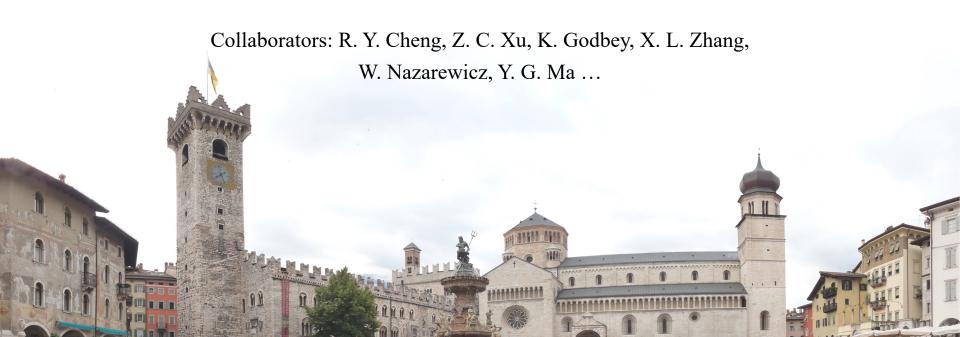


Emulators for Open Quantum Systems

Simin Wang (S. M. Wang)

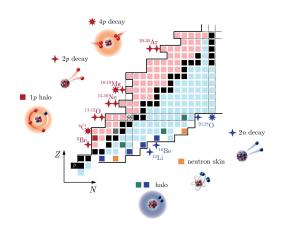
Fudan University



Outline

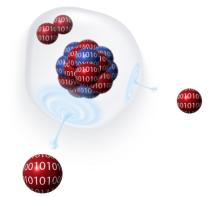
Introduction

- Open quantum systems (OQSs)
- Theoretical developments and challenges

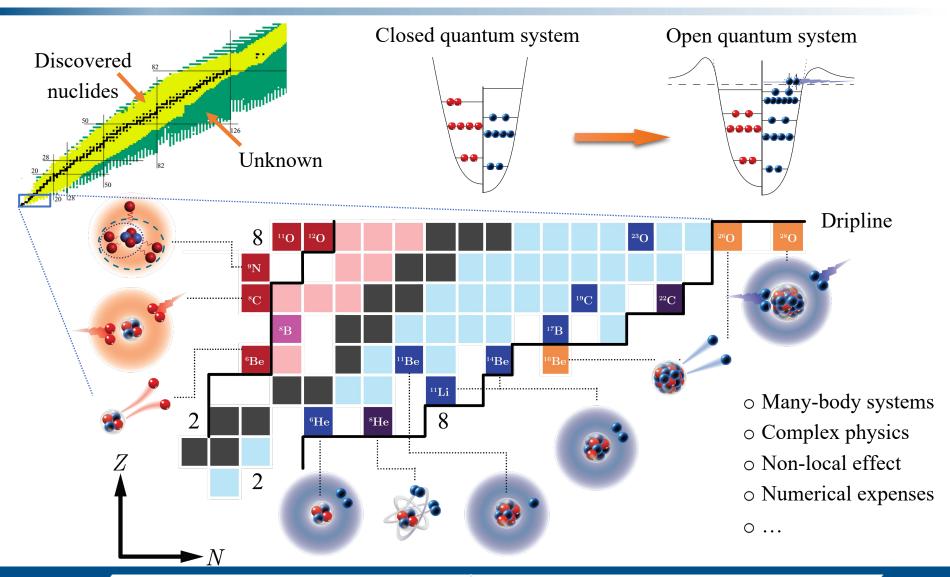


• Emulators for OQSs (resonances)

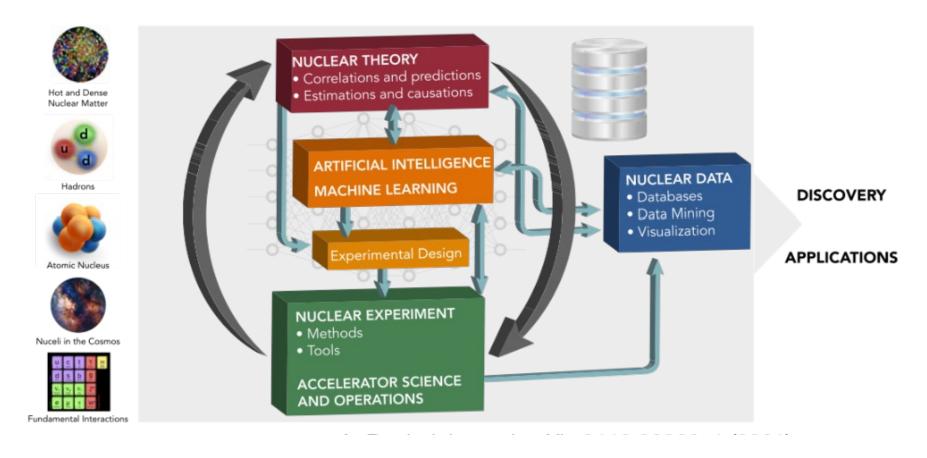
- Response function
- Resonance energy/width
- o Continuum coupling & asymptotic observable



Rich phenomena towards the dripline

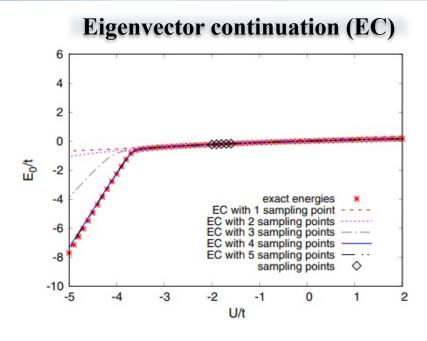


Demand of machine learning



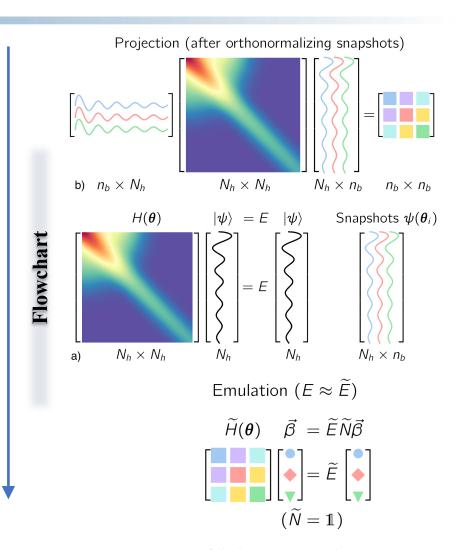
A. Boehnlein et al., Rev. Mod. Phys. 94, 031003 (2022)

Emulator for bound system



D. Frame *et al.*, Phys. Rev. Lett. 121, 032501 (2018)

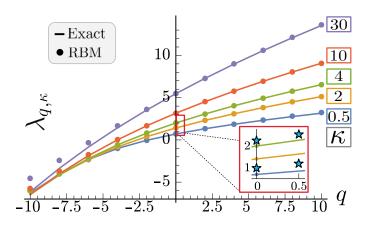
- T. Duguet et al., Rev. Mod. Phys. 96, 031002 (2024)
- o Eigenvalues can be extrapolated very well
- o Information learned by the eigenvector changes
- o Requirement: the continuity of the eigenvector

