in the synthesis of superheavy elements

By Filip Agert

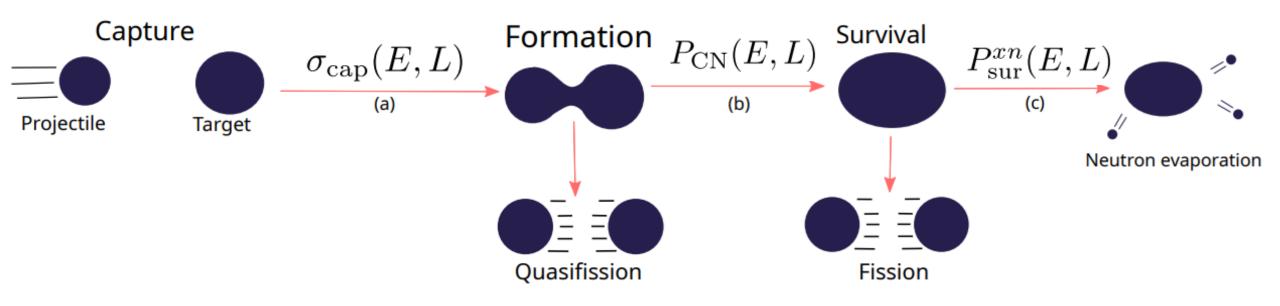


Where are the superheavy nuclei? (SHN)



How are superheavy elements synthesised?

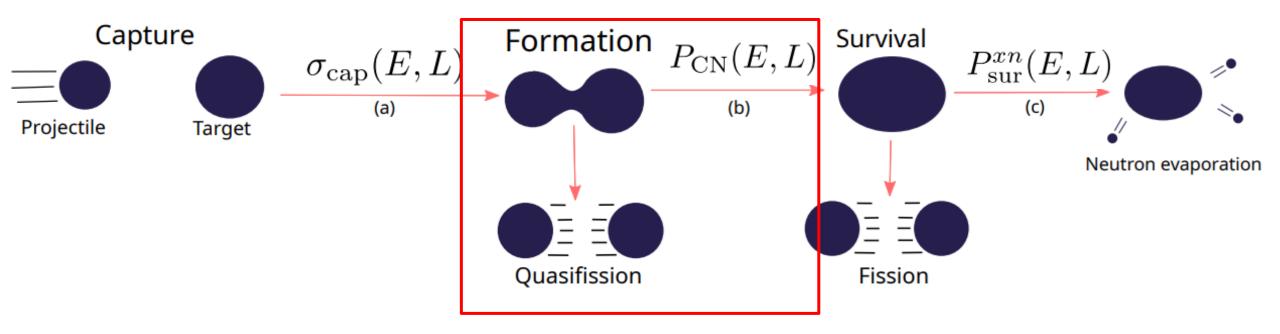
3-stages



$$\sigma_{er}^{xn}(E) = \sum_{L=0}^{\infty} (2L+1)\sigma_{\text{cap}}(E,L)P_{\text{CN}}(E,L)P_{\text{sur}}^{xn}(E,L)$$

How are superheavy elements synthesised?

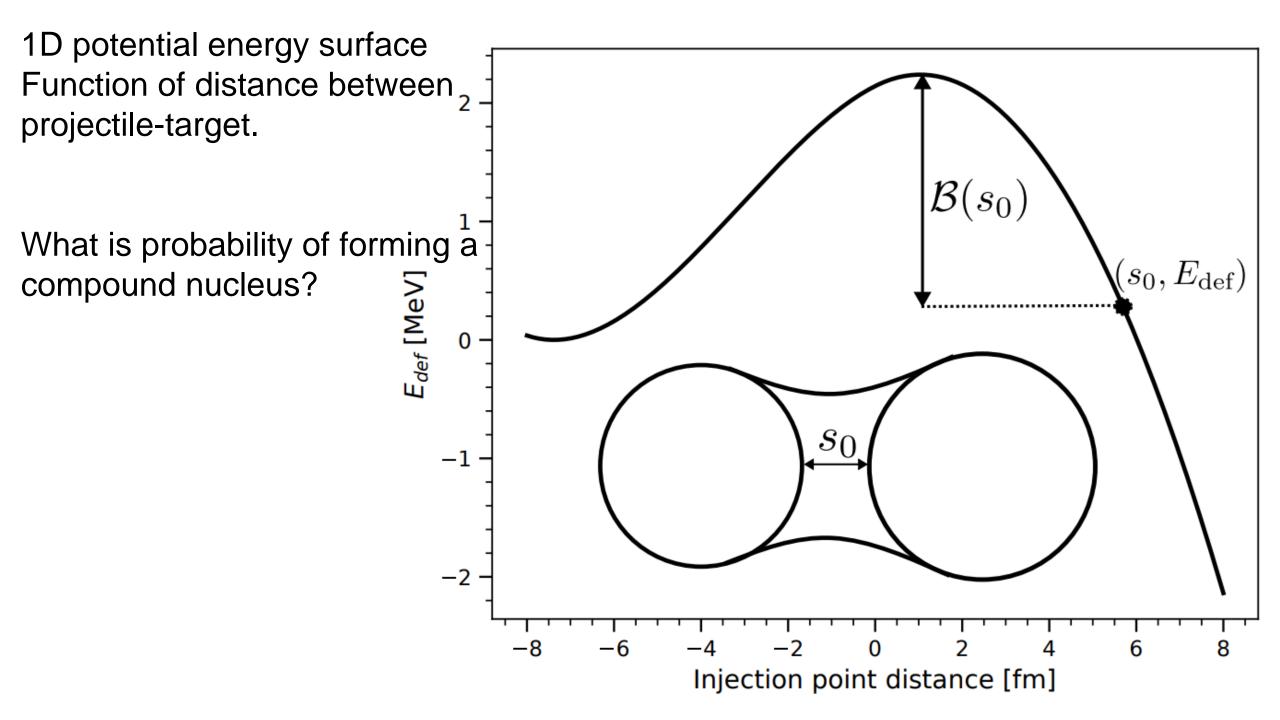
3-stages



$$\sigma_{er}^{xn}(E) = \sum_{L=0}^{\infty} (2L+1)\sigma_{\text{cap}}(E,L) P_{\text{CN}}(E,L) P_{\text{sur}}^{xn}(E,L)$$

Supervisor: David Boilley

Thanks to:
Dieter Ackermann



Langevin EOM is an EOM for a deterministic+random force

$$\ddot{s} + \beta \dot{s} - \omega^2(s - s_{\text{sad}}) = r(t).$$

s - Separation of target-projectile.

 β - Friction.

ω - Angular frequency of parabolic barrier.

r(t) - Random force (Gaussian noise).

Simplifies when $\beta\gg\omega$ in the overdamped limit.

Solve for s(t) by applying the Laplace transform.

$$s(t) = \mathcal{L}^{-1}\{S(\sigma)\},\$$

= $(s_0 - s_{\text{sad}})e^{-\frac{\omega^2}{\beta}t} + s_{\text{sad}} + \frac{1}{\beta} \int_0^t r(\tau)e^{-\frac{\omega^2}{\beta}(t-\tau)}d\tau.$

Formation probability given by integrating a Gaussian up to the saddle point.

$$P_{\rm CN}(t, s_0) = \int_{-\infty}^{s_{\rm sad}} \frac{1}{\sqrt{2\pi}\sigma_s} \exp\left(-\frac{(s - \langle s(t) \rangle)^2}{2\sigma_s^2}\right) ds$$

Take the limit as $t \rightarrow infinity$

$$P_{\text{CN}} = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{\mathcal{B}(s_0)}{\mathcal{T}}} \right)$$

With T temperature, dependent on energy, B barrier height, dependent on potential energy surface.

Similar derivation even when not overdamped.

$$P_{\text{CN}}(E_{cm}, L) = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{\mathcal{B}(s_0)}{\mathcal{T}}} - \frac{1}{\beta/2\omega + \sqrt{1 + \beta^2/4\omega^2}} \sqrt{\frac{K(E_{cm}, L)}{\mathcal{T}}} \right)$$

K - kinetic energy

Ecm - Center of mass energy

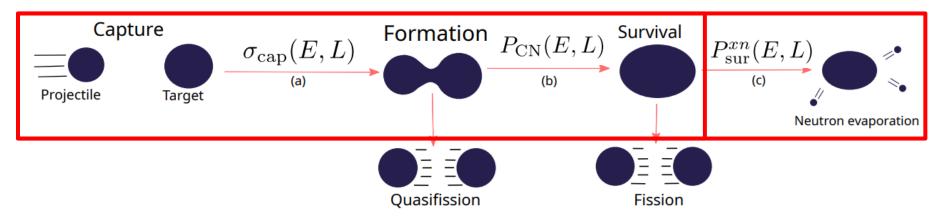
L - Angular momentum for partial wave

Two free parameters of the model to be fit to data:

β – Friction parameter

s₀ – Injection point distance

Fit parameters to data



$$\sigma_{er}^{xn}(E) = \sum_{L=0}^{\infty} (2L+1)\sigma_{\text{cap}}(E,L)P_{\text{CN}}(E,L)P_{\text{sur}}^{xn}(E,L)$$

Cannot fit to formation cross section data due to ambiguous measurement.

