Speaker
Description
I will discuss our recent work on using a two-level sampling algorithm in combination with distillation techniques for the computation of fermionic observables. Using a 1D decomposition of the lattice into two active domains separated by smaller frozen domain, the quark propagator can be written as a series of domain-local contributions. These contributions can be estimated independently with a two-level sampling strategy. This potentially enables an exponential gain in the signal-to-noise of fermionic correlators as the number of submeasurements increases. In the talk I will show our test results using a pure gauge ensemble. Here, we computed both the leading contribution and the first order terms in the measurements of disconnected diagrams.