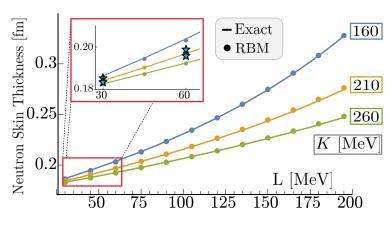


c) All size- n_b operations

Emulator for bound many-body system

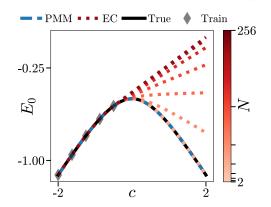
Reduce basis method (model driven)



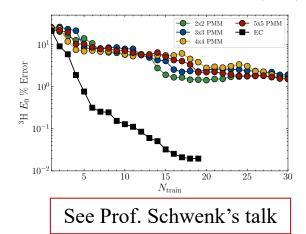


E. Bonilla et al., Phys. Rev. C 106, 054322 (2022)

Parametric matrix models (hybrid)



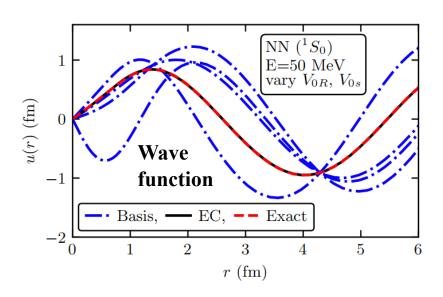
P. Cook et al., Nat. Commun. 16, 5929 (2025)



R. Curry et al., arXiv:2510.15860 (2025)

Emulator for reaction

EC for for scattering

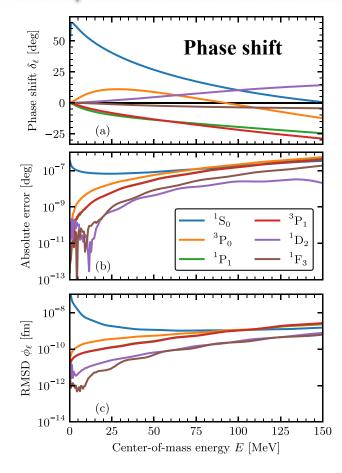


See Prof. Furnstahl's talk

- Successfully preproduce wave function, phase shift
- Different from resonance prediction, E is pre-known

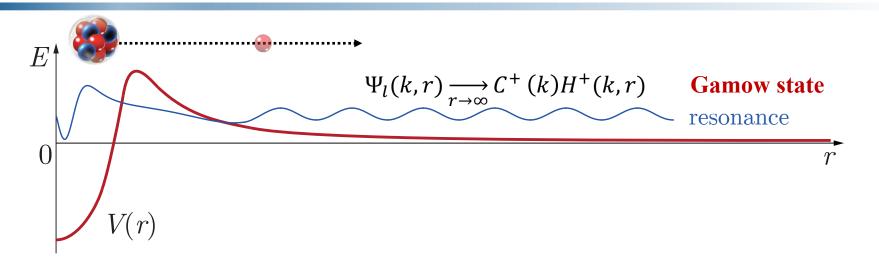
R. Furnstahl et al., Phys. Lett. B 809, 135719 (2020)

Greedy emulators for 2b scattering



J. M. Maldonado et al., Phys. Rev. C 112, 024002 (2025)

Challenges in resonance predictions



Complex Schrödinger equation

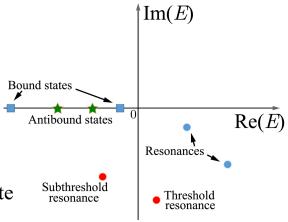
$$\hat{H}\Psi = \tilde{E}\Psi$$
, where $\tilde{E} = E_R - i\frac{\Gamma}{2}$

$$\Psi(t) = e^{-i\frac{\hat{H}}{\hbar}t}\Psi(0) = e^{-i\frac{E_Rt}{\hbar} - \frac{\Gamma t}{2\hbar}}\Psi(0)$$

Challenges

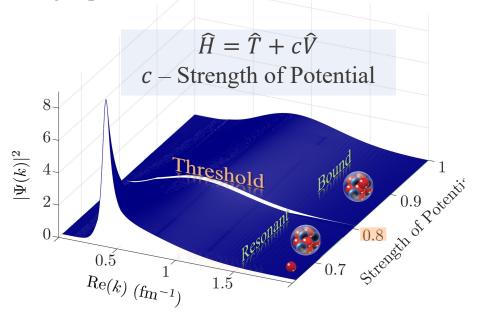
- a) Complex physics
- b) Easily impacted by the environment and asymptote
- c) Large computational expenses

Complex energy plane

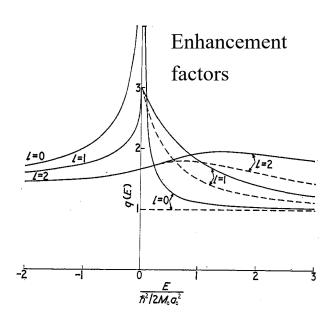


Challenges in resonance predictions

Single-particle wave function



Wigner cusp

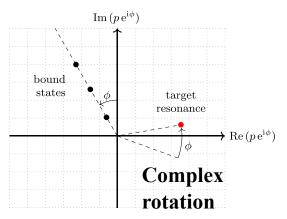


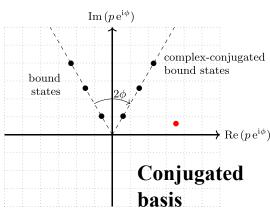
F. C. Barker, Proc. Phys. Soc. 84, 681 (1964)

Challenges to overcome for emulators

- a) Predict the energy and width at the same time
- b) Short-range structure vs long-range observables
- c) Discontinuity in wave functions and observables

Complex-augmented eigenvector continuation





Rotate the complex plane

$$H^+(k,r) \xrightarrow[r \to \infty]{} e^{+ikr}$$

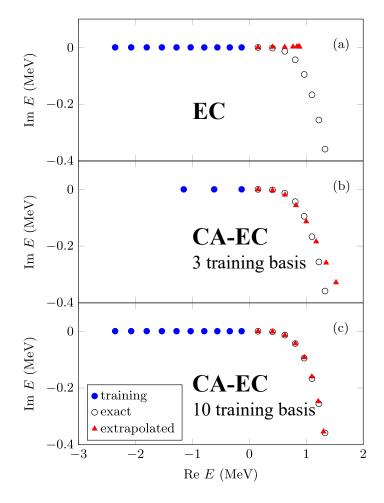
$$H_{\mathrm{EC}} |\psi(c_*)\rangle_{\mathrm{EC}} = E(c_*)_{\mathrm{EC}} N_{\mathrm{EC}} |\psi(c_*)\rangle_{\mathrm{EC}}.$$

where

$$(H_{EC})_{ij} = \langle \psi(c_i) | H(c_*) | \psi(c_j) \rangle,$$

$$(N_{EC})_{ij} = \langle \psi(c_i) | \psi(c_j) \rangle.$$

N. Yapa et al., Phys. Rev. C 107, 064316 (2023)



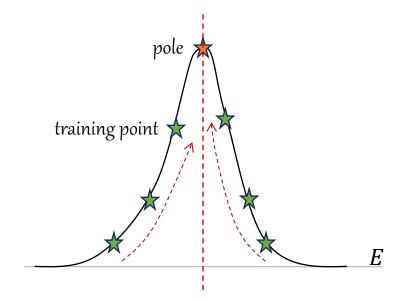
N. Yapa et al., Phys. Rev. C 111, 064318 (2025)