Evaporation residue cross section data not ideal

- Bad statistics
- Little available data

 σ_{CN} ~ mb to μb σ_{er} ~ nb to fb

Survival part introduces other sources of uncertainty:

- Fission barrier height
- Neutron separation energy

Fit parameters to data

$$\sigma_{er}^{xn}(E) = \sum_{L=0}^{\infty} (2L+1)\sigma_{\text{cap}}(E,L)P_{\text{CN}}(E,L)P_{\text{sur}}^{xn}(E,L)$$

$$P_{\text{surv}}^{xn}(E_{A_0}^*) = \prod_{i=1}^{x} \frac{\Gamma_{n,i-1}(E_{A_{i-1}}^*)}{\Gamma_{n,i-1}(E_{A_{i-1}}^*) + \Gamma_{f,i-1}(E_{A_{i-1}}^*)}$$

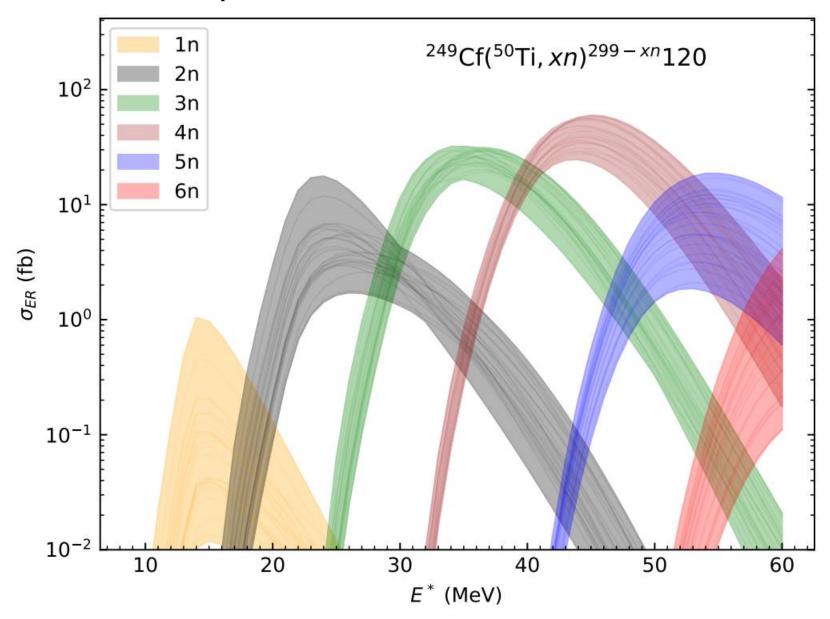
Γ – Decay width for neutron and fission channels, depends on:

- Level density parameter, a
- Fission friction parameter β
- Fission barrier height
- Neutron separation energy
- Etc...

Effect of survival stage parameters on prediction

- Refit the formation model parameters to each combination of the survival probability settings. 144 combinations.
- 2. Pick the 25 best combinations scoring the lowest loss function.
- 3. Predict reaction.

Shaded area is spread in prediction Factor 3 spread in the 4n channel.



Effect of survival stage parameters on prediction

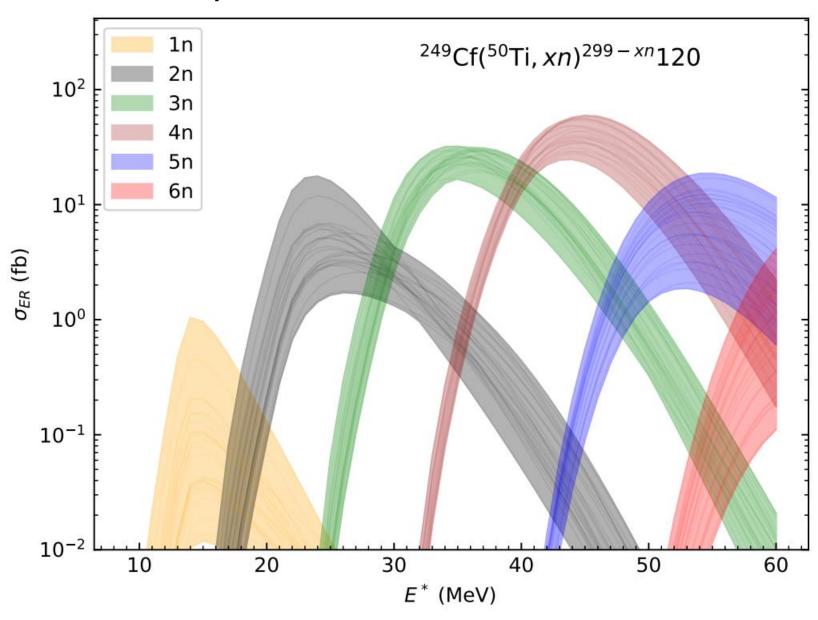
- Refit the formation model parameters to each combination of the survival probability settings. 144 combinations.
- 2. Pick the 25 best combinations scoring the lowest loss function.
- 3. Predict reaction.

Shaded area is spread in prediction Factor 3 spread in the 4n channel.

$$\beta \sim 0.7 * 10^{21} \text{ s}^{-1}$$
 in best fit

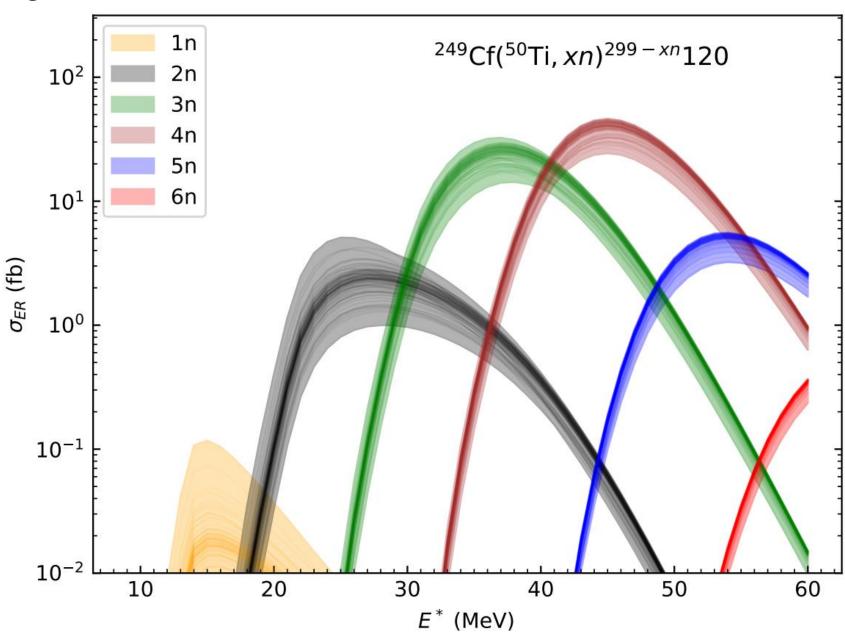
But varies from 10¹⁷ to 10²¹ in the top 25 combinations.

β model dependent.



Effect of data bootstrapping

- 1. Randomly select 85% of points in full dataset.
- 2. Fit the model to these points.
- 3. Repeat 100 times.
- 4. Figure shows the different predictions this produces.



Outlook for 1D model

- Remove model dependence of survival part by using Bohr's hypothesis
 - Survival probability independent of entrance channel.
 - Compare two reactions leading to same CN.
- Quantify uncertainty in survival part
 - Need covariance matrices from Micmac models

 Expected 1 order of magnitude uncertainty from uncertainty in in fission barriers alone.

Supervisors:

G. Carlsson, M. Albertsson, A. Idini

Five dimensional solution

Five shape coordinates define an potential energy surface. FRLDM potential is used.

 α – Mass asymmetry c_{neck} – Neck radius Q_2 – Elongation ϵ_l – Left fragment deformation ϵ_r – Right fragment deformation

Collectively denoted χ

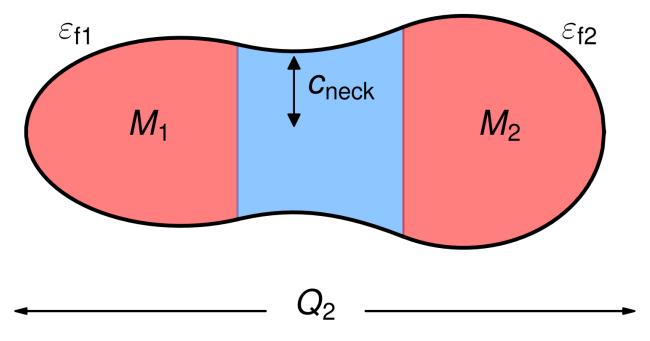


Fig from Martin Albertsson, private communication

P. Möller et.al. At. Data Nucl. Data Tables **109–110**, 1-204 (2016).

Five dimensional solution

How to solve Langevin EOM? In overdamped limit, motion is approximated by Brownian motion.

Solve by random walk on the potential energy surface. $U(\chi)$

With probability of moving to a neighbor related to level densities

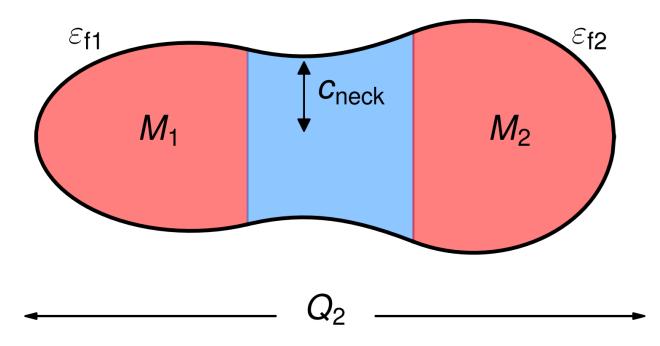


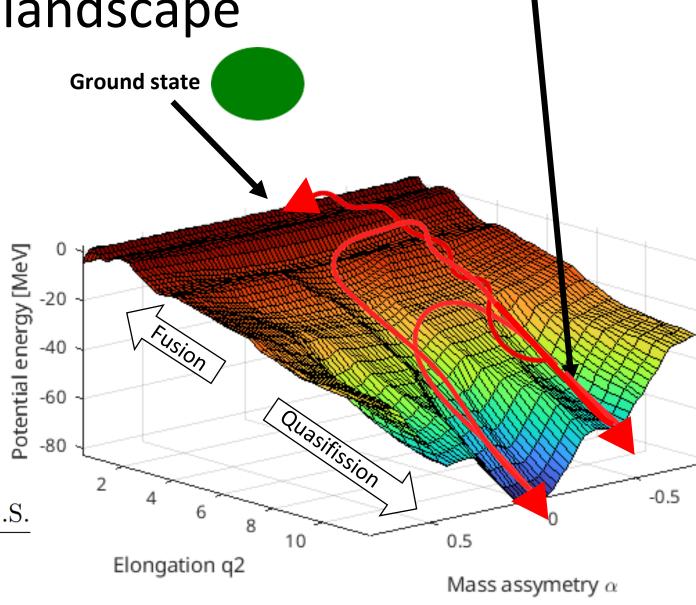
Fig from Martin Albertsson, private communication

