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I. INTRODUCTION

We consider the atomic nucleus as a quantum object
composed of A nucleons (mass number): Z protons (atomic
number) and N neutrons, held together mainly by strong
nuclear forces. A neutral atom with the specified numbers
A and Z is called a nuclide. When using this term, however,
we focus on the nuclear component of the atom. Such a
system is stable only for certain combinations of numbers Z
and N. Presently, 256 stable nuclides are known. Systems
different from stable configurations undergo spontaneous,
radioactive decays until the stability is reached. A nucleus
of such an unstable nuclide is considered as a well defined
object if its half-life is much longer than 10!21 s, which is a
characteristic time scale for processes governed by strong
interaction. These nuclides are bound by nuclear forces and/
or by Coulomb and centrifugal barriers. The number of
unstable nuclides synthesized in laboratories is constantly
growing, and up until now more than 3000 were identified.
In this review, we concentrate on radioactive processes ob-
served for nuclides located at the limits of the nuclear chart.
The emphasis is given on new decay processes and features of
classical decay modes which do not take place among nu-
clides close to stability. We refrain, however, from discussing
the heavy frontier of the nuclear chart. The quest for the
superheavy elements was reviewed by Hofmann and
Münzenberg (2000) and more recently by Oganessian
(2007) and Hofmann (2009a).

A. Radioactivity and nuclides

The notion of radioactivity is useful in making distinction
between emission of rays or particles by a highly unstable
system (for example, undergoing a nuclear reaction) from
radiation emitted spontaneously by a system whose nuclear

and atomic degrees of freedom are close to equilibrium. Such
distinction, however, has to be arbitrary and usually a char-
acteristic time scale is used as a criterion. Throughout this
review, we adopt the following definition. Radioactivity is a
process of emission of particles by an atomic nucleus which
occurs with characteristic time (half-life) much longer than
the K-shell vacancy half-life in a carbon atom, which
amounts to about 2" 10!14 s (Bambynek et al., 1972). A
relativistic particle travels in the time of 10!14 s a distance of
a few micrometers, which is close to the measurement limit in
a nuclear emulsion. In addition, this value coincides with a
decay width, defined as ! ¼ ln2ℏ=T1=2, of about 0.03 eV
which is roughly the thermal energy at room temperature.
Thus, nuclear processes much slower than filling the K
vacancy, whose duration, in principle, can be measured di-
rectly, and with the width much smaller than the thermal
energy at room temperature, will be called radioactive. This
definition applies both to nuclear ground states and to long-
lived excited nuclear states (isomers).

The definition of a nuclide relates to the definition of
radioactivity. A nuclide is a neutral atom, specified by the
numbers A and Z of its nucleus, which is either stable or lives
long enough to be classified as radioactive. We say that a
nuclide does not ‘‘exist’’ if its nucleus decays too fast to be
called radioactive. All existing nuclides are represented on a
chart of nuclides spanned by the atomic number Z and
neutron number N (Fig. 1). In the last three decades their
number was growing almost steadily from about 2200 in 1981
to about 3000 in 2006 (Pfennig et al., 2008), giving an average
of about 30 new nuclides identified per year. Because of
vigorous growth of nuclear facilities (Sec. III.B), this trend is
expected to continue in next decades.

FIG. 1 (color online). The chart of nuclei. The stable nuclides are
represented by black squares, while the radioactive ones, which
were experimentally identified, are shown by the light shaded area.
The nuclides predicted to have positive nucleon separation energy
according to the FRDM mass model (Möller, Nix, and Kratz, 1997),
but not yet observed, are shown by the dark shaded area. The lines
indicate the position of magic numbers corresponding to the closed
neutron and proton shells (the numbers smaller than 20 are not
shown). The insets show the location on the chart of the decay
products of the parent nucleus which is indicated by a dark square.
The observed decay channels of the proton-rich and the neutron-rich
nuclei are shown on the left and on the right inset, respectively.