Emulator for response function

Response function

$$R(E) \equiv \langle S' | \frac{1}{E - H} | S \rangle$$

Accumulated effect from all eigen states (bound states, resonances, and continuum)



1. Choose complex energies
$$|\Psi_n^{\rm RB}\rangle = \frac{1}{E_n - H}|S\rangle$$

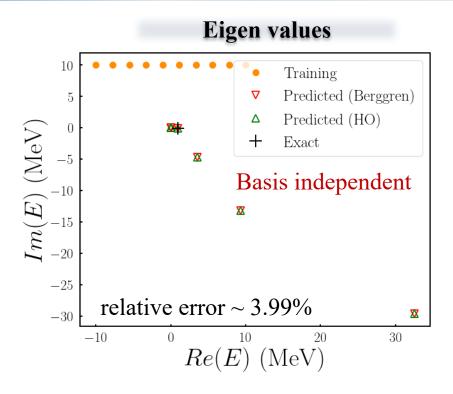
2. Training basis

$$E_n \to E_n + i\epsilon_n$$

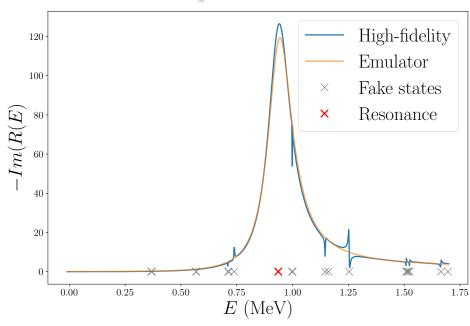
- 3. Project [H] to subspace, obtaining $[\widetilde{H}]$
- 4. Solve eigenvalues E_i^{eig} of $[\widetilde{H}]$
- 5. Compute R(E) using E_i^{eig}

Collaboration with X. L. Zhang

Emulator for response function



Response function



R. Y. Cheng et al., in preparation

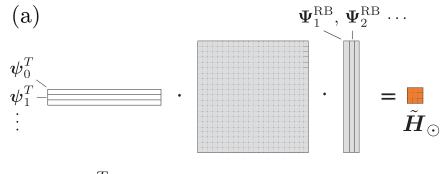
• Why does it work?

$$|\Psi_n^{\rm RB}\rangle = \frac{1}{E_n - H} |S\rangle$$
 Filter

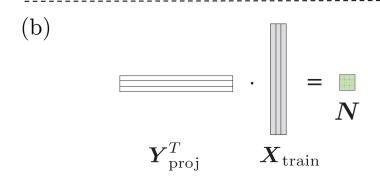
Upper panel of complex plane

Localized wave function

Reduce basis method (RBM)



$$oldsymbol{Y}_{ ext{proj}}^T \qquad oldsymbol{H}_{\odot} = oldsymbol{T} + c_{\odot} oldsymbol{V} \quad oldsymbol{X}_{ ext{train}}$$



$$\hat{\boldsymbol{H}}_{\odot}\boldsymbol{a} = \boldsymbol{\mathbb{N}}\boldsymbol{a}E_{\odot}$$

• Training basis

Eigenvectors at the *n*-th parameter

$$\boldsymbol{H}_n \boldsymbol{\Psi}_n^{\mathrm{RB}} = E_n \boldsymbol{\Psi}_n^{\mathrm{RB}}$$

Solve in the high-fidelity space

Target wavefunction

$$\boldsymbol{H}_{\odot}\boldsymbol{\Psi}_{\odot}^{\mathrm{Int}} = E_{\odot}\boldsymbol{\Psi}_{\odot}^{\mathrm{Int}}$$

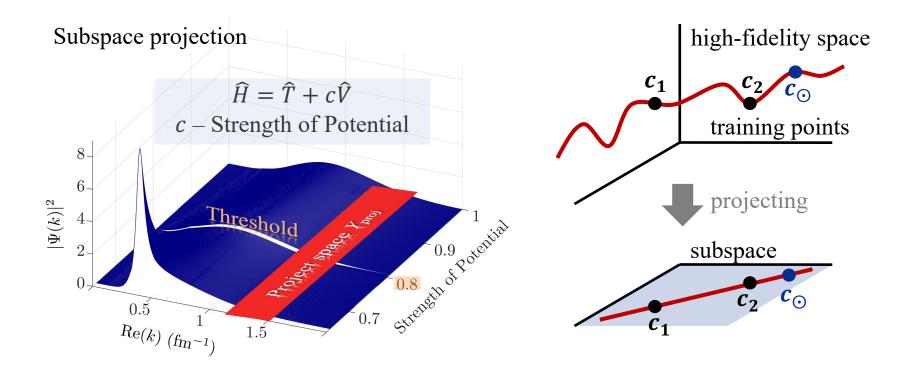
$$oldsymbol{\Psi}_{\odot}^{ ext{Int}} pprox \sum_{n=0}^{N_b-1} a_n oldsymbol{\Psi}_n^{ ext{RB}} = oldsymbol{X}_{ ext{train}} \cdot oldsymbol{a}$$

Hint:

system should vary smoothly with parameters

Collaboration with K. Godbey

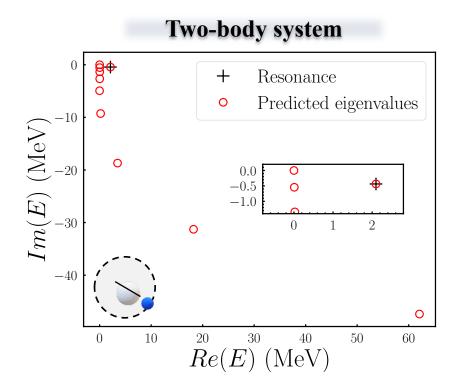
RBM for resonances

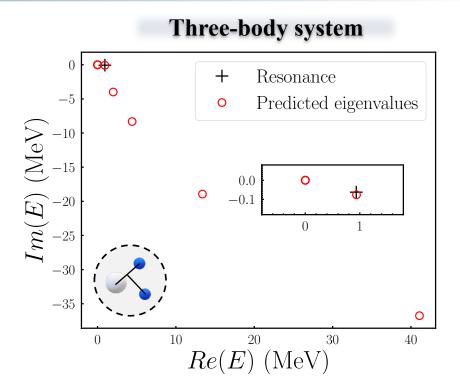


- \circ Training basis X_{train} : at different parameters such as potential strength c or the complex energy E
- \circ Projecting basis Y_{proj} : smoothly changed subspace, such as high-momentum free-particle wave