$$P_{i\to j} = \min[1, \rho_j(E^*(\chi_j))/\rho_i(E^*(\chi_i))]$$

Potential energy landscape

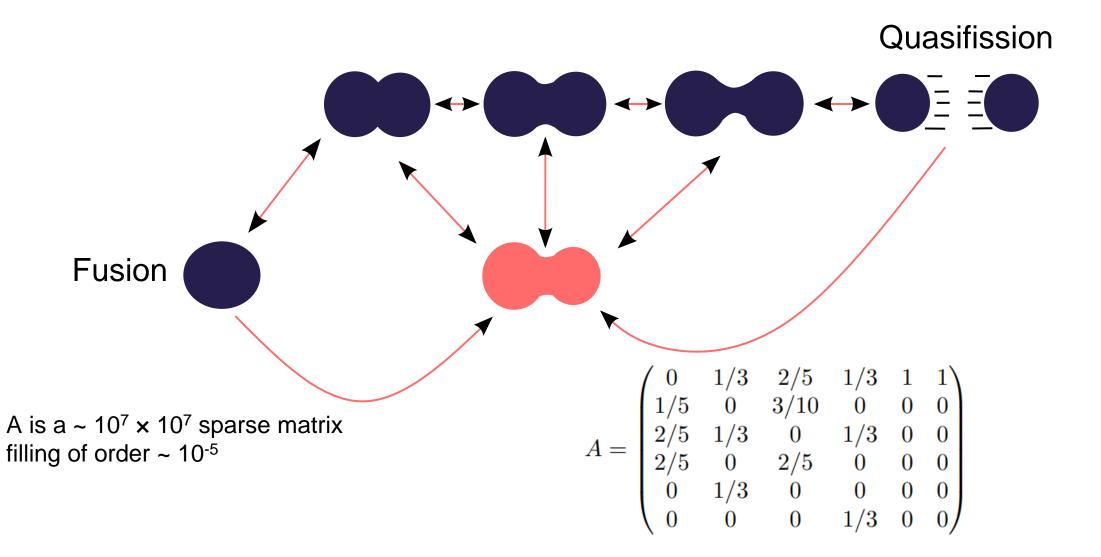
Use FRLDM to compute energy of millions of shapes.

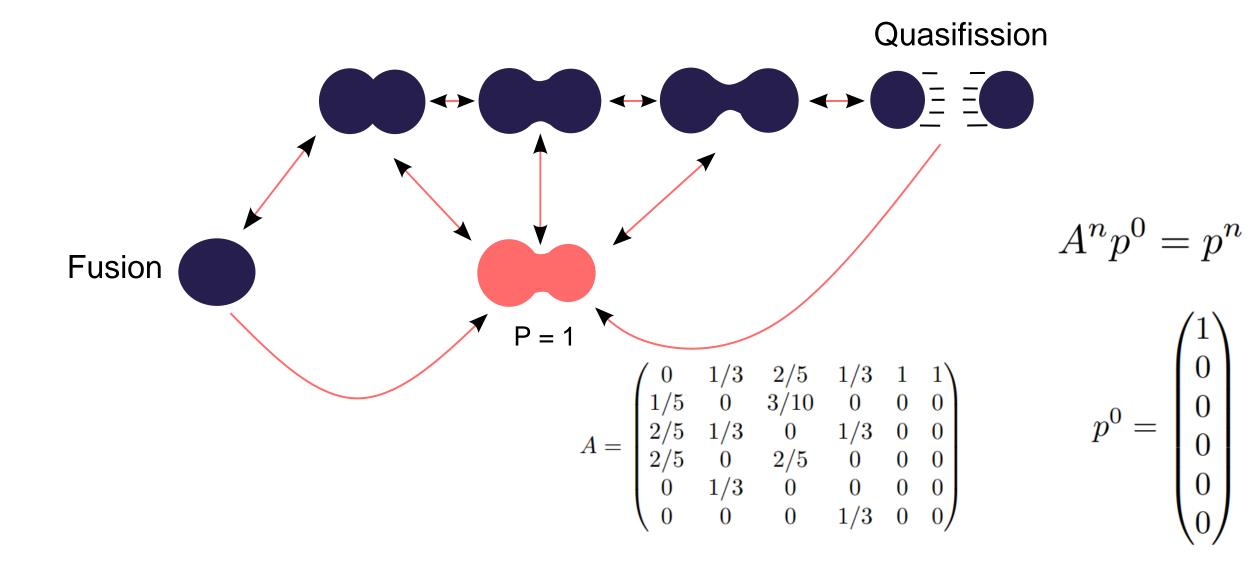
Shape changes with a diffusive process on potential surface.