568 Pfützner et al.: Radioactive decays at limits of nuclear stability
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o Eigenvalues can be extrapolated very well
o Information learned by the eigenvector changes
o Requirement: the continuity of the eigenvector

Eigenvector continuation (EC)
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D. Frame et al., Phys. Rev. Lett. 121, 032501 (2018)
T. Duguet et al., Rev. Mod. Phys. 96, 031002 (2024)
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Reduce basis method (model driven)

E. Bonilla et al., Phys. Rev. C 106, 054322 (2022)
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FIG. 3. Comparison between the exact solvers (solid lines) and the RBM (solid circles) calculations. Panel (a) shows the ground-state
energy λq,κ of the Gross-Pitaevskii equation as a function of q for the values of κ = 0.5, 2, 4, 10, and 30. Panel (b) shows the neutron skin
thickness of 48Ca as a function of L for the values of K = 160, 210, and 260 MeV. In both figures, the Lagrange basis with four points is shown
as cyan stars within the inset plots. Appendix B contains additional details on these calculations.

exact solutions [Fqi,κi (φ̃i ) = 0], with the projecting functions
as ψi = φi. Figure 3(a) shows the results of emulating λq,κ by
using this basis and applying Eqs. (3) plus the normalization
condition. The agreement between the exact and emulated
calculations is excellent, with an error of less than 2.5% in the
repulsive phase (q ! 0) where the four training parameters are
located, and it deteriorates only in the attractive phase (q < 0)
well beyond the training region. In contrast with the original
implementations of eigenvector continuation [11], extrapola-
tion is not a feature usually exploited on the RBM literature.
Making full use of the techniques developed in the RBM
literature could nonetheless be key when calculations of exact
solutions in a specific phase of the system are numerically
unstable or impossible, but approximable by such methods.

In addition to extrapolating, we explored a situation
similar to how emulators are tested for uncertainty quantifica-
tion [12,15]. Using a Latin hypercube sampling (LHS) [47],
we drew 500 testing points in the range q ∈ [0, 30] and
κ ∈ [5, 30]. We constructed three types of reduced basis:
Lagrange, POD, and POD + Greedy, each with three sizes
n = 2, 4, and 8. The Lagrange basis consisted of n exact
solutions drawn with LHS. The POD and POD + Greedy
consisted of n principal components from a set of N = 20
exact solutions. For the POD the N exact solutions were drawn
using LHS, while for the POD + Greedy the first solution
was placed at a central location and the other N − 1 were
included one-by-one through a Greedy algorithm inspired on
Refs. [48–50]. Our Greedy approach finds the parameter set
[qm+1, κm+1] for the next exact solution φ̃m+1, by maximizing
the norm of the residual Fq,κ (φ̂q,κ ) over a LHS of parameters
[q, κ]. In each step, φ̂q,κ is constructed with a POD basis
informed by the previous m exact solutions.

Table I shows the relative root-mean-squared errors, which
converge exponentially as more bases are added, as expected
from the results shown in Fig. 1. Both POD bases were more
accurate and robust than the Lagrange basis, which produced
results that frequently changed by more than an order of
magnitude when resampling the exact solutions for the basis.
For n = 8 the accuracy of the POD + Greedy basis was more
than 600 times better than the Lagrange basis. In terms of
speed-up when calculating the 500 testing points, the three
reduced bases with n = 2 were almost 150 times faster than

the exact solver, while n = 4 and n = 8 obtained speed-ups of
40 and 5 times, respectively.

B. Skyrme density functional theory

We now proceed to use the RBM in realistic nuclear DFT
calculations. DFT is a widely applied microscopic formal-
ism [51] (see also Refs. [52–54] for other RBM applications
to DFT). In nuclear physics it is used to describe properties
of nuclei from the mean-field perspective; i.e., each nucleon
interacts with an average effective field made up of all the
particles in the system. This interaction is then constructed in
a self-consistent way: the wave function of each nucleon and
its eigenenergy are found at the same time as the effective field
they produce and interact with. As such, the Hamiltonian ĥ(i)

acting on the ith wave function φ(i) depends on all M of them:

ĥ(i)[%]φ(i) − λ(i)φ(i) = 0 for 1 " i " M, (16)

where % = {φ(i)}M
i=1, and the parameter list α has been omit-

ted for the sake of clarity. The dependence of the Hamiltonian
on the wave functions comes from, for example, the total
nuclear density ρ and the kinetic energy density τ . We derive
the single-particle Hamiltonian ĥ(i) from the Skyrme effective

TABLE I. Root-mean-squared errors for the Gross-Pitaevskii
and DFT problems described in the text. The errors are defined as

⟨[(ARBM − Aexact )/Aexact]
2
⟩1/2, where A is the quantity being com-

puted and ⟨⟩ denotes average. Three cases of the reduced basis size
were explored with n = 2, 4, and 8. Five hundred testing points were
drawn in their respective parameter space, but for DFT 32 points
were excluded from the statistics since the exact solver reported
convergence problems. Appendix B contains additional details on
these calculations.

Gross-Pitaevskii 48Ca average
Basis ground-state energy particle energy

n Lagrange POD POD Greedy POD

2 1.0 × 10−1 1.2 × 10−2 1.5 × 10−2 5.9 × 10−3

4 3.0 × 10−3 5.6 × 10−4 2.1 × 10−4 6.1 × 10−4

8 1.3 × 10−5 1.2 × 10−6 2.0 × 10−8 1.7 × 10−4
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condition. The agreement between the exact and emulated
calculations is excellent, with an error of less than 2.5% in the
repulsive phase (q ! 0) where the four training parameters are
located, and it deteriorates only in the attractive phase (q < 0)
well beyond the training region. In contrast with the original
implementations of eigenvector continuation [11], extrapola-
tion is not a feature usually exploited on the RBM literature.
Making full use of the techniques developed in the RBM
literature could nonetheless be key when calculations of exact
solutions in a specific phase of the system are numerically
unstable or impossible, but approximable by such methods.

In addition to extrapolating, we explored a situation
similar to how emulators are tested for uncertainty quantifica-
tion [12,15]. Using a Latin hypercube sampling (LHS) [47],
we drew 500 testing points in the range q ∈ [0, 30] and
κ ∈ [5, 30]. We constructed three types of reduced basis:
Lagrange, POD, and POD + Greedy, each with three sizes
n = 2, 4, and 8. The Lagrange basis consisted of n exact
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consisted of n principal components from a set of N = 20
exact solutions. For the POD the N exact solutions were drawn
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the norm of the residual Fq,κ (φ̂q,κ ) over a LHS of parameters
[q, κ]. In each step, φ̂q,κ is constructed with a POD basis
informed by the previous m exact solutions.

Table I shows the relative root-mean-squared errors, which
converge exponentially as more bases are added, as expected
from the results shown in Fig. 1. Both POD bases were more
accurate and robust than the Lagrange basis, which produced
results that frequently changed by more than an order of
magnitude when resampling the exact solutions for the basis.
For n = 8 the accuracy of the POD + Greedy basis was more
than 600 times better than the Lagrange basis. In terms of
speed-up when calculating the 500 testing points, the three
reduced bases with n = 2 were almost 150 times faster than

the exact solver, while n = 4 and n = 8 obtained speed-ups of
40 and 5 times, respectively.

B. Skyrme density functional theory

We now proceed to use the RBM in realistic nuclear DFT
calculations. DFT is a widely applied microscopic formal-
ism [51] (see also Refs. [52–54] for other RBM applications
to DFT). In nuclear physics it is used to describe properties
of nuclei from the mean-field perspective; i.e., each nucleon
interacts with an average effective field made up of all the
particles in the system. This interaction is then constructed in
a self-consistent way: the wave function of each nucleon and
its eigenenergy are found at the same time as the effective field
they produce and interact with. As such, the Hamiltonian ĥ(i)

acting on the ith wave function φ(i) depends on all M of them:

ĥ(i)[%]φ(i) − λ(i)φ(i) = 0 for 1 " i " M, (16)

where % = {φ(i)}M
i=1, and the parameter list α has been omit-

ted for the sake of clarity. The dependence of the Hamiltonian
on the wave functions comes from, for example, the total
nuclear density ρ and the kinetic energy density τ . We derive
the single-particle Hamiltonian ĥ(i) from the Skyrme effective