Internal region of a nucleus

RBM for resonances



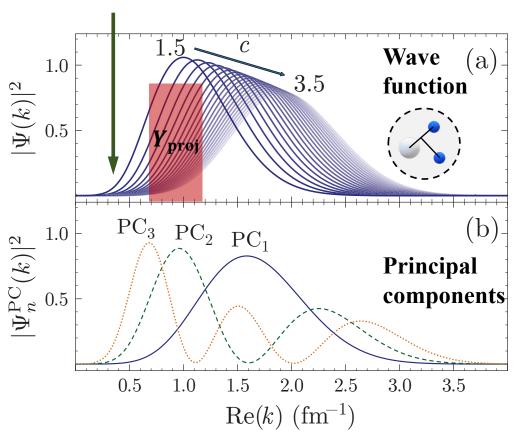


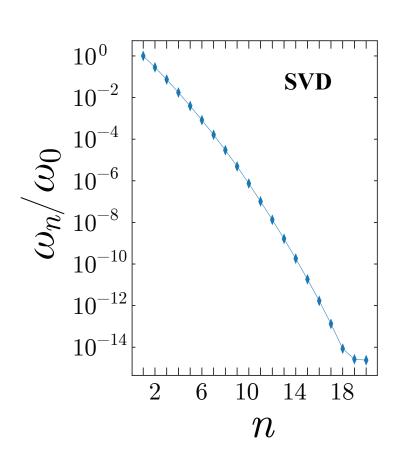
- \circ Training basis X_{train} : at different parameters such as potential strength c or the complex energy E
- \circ Projecting basis Y_{proj} : smoothly changed subspace, such as high-momentum free-particle wave

Internal region of a nucleus

Principal-component analysis

Crucial region for continuum

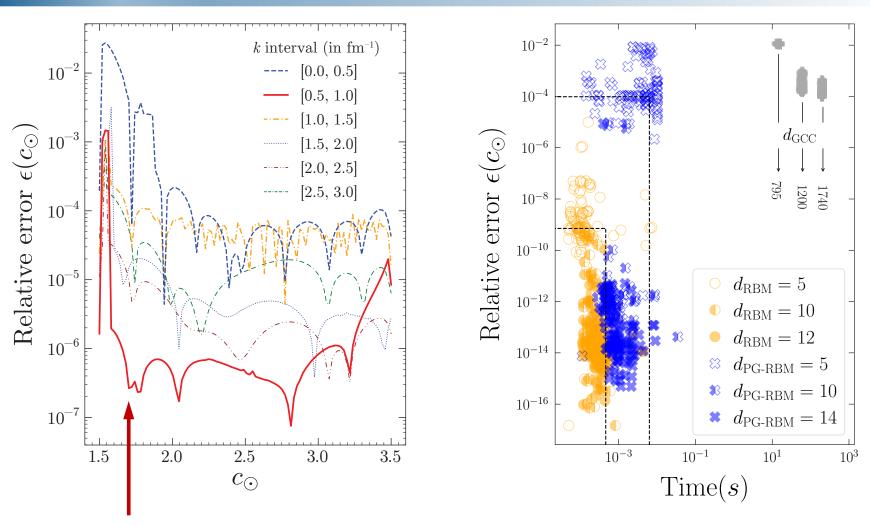




o Training wave function can be bound states

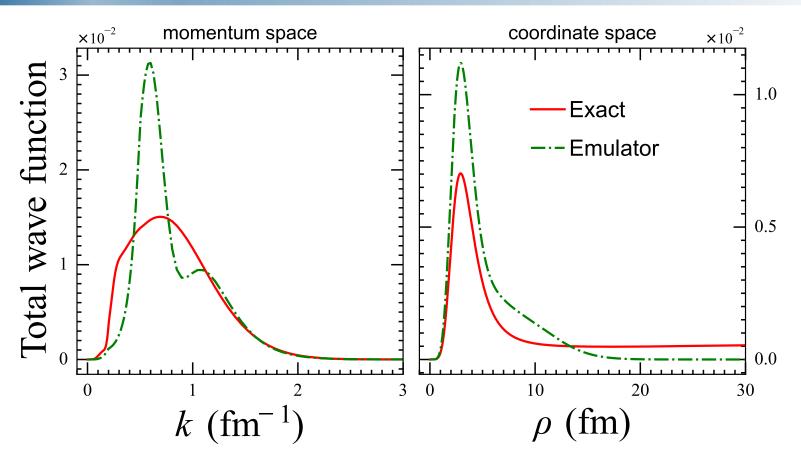
R. Y. Cheng et al., Phys. Rev. C 111, 064315 (2025)

Accuracy & efficiency



 $k \in [0.5, 1.0]$ corresponds to the inner-nucleus region strongly impacted by the structure

But at what cost?



- Wavefunction matches inside the nucleus (mid- & high-momenta), but fails asymptotically for both emulators
- o Asymptotic-observable predictions might be challenging

Wavefunction correction

Problem: the emulated wavefunction has ignored the asymptotic behavior

$$|\Psi_{\odot}\rangle + V_{\odot}|\Psi_{\odot}^{(\text{emu})}\rangle = E_{\odot}|\Psi_{\odot}\rangle$$
 $|\Psi_{\odot}\rangle = \frac{V_{\odot}}{E_{\odot} - H_{0}}|\Psi_{\odot}^{(\text{emu})}\rangle$

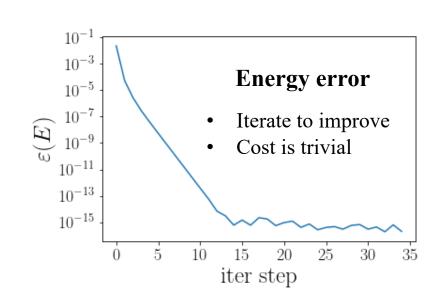
Lippmann-Schwinger equation

$$|\Psi_{\odot}\rangle = \frac{V_{\odot}}{E_{\odot} - H_0} |\Psi_{\odot}^{(\text{emu})}\rangle$$