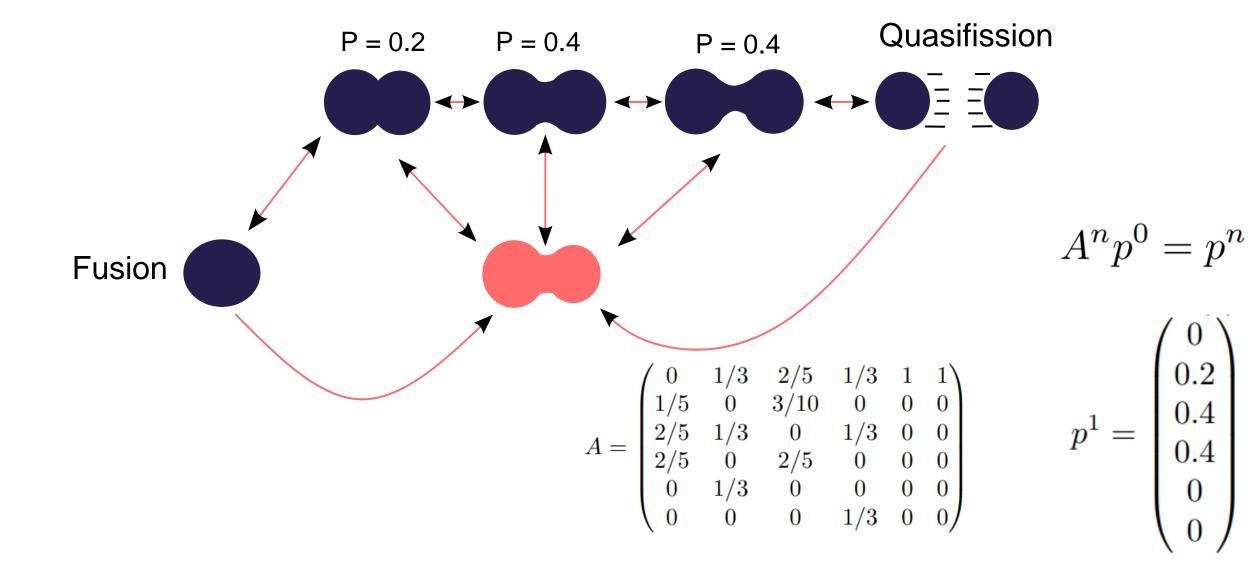


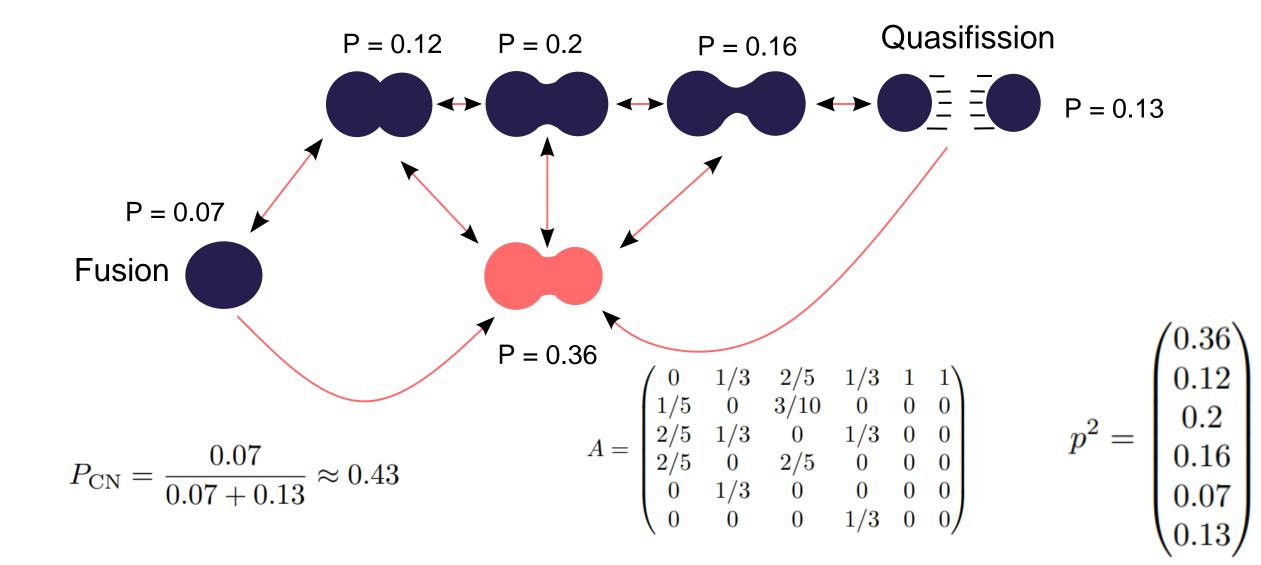
Fusion path

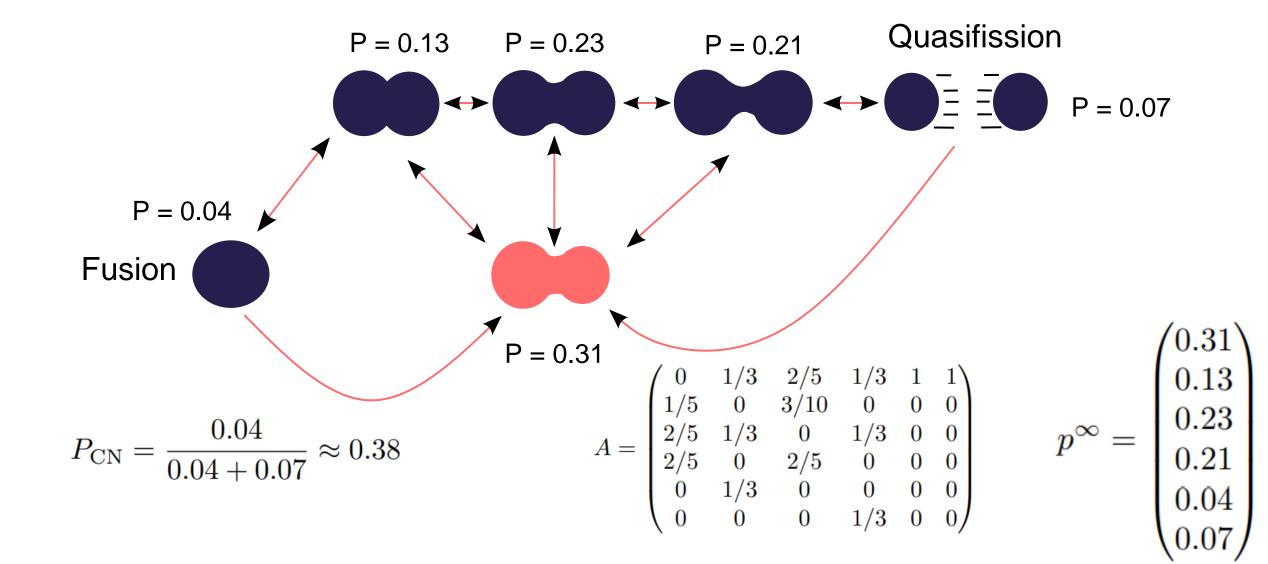
 $P_{\text{CN}} = \frac{\text{\# Random-walks moving into G.S.}}{\text{\# Total random-walks}}$











Convergence of the vector p means that $Ap^{\infty} = p^{\infty}$

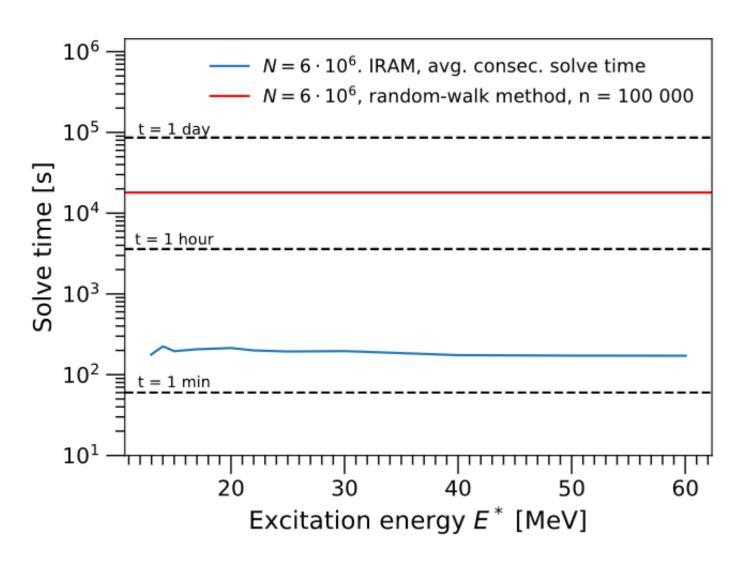
Eigenvalue problem with eigenvalue 1.

 $|\lambda| \leq 1$ for all of A's eigenvalues

Use implicitly restarted Arnoldi method (IRAM) to find eigenvalue and eigenvector of interest.

Implementation: ARPACK-NG (github.com/opencollab/arpack-ng)

Solve time for one partial wave $P_{CN}(E, L)$

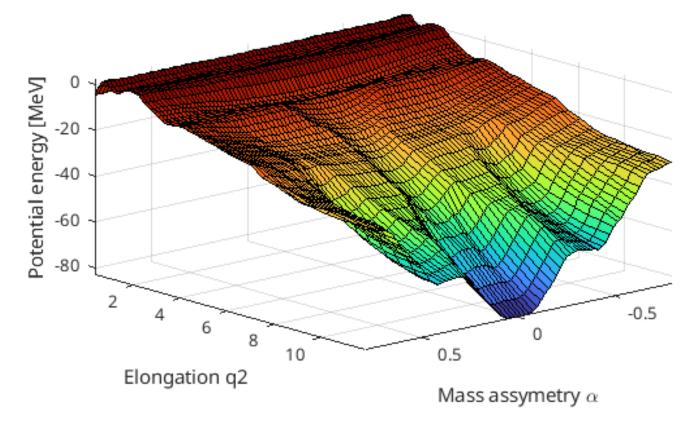


Starting location on PES?

Once nuclei collide, they have Friction between nucleons cc excitation energy.

$$\mu\ddot{R}=-\nabla_R U_I(R)-\beta(R)\dot{R}$$

$$\beta(R) = \frac{1}{2} m_n \rho \bar{v} \pi c_{\rm n}^2$$



Use Langevin Eq. of motion u

Fusion path

$$\mu \ddot{R} = -\nabla_R U_I(R) - \beta(R)\dot{R} - \sigma(R)r(t)$$

Friction along 1D path in 5D landscape. Starting condition:

- Distance q₂: Large
- Neck c_{neck}: Small.
- Mass asymmetry α: Projectile & Target
- Deformations ε: G.S deformation.

Path defined by following the gradient of PES in the parameters ϵ_l , ϵ_r , c_{neck} to lower elongations.

α frozen to initial value.

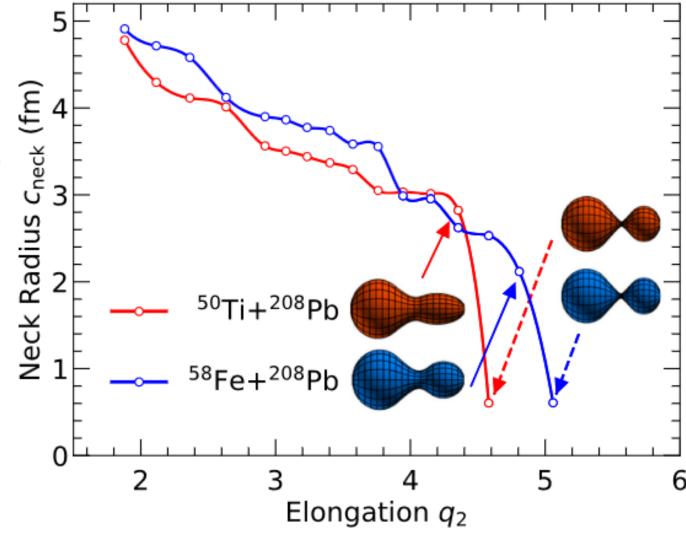


Fig. from M. Albertsson, et.al, Phys. Rev. C. 110, (2024)

Fusion path

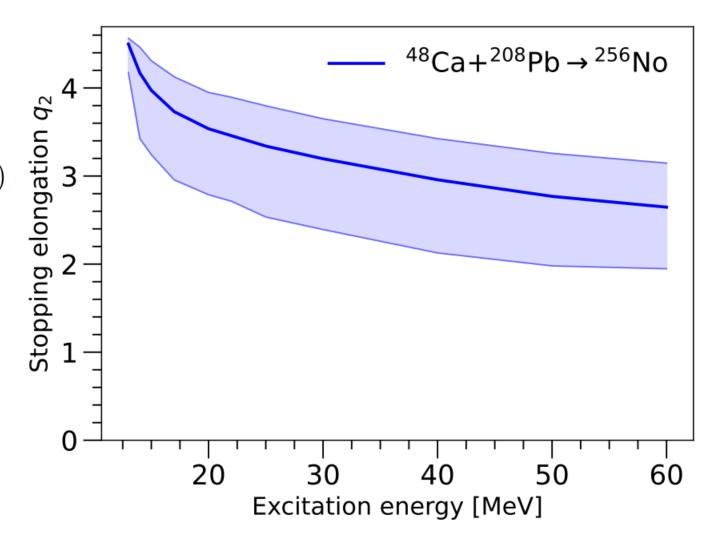
$$\mu \ddot{R} = -\nabla_R U_I(R) - \beta(R)\dot{R} - \sigma(R)r(t)$$

Friction along 1D path in 5D landscape. Starting condition:

- Distance q₂: Large
- Neck c_{neck}: Small.
- Mass asymmetry α: Projectile & Target
- Deformations ε: G.S deformation.

Path defined by following the gradient of PES in the parameters ϵ_l , ϵ_r , c_{neck} to lower elongations.

α frozen to initial value.



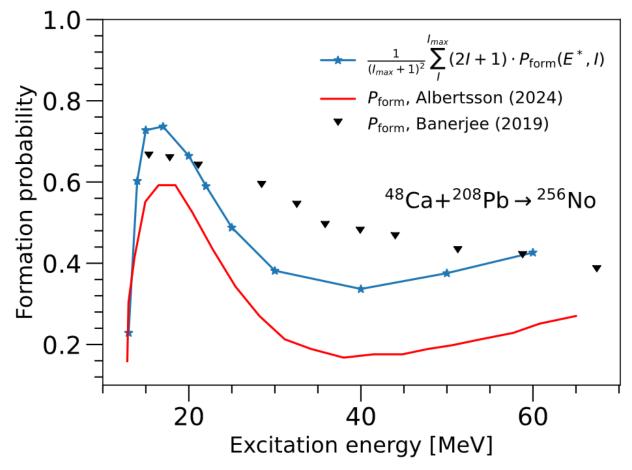
Formation probability

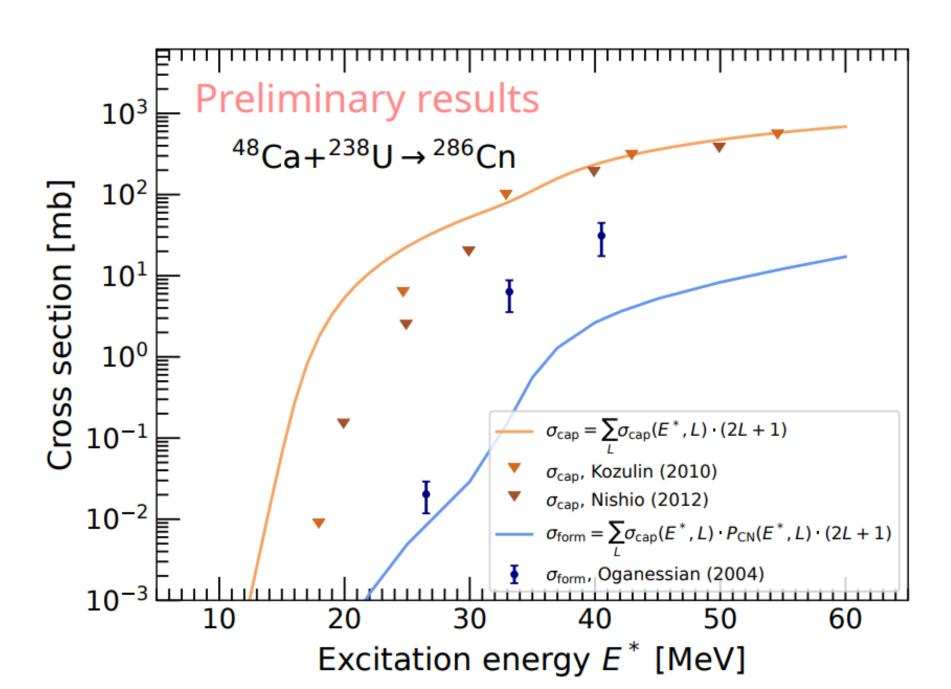
Difference between blue and red calculation is the choice of 1D fusion path to run friction on.