TABLE I. Root-mean-squared errors for the Gross-Pitaevskii
and DFT problems described in the text. The errors are defined as

⟨[(ARBM − Aexact )/Aexact]
2
⟩1/2, where A is the quantity being com-

puted and ⟨⟩ denotes average. Three cases of the reduced basis size
were explored with n = 2, 4, and 8. Five hundred testing points were
drawn in their respective parameter space, but for DFT 32 points
were excluded from the statistics since the exact solver reported
convergence problems. Appendix B contains additional details on
these calculations.
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Parametric matrix models (hybrid)

reduced basis methods. They do not need to correspond to a
projection onto a fixed subspace, and this allows for efficient solutions
to describe a wider class of problems.

It should be noted that for this simple example, the extrapolation
problems for the EC calculation can be cured by computing a formal
power series expansion around c = 0 and truncating the series up to
any finite order in c. However, it is both notable and convenient that
the problem never arises in the PMM framework and so no such
additional analysis is needed.

Regression and classification PMMs
We address the general problem of regression and classification in
machine learning where the model learns to reproduce feature-label
pairs xi, yi

! "
: xi 2 Rp, yi 2 Rq# $

and generalize to unseen data.
Regression and classification are fundamentally the same problem,
differentiated only by the nature of the labels yi

# $
and therefore sui-

table choices of loss functions.
The simplest PMM for this task uses a primary matrix which is

affine in the input features, as shown previously in Eq. (3). This is the
form we have chosen for our regression experiments as well as our
hybrid transfer learning experiments. The form of the primary matrix
or matrices can bemodified to accommodate known properties of the
data, for example the image classification PMM discussed in Methods
section “Image Classification PMM”.

The first r eigenvectors associated with the largest magnitude
eigenvalues form bilinears with Hermitian secondary matrices Δkij 2
Cn×n where 1≤k≤q and 1≤ i, j ≤ r andΔkij =Δkji to produce the output of
the PMM. That is, for each output index k and each pair of eigenvector
indices i, j there is an independent secondary matrix Δkij . These bilin-
ears—which can be thought of as expectation values (transition
amplitudes)when i= j (i≠ j)—are summed togetherwith a trainable bias
vector g 2 Rq and a fixed bias proportional to the spectral norm of the
secondary matrices to form the output of the PMM,

zk = gk +
Xr

i, j = 1

∣vðiÞyΔkijv
ðjÞ∣2 #

1
2

Δkij

%%%
%%%
2

2
: ð10Þ

Equivalently, the summay be restricted to i ≤ j for efficiency. The fixed
bias term is a deliberate addition to ensure that the output of the PMM
is both unbounded and invariant under suitable unitary transforma-
tions of the trainable matrices. This output vector may be augmented
by fixed or trainable activation functions, such as the softmax function
in the case of classification.

The form of this PMM—which we call the affine observable PMM
(AO-PMM) due to the analogy with observables and transition prob-
abilities in quantummechanics—is not motivated by any specific data,
but instead purely by the desire to generalize the affine eigenvalue
PMM described in Methods section “Eigenvalue and Eigenstate
Observable Emulation” to cases with multiple outputs of arbitrary
algebraic order.