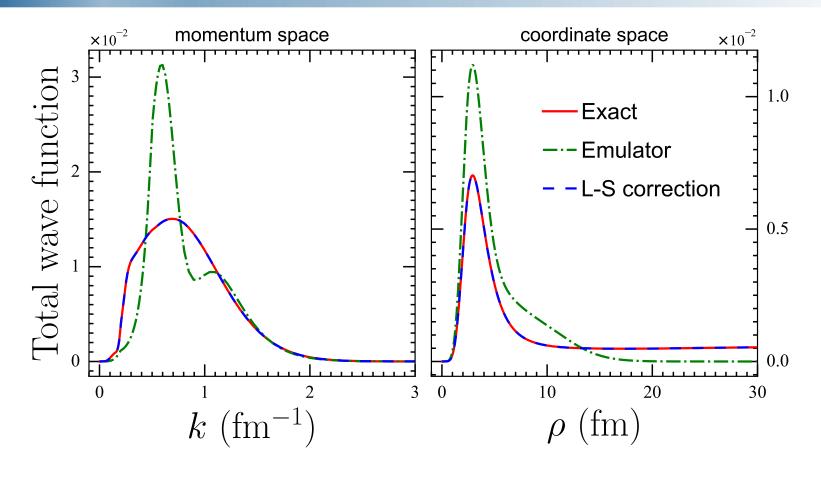
Consider the numerical stability:

$$|\Psi_{\odot}^{(i)}\rangle = (1-\omega)|\Psi_{\odot}^{(i-1)}\rangle + \omega \frac{V_{\odot}}{E_{\odot}^{(i-1)} - H_0}|\Psi_{\odot}^{(i-1)}\rangle$$

Maintain the localized component as a reference



Wavefunction correction



- o L-S correction improves the overall wave function
- Require additional steps

Challenges: handle structure and asymptotic observables on the same footings

Potential solutions:

- RBM for resonances/response function
 - Good for structure & energy
 - Require additional process for asymptotic wave function

PMM for open quantum systems (ongoing project)

- Maintains quantum mechanical interpretability
- Train energy and observable simultaneously

Underlying equations

$$\begin{cases} H(c) = H_0 + cH_1 \\ H(c) |\psi(c)\rangle = E(c) |\psi(c)\rangle \\ \langle \psi(c) |O|\psi(c)\rangle = f(c) \end{cases}$$

PMM

$$H(c) = H_0 + cH_1$$

$$H(c) |\psi(c)\rangle = E(c) |\psi(c)\rangle$$

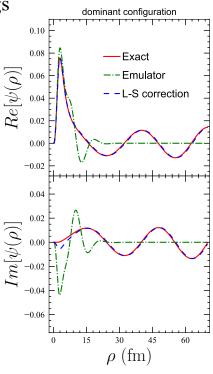
$$\langle \psi(c)|O|\psi(c)\rangle = f(c)$$

$$M(c) = \underline{M_0} + c\underline{M_1}$$

$$M(c) |\tilde{\psi}(c)\rangle = \tilde{E}(c) |\tilde{\psi}(c)\rangle$$

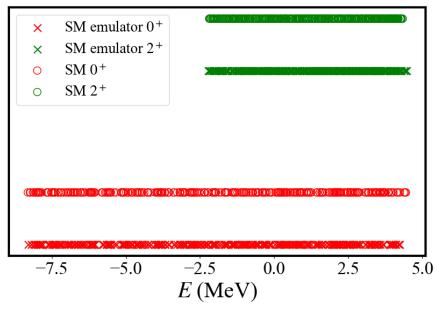
$$\langle \tilde{\psi}(c)|\underline{X}|\tilde{\psi}(c)\rangle = \tilde{f}(c)$$

Adopted from D. Jammooa's presentation

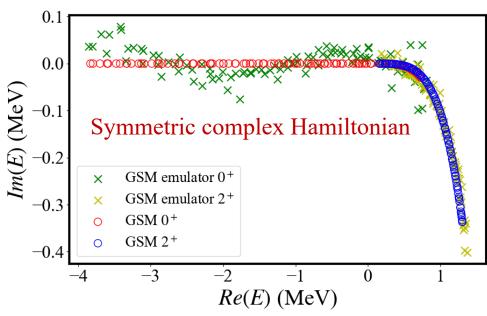


PMM first attempt

PMM for closed systems



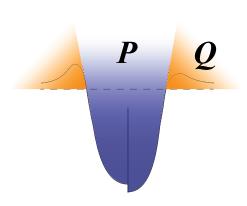
PMM for open systems



- o PMM works very well for closed quantum systems (CQSs)
- o Extend to rigged Hilbert space for open quantum systems (OQSs)
- o Fails to reproduce the eigen values directly

Open quantum system





Closed quantum physics

$$\begin{pmatrix} H_{\mathcal{P}\mathcal{P}} & H_{\mathcal{P}\mathcal{Q}} \\ H_{\mathcal{Q}\mathcal{P}} & H_{\mathcal{Q}\mathcal{Q}} \end{pmatrix} \begin{pmatrix} \mathcal{P}\Psi \\ \mathcal{Q}\Psi \end{pmatrix} = E \begin{pmatrix} \mathcal{P}\Psi \\ \mathcal{Q}\Psi \end{pmatrix}$$
Continuum physics
Continuum coupling

Prepare training data (E, O) for close and open systems

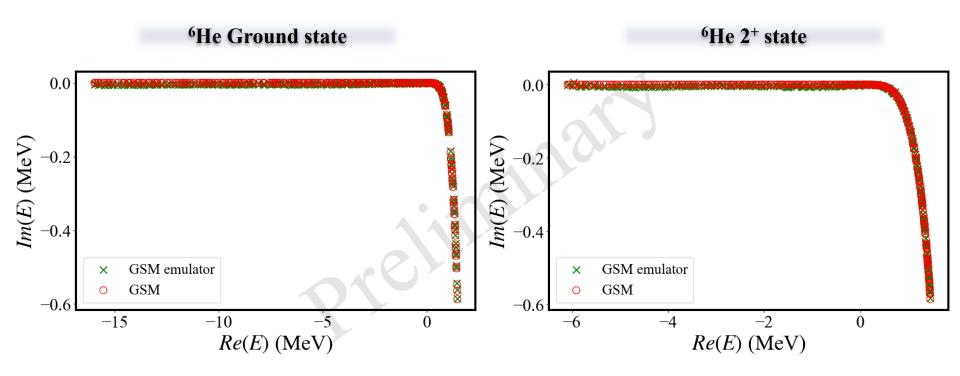
Train CQSs

$$M_{\mathcal{P}\mathcal{P}}(c) = M_{\mathcal{P}\mathcal{P}}^a + c M_{\mathcal{P}\mathcal{P}}^b$$
$$M_{\mathcal{P}\mathcal{P}}(c)|\Psi_{\mathcal{P}}\rangle = E_{\mathcal{P}}(c)|\Psi_{\mathcal{P}}\rangle$$