Blue – Follow gradient in parameters ε_l , ε_r , c_{neck}

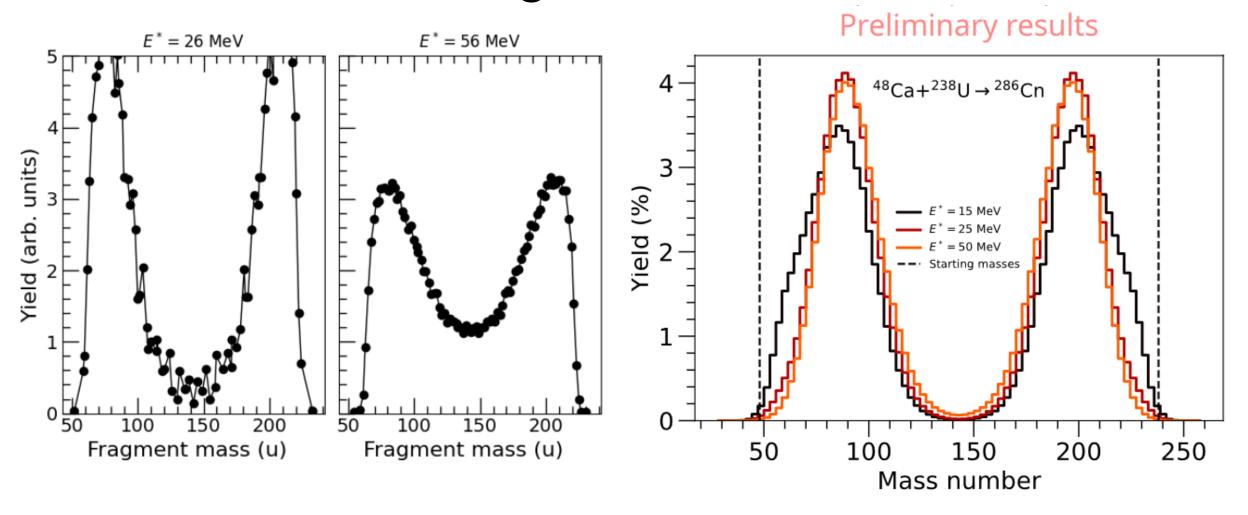
Red – Follow gradient in parameters ϵ_l , ϵ_r , c_{neck} , α

Sensitive to choice of path.





Quasifission fragment mass distribution



M. G. Itkis, et.al, Eur. Phys. J. A 58, 178 (2022).

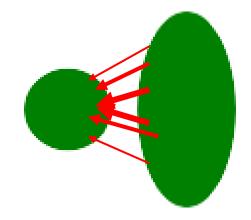
Outlook for 5D model

- Compute survival probability
- Extend to odd nuclei
- Add degrees of freedom in potential
 - Z/N degree of freedom in target/projectile
- Formation probability sensitive to start location:
 - Friction in a higher dimensional path.

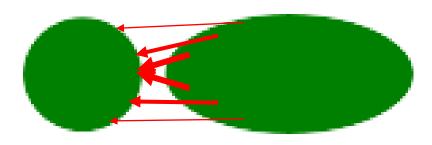
Thank you for your attention!

Capture

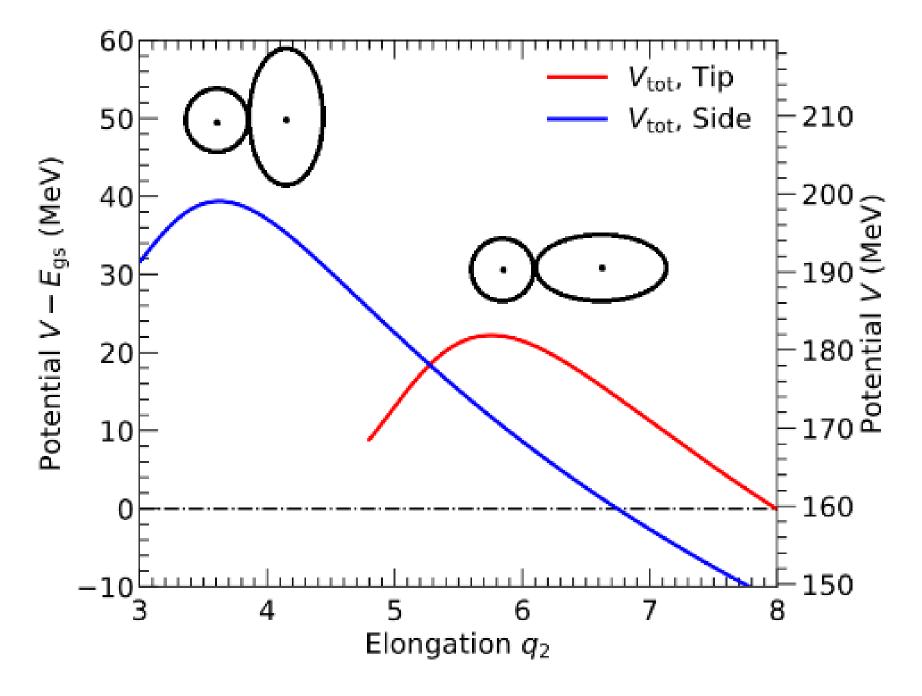
Side collision



More repulsion Larger Coulomb barrier Tip collision



Less repulsion
Smaller Coulomb barrier



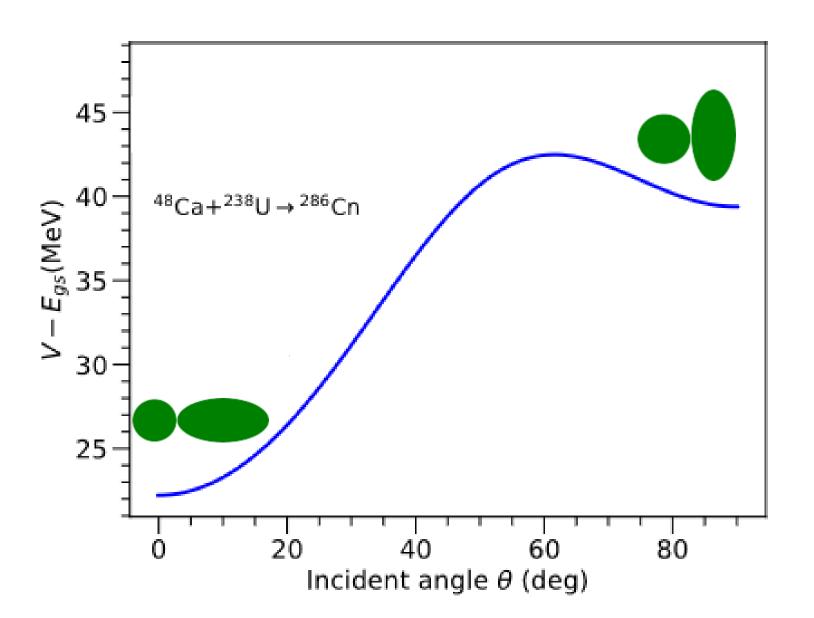
Incident angle distribution:

 $\sin \theta$

0 degrees = tip

90 degrees = side

Side collision more likely



Integrate transmission prob over all angles

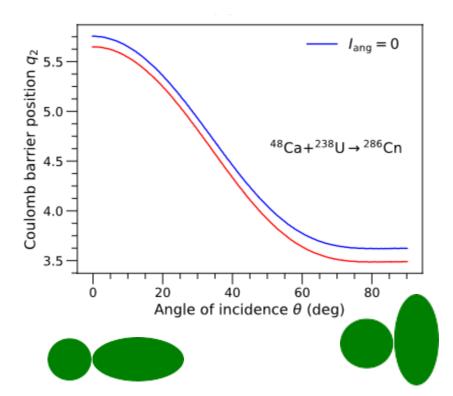
$$T(E^*, \theta, I) = \frac{1}{1 + \exp\left(\frac{2\pi}{\hbar\Omega(\theta, I)} \left[V_B(\theta, I) - E^*\right]\right)}$$

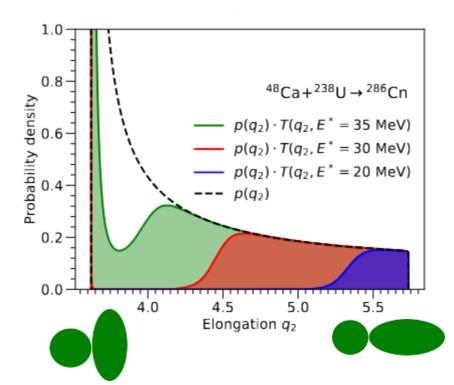
$$T(E^*) = \int_0^{\pi/2} T(E^*, \theta) \sin \theta d\theta$$



Variable transform angle into elongation to get Coulomb barrier position distribution. Coulomb barrier position determines injection point distance in the formation stage.

$$p(q_2) = \frac{1}{\frac{dq_2}{d\theta}} \sin \theta(q_2)$$



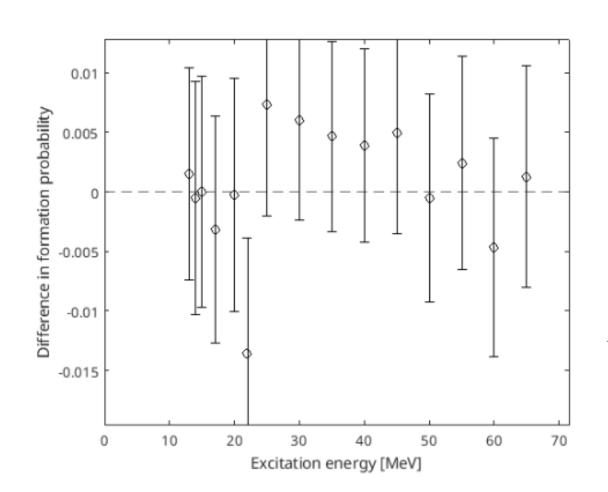


Linear systems method

- Did not spend too much time on improving the linear systems method as the performance was already two orders of magnitude better
- There are methods that can use starting guesses. You could try using them instead. This should improve the performance even further. One idea:
 - Inverse iteration aka inverse power method.