Regression experiments. We have compared the performance of
PMMs for multivariable function regression against several standard
techniques: Kernel Ridge Regression (KRR), Multilayer Perceptron
(MLP), k-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB),
Support Vector Regression (SVR), and Random Forest Regression
(RFR) (see for example ref. 36 for many of these methods and37 for
XGB). We have considered thirteen different two-dimensional test
functions from refs. 38–42 as well as two classes of functions (Fourier
series and polynomials) with exact forms given in Supplementary
Table 7. For these functions the dataset consisted of a 200 point
training set sampled fromauniformdistribution and 10,000point test
set drawn from a grid with uniform spacing. For the classes of func-
tions, 1000 functions were sampled and the mean performance for
each model is reported. For each experiment, 10% of the training set
wasused as a validation set for the PMM,where the full training setwas
used for the other machine learning models optimized using k-fold
cross-validation and grid search for hyperparameter tuning. For the
two-dimensional test functions 10-fold cross validation was used, and
the remaining experiments used 5-fold cross validation. Nearly all of
the relevant hyperparameters for the non-PMM methods were tuned
as follows: (KRR) the regularization strength, the kernel function, and
the kernel function parameter if applicable; (MLP) the architecture by
means of the number of layers and the number of nodes in each layer—
not necessarily fixed-width—the activation function, the regularization
strength, and the learning rate; (KNN) the number of neighbors, the
weighting method, and the size of the leaves in the constructed tree;
(XGB) the number of estimators, maximum depth, and learning rate;
(SVR) the kernel function, the kernel parameter, and regularization
strength; and (RFR) the number of estimators, maximum depth, and
minimum number of samples required to split a node. Full details on
the parameters searched are provided in Supplementary Tables 1–4.
For the thirteen test functions (two classes of functions) a 7 × 7 (9× 9)
primary matrix with r =3 PMM was tested against the other machine
learning models. Finally, two standard regression datasets consisting
of real-world data—the NASA airfoil43 and CERN dielectron44 datasets—
were used to test the performance of PMMs. For these datasets, 35% of
the data was used as the training set. For the NASA (CERN) dataset a
7 × 7 (15 × 15) primary matrix with r =3 PMM was used.

Image classification PMM. To maximize efficiency in the task of
image classification, we reformulate the primary matrices of the PMM
to take advantage of the properties of images. A typical non-
convolutional method will take the input features to be the vector-
ized, or flattened, images. Instead, we consider surrogates for the row-
wise and column-wise correlation matrices of fixed windows of the
images. This formulation yields a natural interpretation of images as
the principle components of their constituent windows.

Given a grayscale image X 2 Rn×m—or a color image whose color
channels are compressed to two components using a method such as
Independent Component Analysis and encoded as the real and ima-
ginary parts of complex numbers, X 2 Cn×m—we select w windows of
shape sl × tl , l = 1, 2, . . . ,w from the image. The area of the image that
these windows cover can overlap or be entirely disjoint. For each
window, we use the associated part of the image, Wl 2 Csl × tl , to cal-
culate the row-wise and column-wise Grammatrices,WlW

y
l andW y

l W l
respectively, as efficient surrogates for the row-wise and column-wise
correlation matrices. These matrices are uniformly normalized

Fig. 5 | Comparison of PMM and EC results for ground state energy extra-
polation.We show results for a 2 × 2 PMM (dashedblue) and EC (dotted red) with 5
training samples on the task of extrapolating the ground state energy of a systemof
N non-interacting spins. The exact ground state energy is shown in solid black.
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overlap matrices H̃ and Ñ for all training points, and
diagonalizes the Ntrain ⇥ Ntrain matrix to find the EC
prediction for a given set of LECs. One of the drawbacks
of using EC emulators is the required knowledge of the
many-body wave function. This makes EC particularly
unsuitable for use with quantum Monte Carlo methods,
but see Ref. [78, 82] for possible solutions. To ensure our
EC matrices are not ill-conditioned, we choose additional
training points from a set of computed points such that
the eigenvalue condition number [83] is not appreciably
increased.

To allow for the inclusion of the 4He charge radius into
our fit, and to eventually propagate the theoretical un-
certainties to AFDMC predictions of light nuclei, we turn
to an alternative approach. The PMM is a recently de-
veloped machine-learning algorithm [44] that has proven
very useful for emulating many-body nuclear physics cal-
culations [38, 44, 77, 78, 80, 84, 85]. Similarly to EC, the
basic premise is to replace the high-fidelity calculation
with an approximate model defined in a subspace. The
model is given by the matrix

A(c) = A0 +
P

i
ciAi . (2)

where A0 is a diagonal matrix, the Ai’s are symmetric
matrices, and the ci’s are the control parameters (i.e.,
LECs) of the system. The dimensionality of the A ma-
trices is a hyper-parameter which controls the size of the
subspace at the cost of an increased number of fitting
parameters. This is similar to EC, where the subspace
dimension is set by the number of training points. In our
case, we represent the Hamiltonian as,