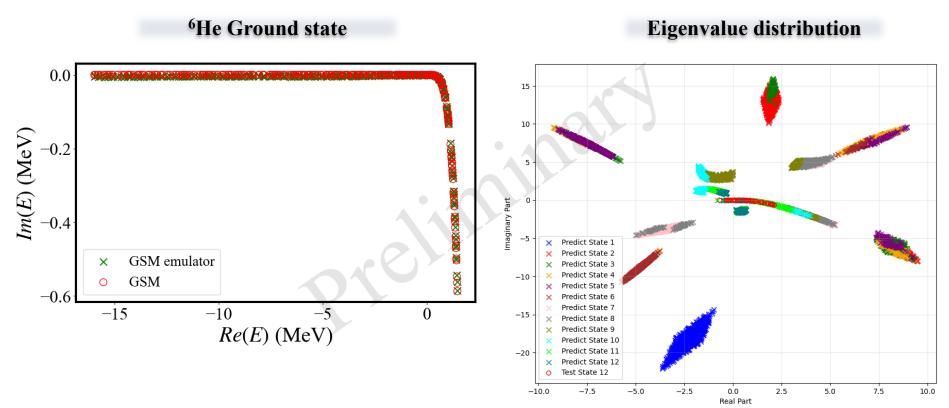
$$M = \begin{pmatrix} M_{\mathcal{P}\mathcal{P}} & M_{\mathcal{P}\mathcal{Q}} \\ M_{\mathcal{Q}\mathcal{P}} & M_{\mathcal{Q}\mathcal{Q}} \end{pmatrix}$$

Train OQSs similarly

Find E through $\langle \Psi | \Psi_{\mathcal{P}} \rangle$

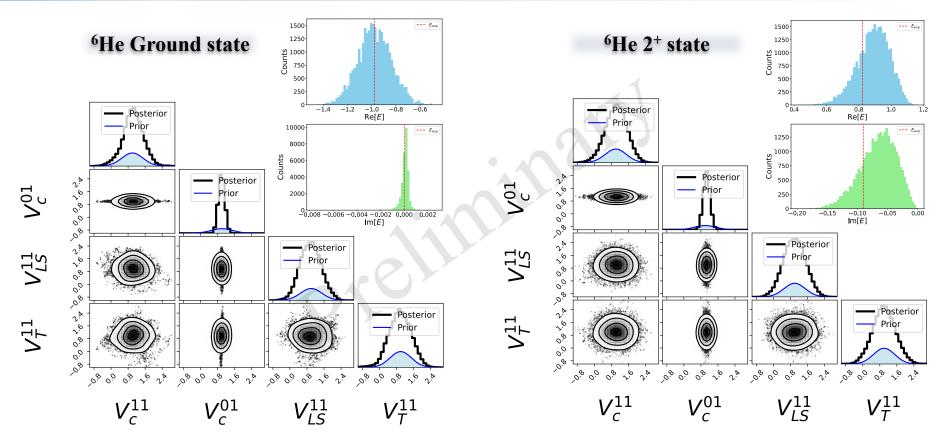


- o Based on PQ method, construct GSM emulator
- o Use SM emulator to obtain eigenstates, guide the selection of corresponding states
- o GSM emulator reproduce the high-fidelity results very well



- o Based on PQ method, construct GSM emulator
- o Use SM emulator to obtain eigenstates, guide the selection of corresponding states
- o GSM emulator reproduce the high-fidelity results very well

Perspectives



- o Try to study the continuum coupling
- $\circ V_T^{11}$ shows weakest constraint with widest posterior distribution
- o Parameter correlations reveal compensation effects in nuclear force components

Thank you for your attention!

Summary

Open quantum systems: complex physics, asymptotic behavior, decaying property

Emulators

- EC for response function
- RBM for resonance energy/width
- PMM for continuum coupling

Perspectives

- Uncertainty quantifications
- Time evolution
- Other observables: nn correlations

Acknowledgements

Collaborators

R. Y. Cheng o Z. C. Xu

K. Godbey X. L. Zhang

W. Nazarewicz Y. G. Ma

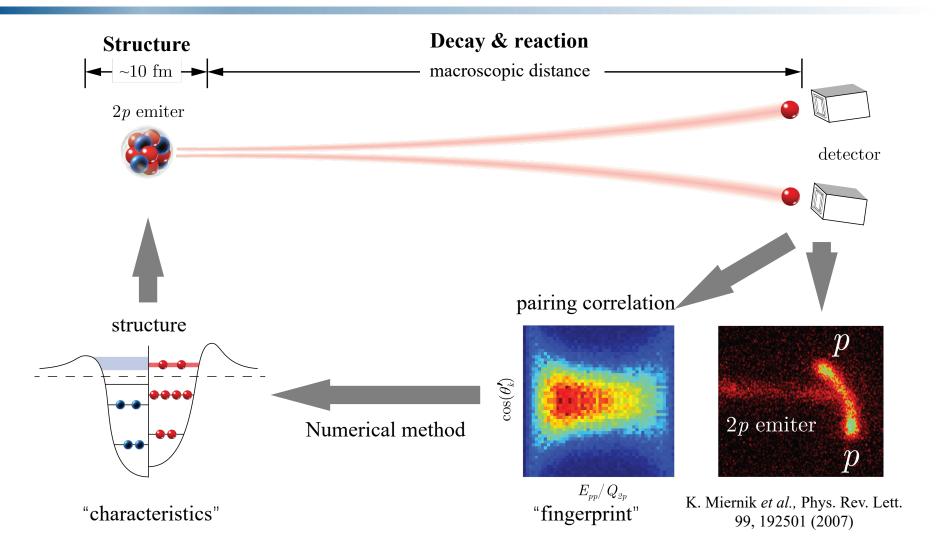
A. Volya

Questions

- 1. How to handle both internal and external wave function properly?
- 2. How to connect the asymptotic observables with structure information?
- 3. How to improve the prediction power of an emulator?
- 4. If there are some uncertainties/errors in the training data, can the emulator handle it?
- 5. A data driven PMM?

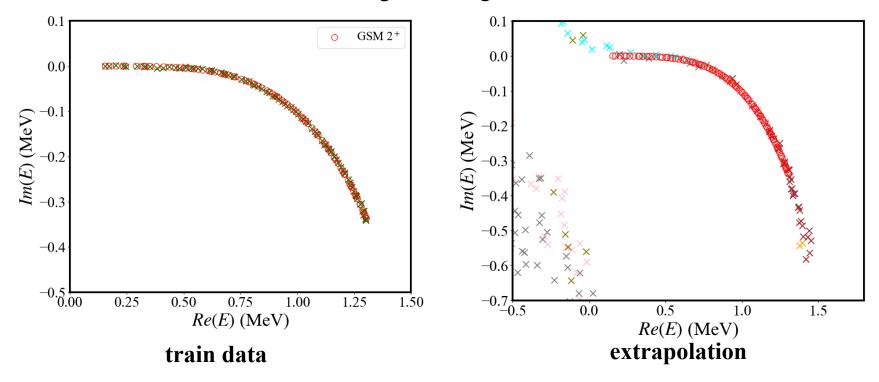
Backup

Structure \leftarrow **Asymptotic observables**



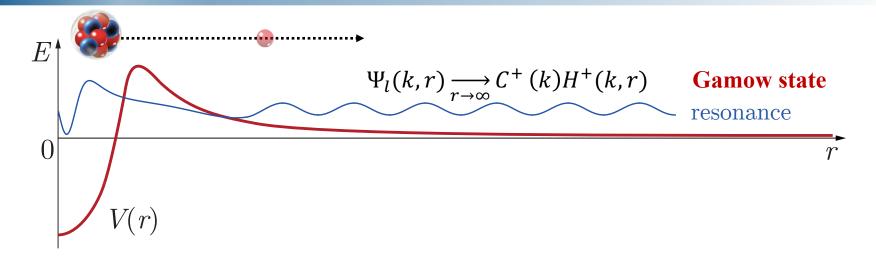
GSM emulator extrapolation

We change the way to train the emulator, in which we find the closest value to train. The results is better, but not good enough.