Method validation

Test eigenvector method against random walk algorithm.



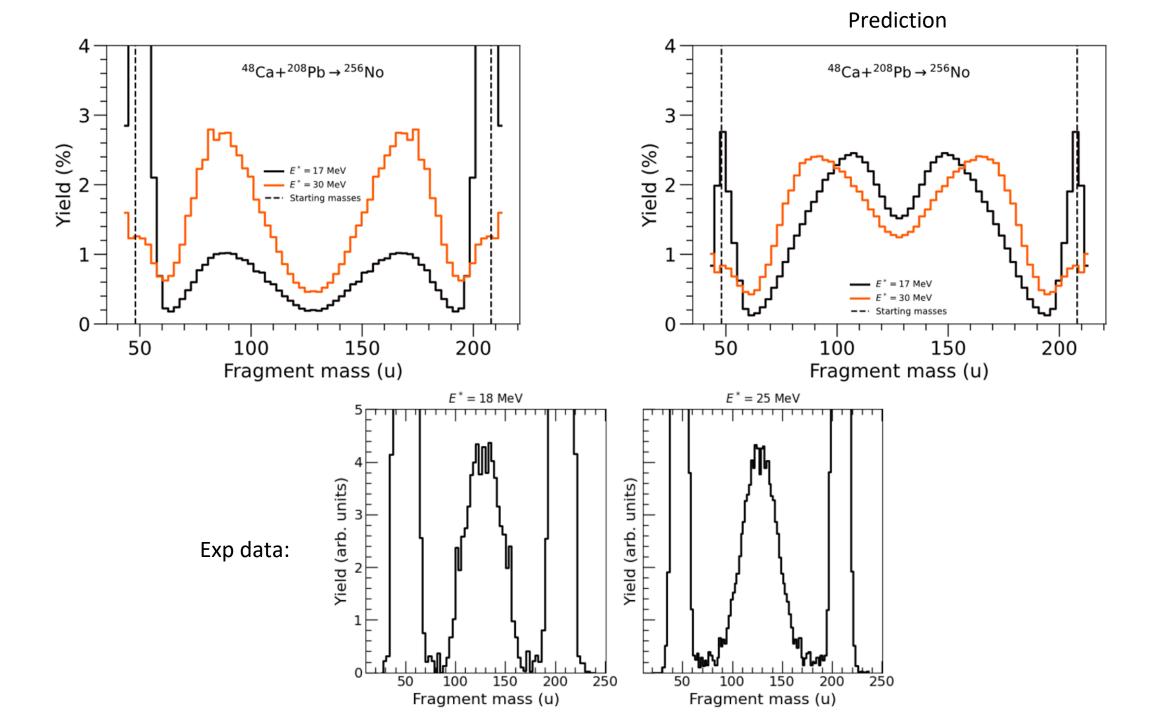
15 calculations. 95% error bars

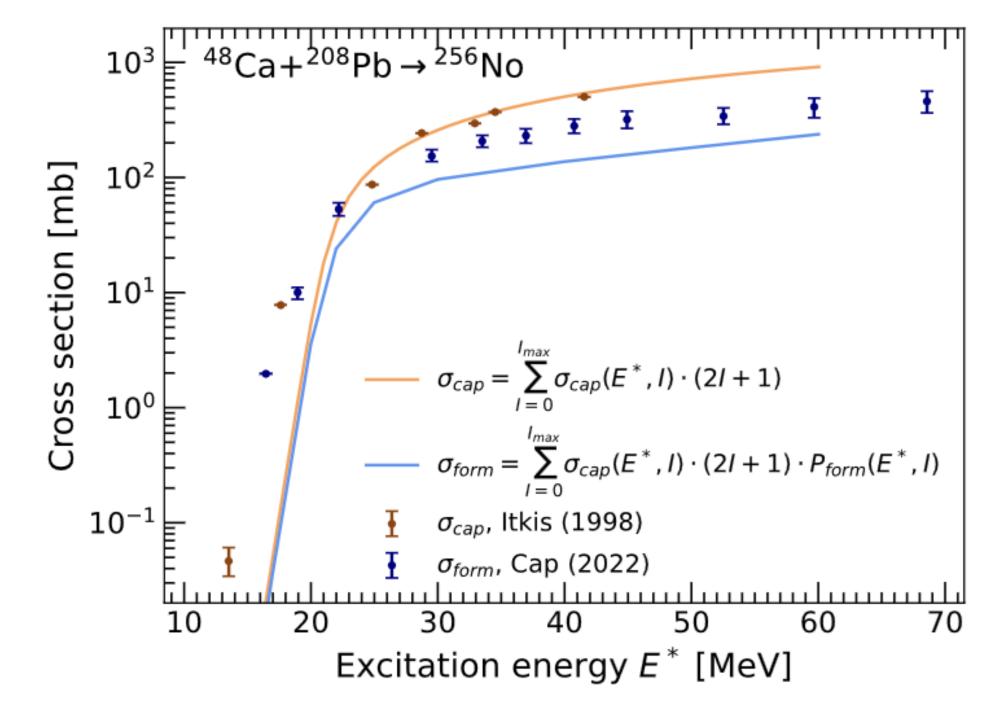
$$(0.95)^15 = 46\% =>$$

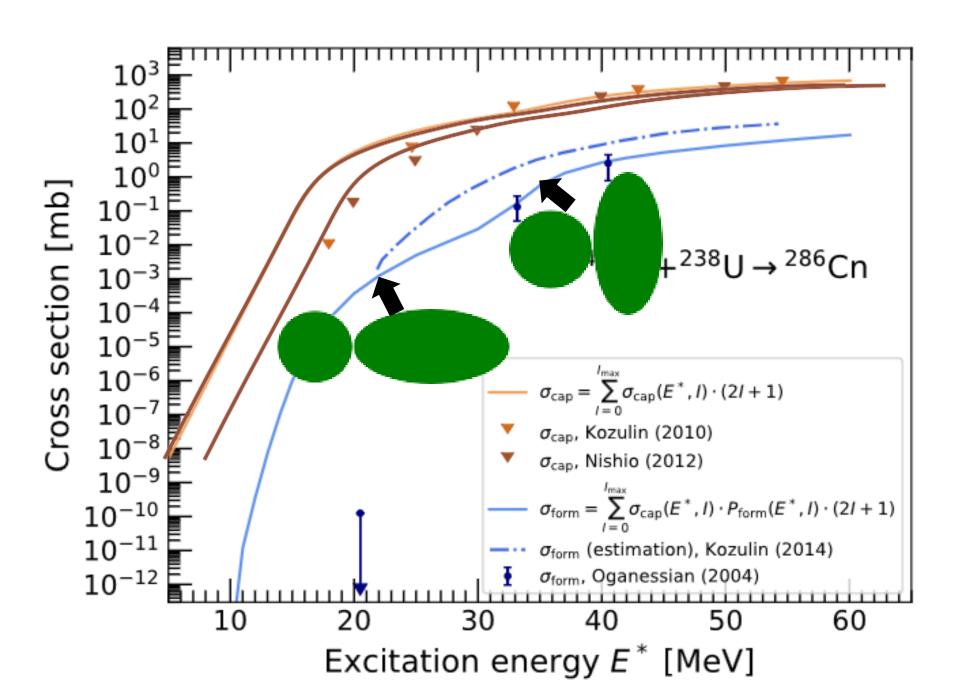
Probability of at least one calculation being outside error bars = 54%

$$\sigma_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$n \ge \frac{4 \times 1.96^2 (1 - \hat{p})}{\hat{p} \times 10^{-2d}}$$

