Contribution ID: 24 Type: not specified

Equivariant Diffusion-based Sampling for Lattice Field Theory

Wednesday 3 December 2025 11:00 (40 minutes)

Recent advances in deep generative modeling have enabled accelerated approaches to sampling complicated probability distributions. In this work, we develop symmetry-equivariant diffusion models to generate lattice field configurations. We build score networks that are equivariant to a range of group transformations and train them using an augmented score matching scheme. By reweighting generated samples, we produce unbiased estimates for observables in scalar ϕ^4 theory and U(1) gauge theory. We extend our framework to sample SU(N) degrees of freedom by adapting the score matching technique and the reverse diffusion process to the group manifolds. Our trained models faithfully reproduce the target densities for several toy SU(2) theories, which marks a step towards simulating full SU(N) gauge theory on the lattice.

Special requests

Author: VEGA, Octavio (University of Illinois Urbana-Champaign)

Co-authors: Prof. KANWAR, Gurtej (University of Edinburgh); Dr KOMIJANI, Javad (ETH Zürich); Prof. MARINKOVIC, Marina (ETH Zürich); Prof. EL-KHADRA, Aida (University of Illinois Urbana-Champaign)

Presenter: VEGA, Octavio (University of Illinois Urbana-Champaign)

Session Classification: Talks