- The eigenvalues of the matrices are widely dispersed.
- The extrapolation capability appears to be bad.
- The eigenvalues on the extrapolation line do not originate from the same energy level series.

Quantum picture of decay

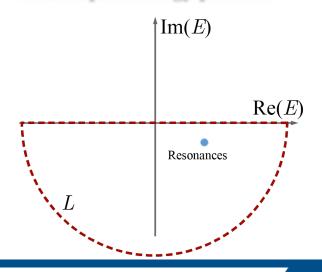


Real-energy expansion

$$|\Psi\rangle \propto \oint_L \frac{1}{E - \tilde{E}} |E\rangle dE$$

Survival probability

$$\begin{split} \mathcal{S}(t) &= |\langle \Psi(t) \mid \Psi(0) \rangle|^2 \\ &\propto \left| \oint_L \frac{\langle E \mid E \rangle}{|E - \tilde{E}|^2} e^{-i\frac{E}{\hbar}t} \; \mathrm{d}E \right|^2 \\ &\qquad \text{Spectral function} \end{split}$$

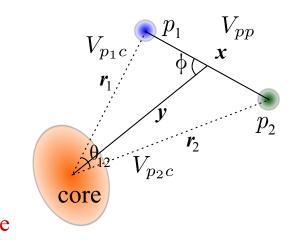


Gamow coupled-channel (GCC) method

• The 3-body **Hamiltonian** can be written as:

$$\hat{H} = \sum_{i=1}^{3} \frac{\hat{\vec{p}}_{i}^{2}}{2m_{i}} + \sum_{i=1}^{2} V_{p_{i}c} + V_{pp} + \hat{H}_{core} - \hat{T}_{c.m.}$$

• Total wave-function $\Psi^{J\pi} = \sum_{\substack{J_p\pi_p j_c\pi_c \ \text{valence nucleons}}} \left[\Phi^{J_p\pi_p} \otimes \underline{\phi^{j_c\pi_c}} \right]^{J\pi}$



1. Jacobi coordinates

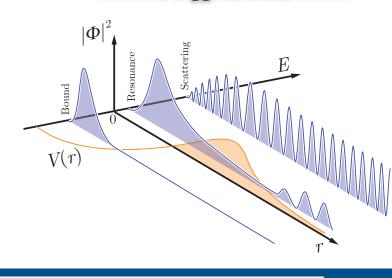
- a) No spurious center-of-mass motion
- b) Proper 3-body asymptotic behavior

2. Berggren basis

- a) Bound, scattering, and Gamow states
- b) Structure and decay information

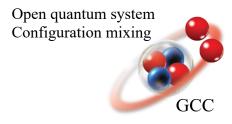
SW and W. Nazarewicz, Phys. Rev. Lett. 120, 212502 (2018)

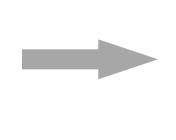
Berggren basis

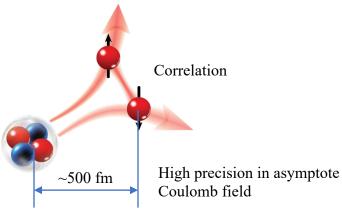


Time dependent (TD) approach

In order to study the dynamics of 2p decay







Time dependent approach

$$e^{-i\frac{\hat{H}}{\hbar}t} = \sum_{n=0}^{\infty} (-i)^n (2 - \delta_{n0}) J_n(t) T_n(\hat{H}/\hbar)$$

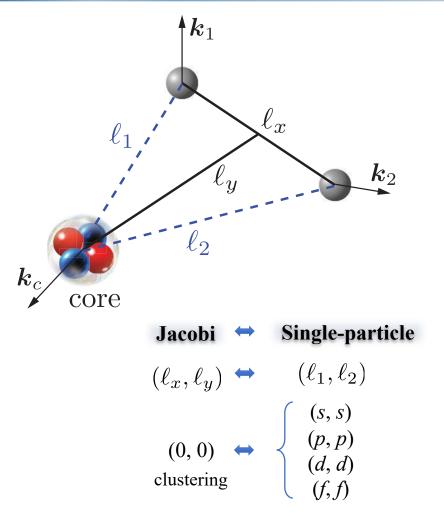
- o Time propagator can be expanded with Chebyshev polynomials.
- o Initial wave function is obtained by GCC, which includes configuration mixing and proper asymptote.
- o Two-proton wave function has been propagated to over 500 fm.
- Green's functional method to benchmark

$$G(E) = \frac{1}{E - H} = -i \int_0^\infty dt \, \exp(iEt) \exp(-iHt)$$

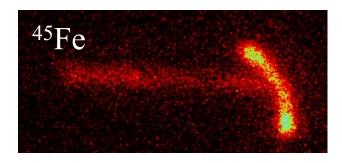
o Time propagator and Green's function can be connected by Fourier transformation.

SW and W. Nazarewicz, Phys. Rev. Lett. 126, 142501 (2021)

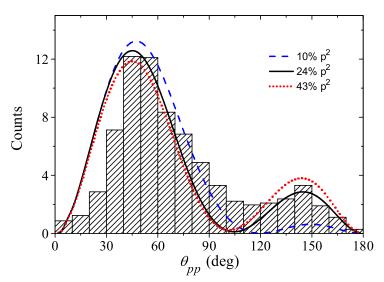
Two-proton (2p) decay



o Diproton structure will introduce configuration mixing.