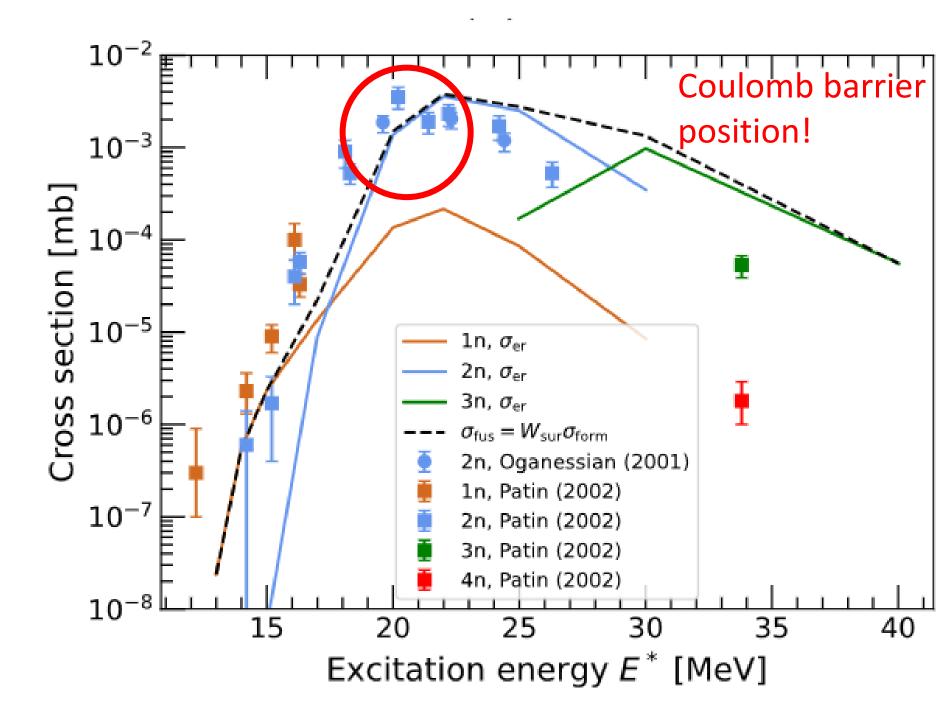




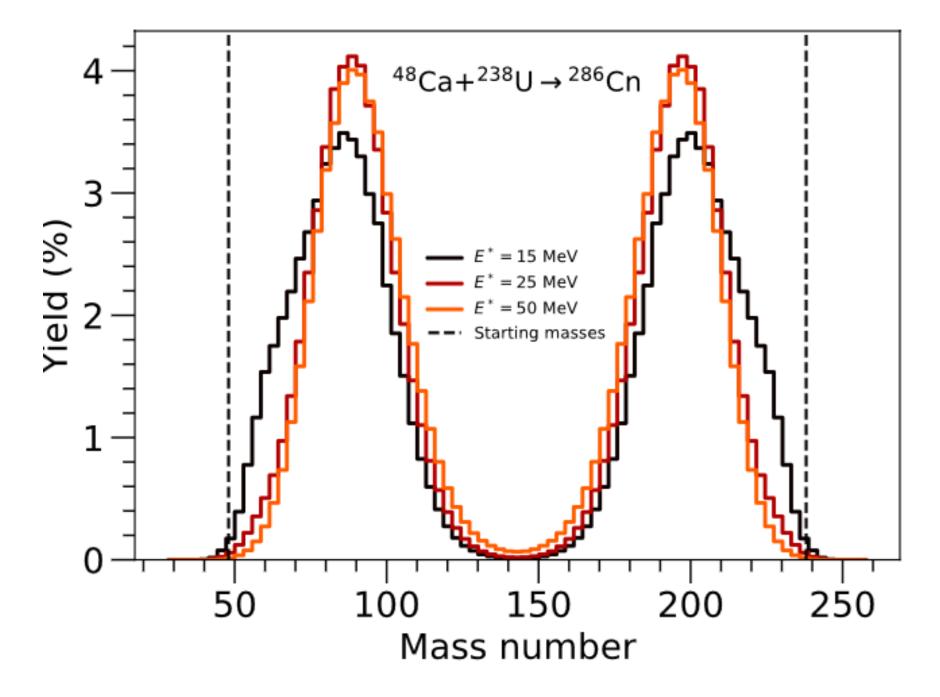


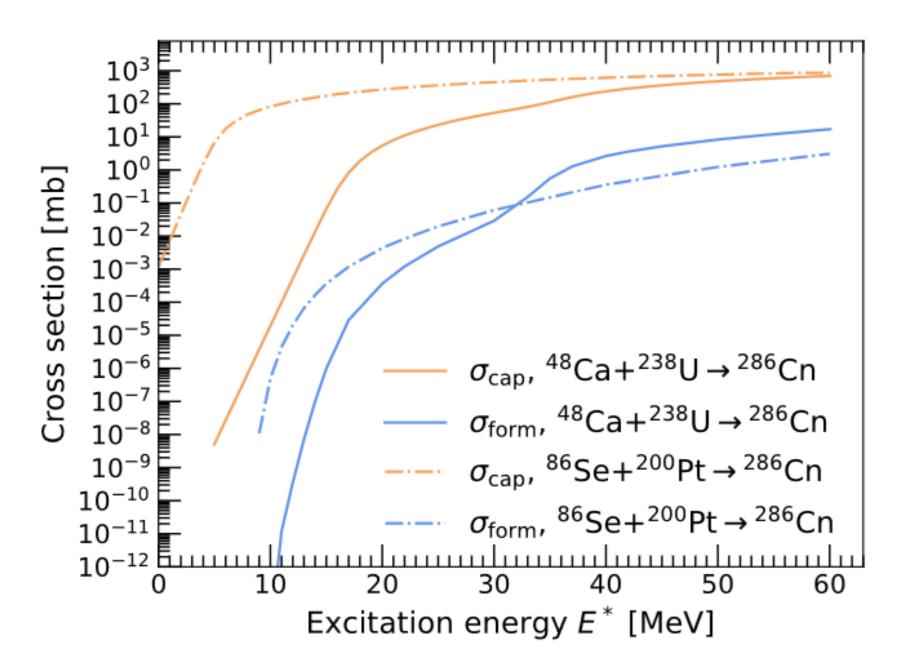
3. Survival stage

No discovered 1950s-1960s (disputed)

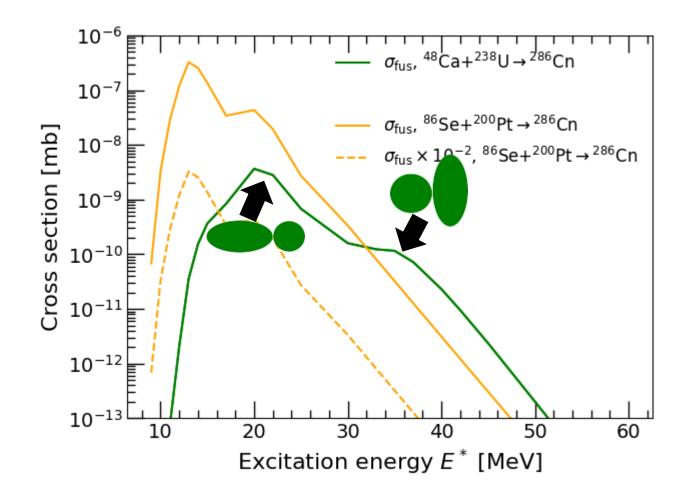


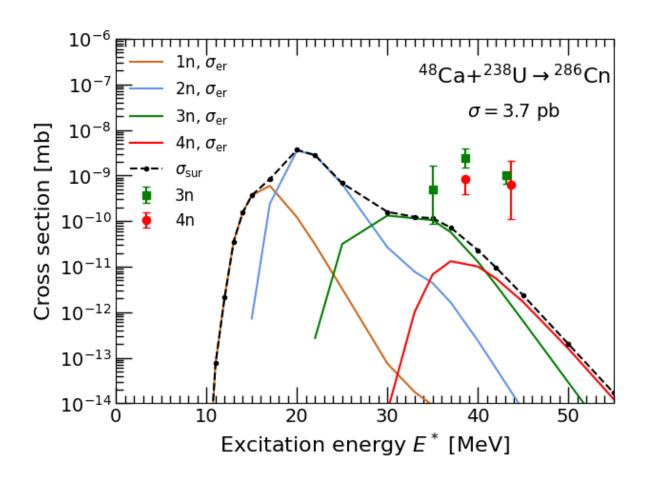
Thank you for listening!