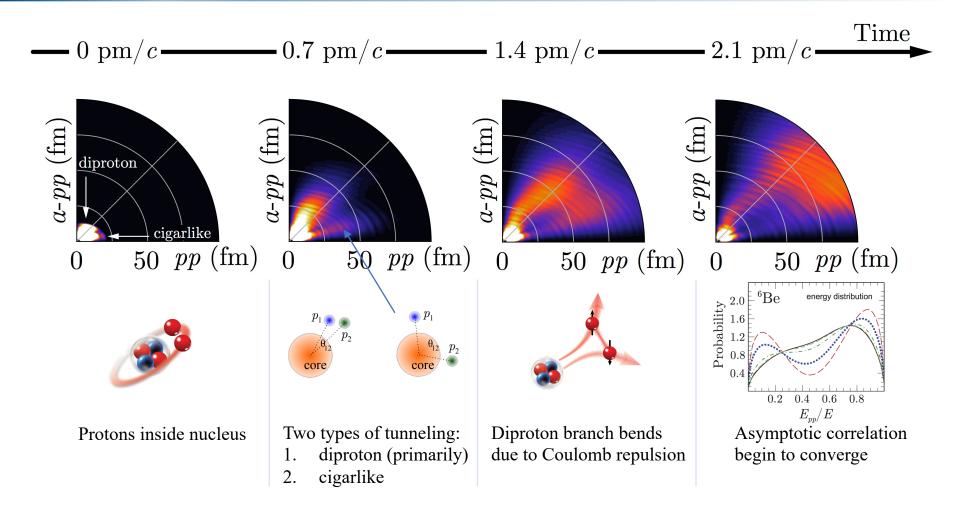


J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)



K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007)

2p decay in ⁶Be



SW and W. Nazarewicz, Phys. Rev. Lett. 126, 142501 (2021)

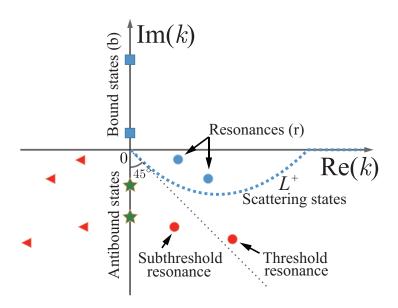
Complex-plane framework

• Decay width/Lifetime

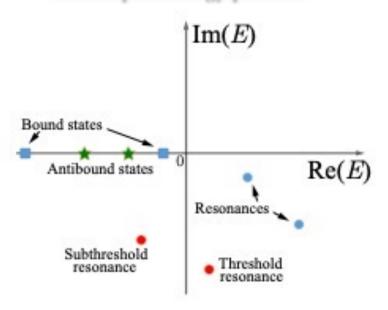
o Complex symmetric Schrödinger equation

$$\hat{H}\Psi = \tilde{E}\Psi$$
, where $\tilde{E} = E - i\frac{\Gamma}{2}$

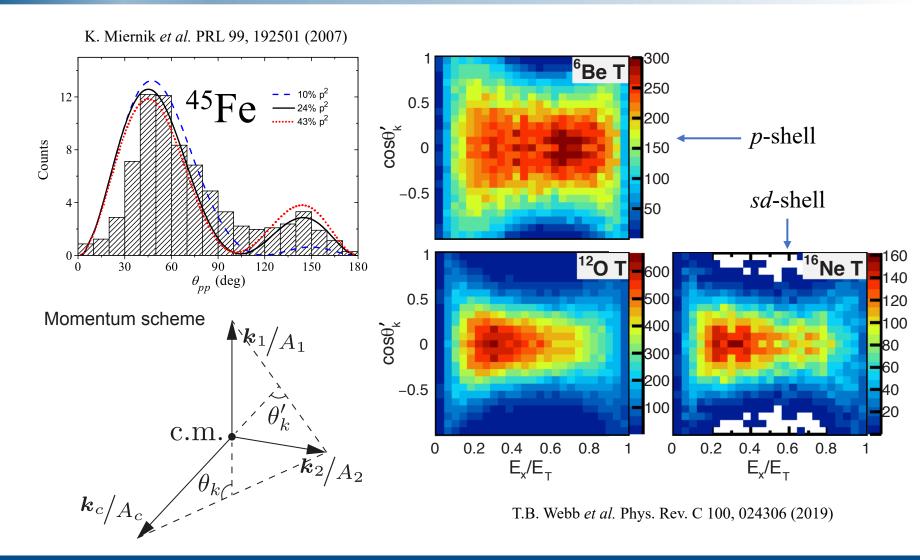
Complex momentum plane



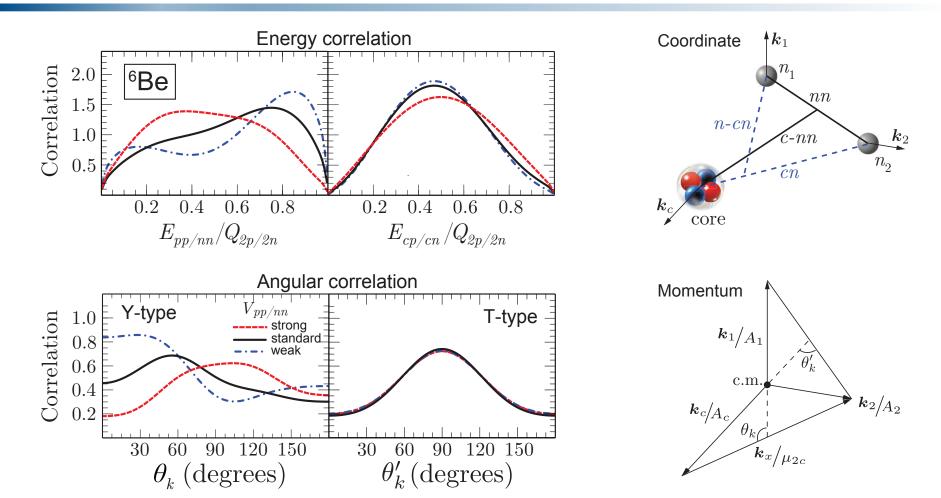
Complex energy plane



Asymptotic nucleon-nucleon correlation

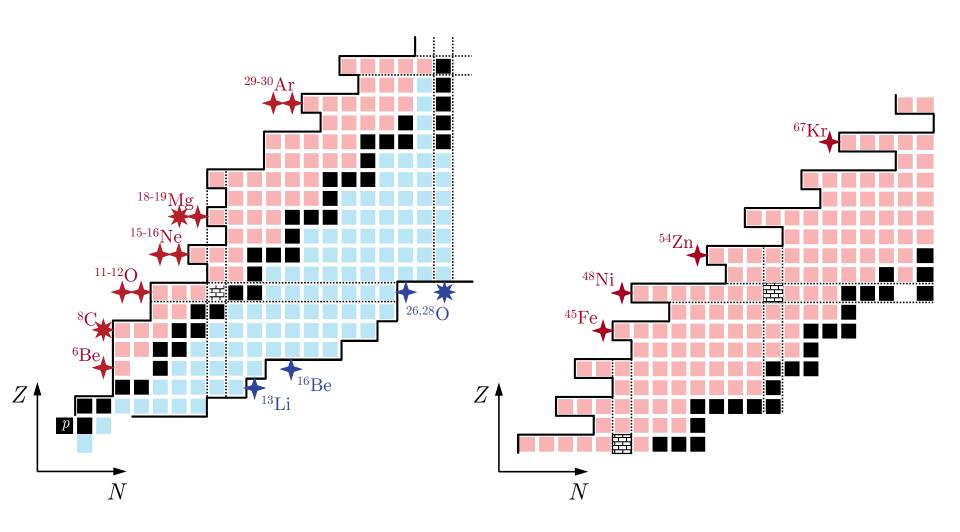


Asymptotic correlations



 \circ E_{pp} and Y-type angular correlations are strongly impacted by nucleon-nucleon interaction.

Observed 2*p* emitters



Correlations of light-mass nuclei