Survival probability from Kewpie2

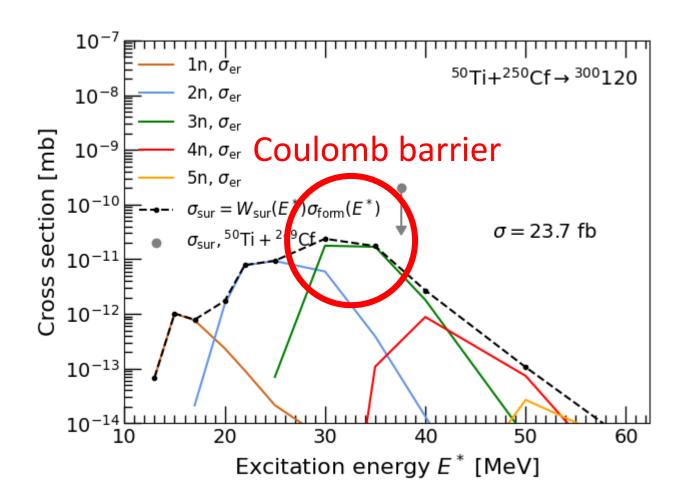




Survival prob from Kewpie2

Exp. Data for In figure for

²⁹⁹ **120**

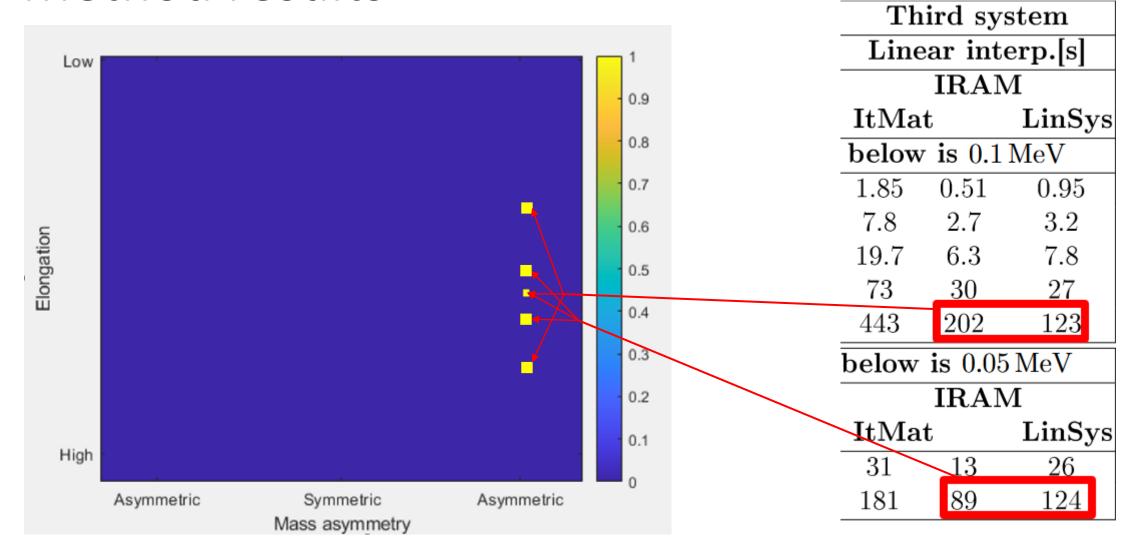


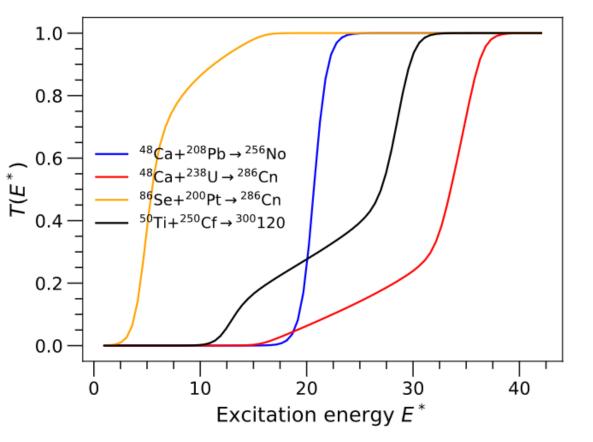
Method results

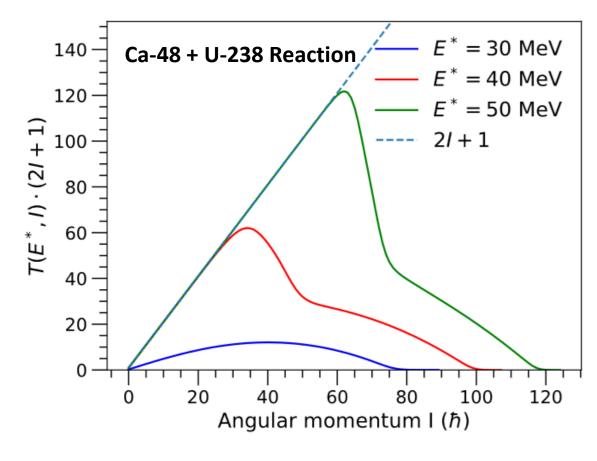
	Fi	rst sys	stem	Sec	ond s	ystem	Third system		
Guess:	Even probability [s] IRAM			Reuse 1 st solution [s] IRAM			Linear interp.[s] IRAM		
Size (N)									
	ItMat	t	\mathbf{LinSys}	ItMat		\mathbf{LinSys}	ItMat	t	\mathbf{LinSys}
Energy spacing of the systems in the three columns below is 0.1 MeV							MeV		
4.0×10^{4}	7.3	0.9	0.9	2	0.4	0.95	1.85	0.51	0.95
9.0×10^{4}	29	3.2	3.7	9.4	1.5	2.7	7.8	2.7	3.2
1.6×10^{5}	67	11.6	8	26	6.3	8	19.7	6.3	7.8
3.6×10^{5}	208	42	29	101	19	28	73	30	27
1.0×10^{6}	813	204	126	545	226	125	443	202	123

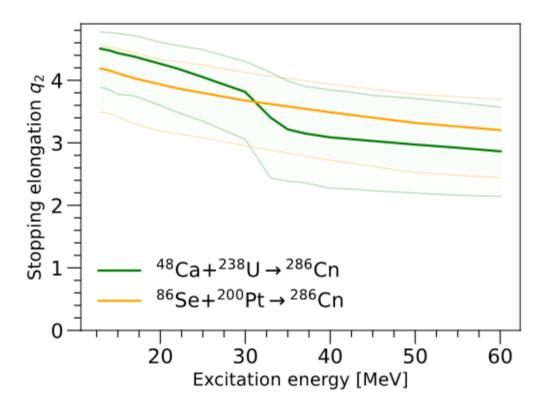
Energy spacing of the systems in the three columns below is $0.05\mathrm{MeV}$										
Size (N)	IRAM			IRAM			IRAM			
	ItMat		${\bf LinSys}$	ItMat		\mathbf{LinSys}	ItMat		\mathbf{LinSys}	
3.6×10^{5}	232	54	25	65	17	26	31	13	26	
1.0×10^{6}	940	230	126	370	88	123	181	89	124	

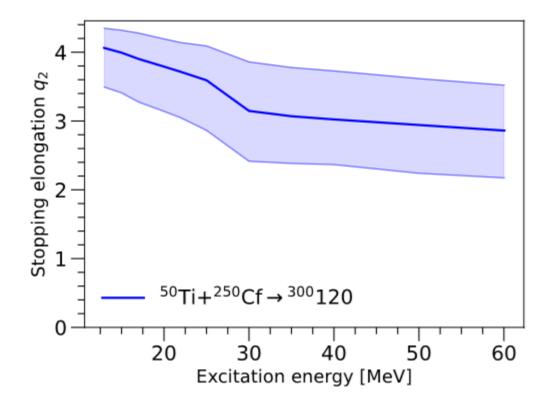
Method results

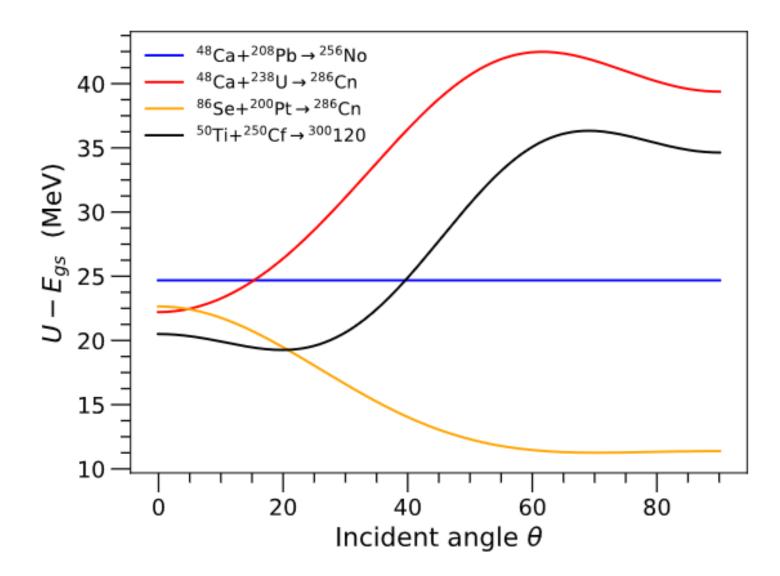


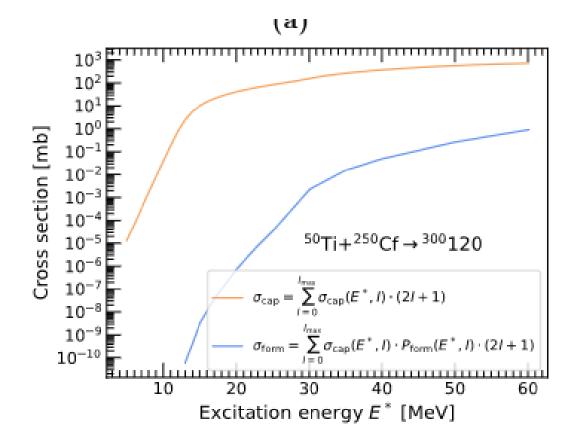


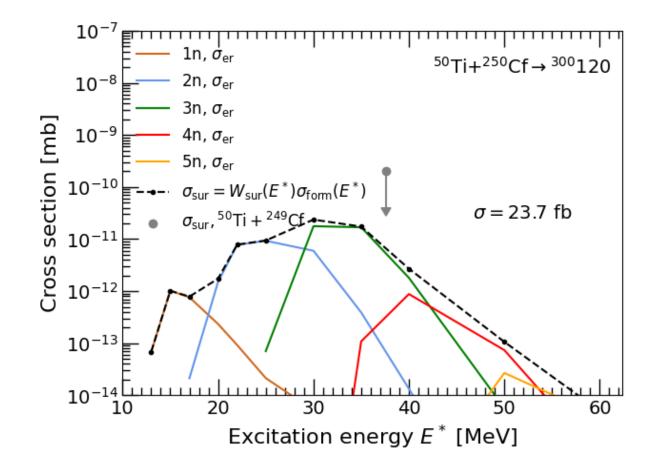






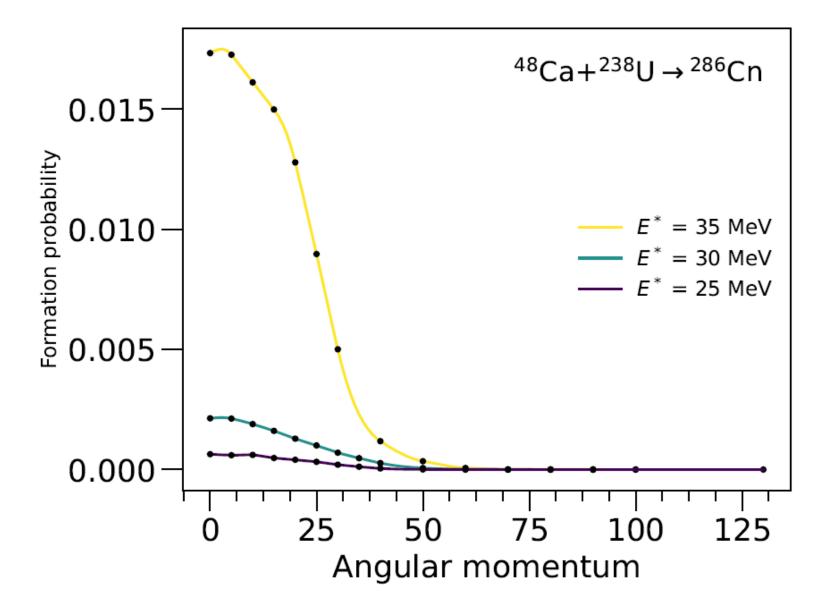






$$\sigma_{\text{fus}}(E^*) = \sum_{I=0}^{\infty} (2I+1)\sigma_{\text{cap}}(E^*,I)P_{\text{form}}(E^*,I)W_{\text{sur}}(E^*,I)$$

Spline



Cn officially named 2010

Fl officially named 2012