Ĥ = H0 + CSHS + CT HT +
7X

i=1

CiHi (3)

+ cDHD + cEHE ,

where CS and CT are the leading-order S-wave NN LECs,
the Ci’s are the 7 NN LECs that enter at next-to-leading
order, and cD and cE are the N2LO 3N LECs. H0 cap-
tures the kinetic energy operator and all pion-exchange
contributions whose LECs are kept fixed. The elements
in the eleven H matrices can then be fit so that the low-
est eigenvalue of Ĥ reproduces the observable of interest
for Ntrain training sets of the LECs.

To do this, we follow Ref. [38] and first tune the ma-
trix elements of Eq. (3) to reproduce the Faddeev or
AFDMC results for a single training point (i.e., one
given set of couplings) using a least-squares minimiza-
tion procedure. The sets of LECs (training points) are
chosen uniformly from the respective prior distributions.
We then add a second training point (additional set of
LECs), and retune the PMM matrix elements starting
from their previous values so that both exact results are
reproduced. This process continues, successfully intro-
ducing additional training points and re-tuning our ma-
trix elements, until either the desired precision has been

5 10 15 20 25 30
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0
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FIG. 2. Percent error of the emulators for the 3H energy as a
function of the number of training points. The percent error
is computed by comparing the emulator predictions against
a set of 75 exact Faddeev calculations, which remain fixed
for all Ntrain and PMM dimension. Both the PMM and EC
emulators are tuned to reproduce the 3H energy across the 11
dimensional LEC space for the full N2LO. The training points
are chosen uniformly from the LEC prior distributions. For
the EC it was also necessary to choose training points from
this set such that the matrices did not become ill-conditioned.

reached or adding more training points only gives negli-
gible improvement, see Fig. 2. This highlights a consid-
erable strength of the PMM approach, in that additional
training points are easy to add without the need for ad-
ditional overlap computations as in the case of EC. To
improve the accuracy of the PMM when extrapolating,
we also ensure that the training set includes the smallest
and largest values of the high-fidelity results [38].

When varying all 11 LECs we find that our EC emula-
tor is able to reproduce the exact 3H energy with an av-
erage emulator uncertainty of ⇠ 0.02%, while the PMM
achieves ⇠ 1% , see Fig. 2. The errors are determined by
comparing the emulator predictions against a fixed set
of test points that are separate from the training points.
Our PMM error is comparable to other recent works ap-
plying PMMs to quantum Monte Carlo calculations of
neutron matter (with fewer LECs and only NN interac-
tions) [38]. Similarly, our PMM emulator for the charge
radius of 4He achieves emulator errors of ⇠ 1%. For
the beta-decay GT matrix element of 3H, the PMM and
EC emulators perform similarly well, achieving emulator
errors of ⇠ 0.2%. This is mainly because the GT ma-
trix element’s dominant dependence is on cD, i.e., only
one parameter, which aids the performance of the PMM.
While we find that the average emulator error for the tri-
ton energy is two orders of magnitude smaller for EC than
for the PMM, we find only negligible di↵erences in the
final propagated posterior distributions, see Fig. 3. Con-
sequently, regardless of the emulator used in the Bayesian
likelihood calculation, we also find negligible di↵erences
in the posterior distributions of the 11 LECs that are
shown in Fig. 4.

R. Curry et al., arXiv:2510.15860 (2025)
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o Successfully preproduce wave function, phase shift
o Different from resonance prediction, E is pre-known

Emulator for reaction
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EC for for scattering

R. Furnstahl et al., Phys. Lett. B 809, 135719 (2020)

Greedy emulators for 2b scattering

J. M. Maldonado et al., Phys. Rev. C 112, 024002 (2025)
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FIG. 2. Benchmarks of the matrix Numerov method against the
adaptive RK45 method, both applied to the inhomogeneous RSE
(6) subject to the boundary condition (3) through Eq. (5). Panel
(a) shows the neutron-proton (np) scattering phase shifts in various
uncoupled partial-wave channels (see the legend) for the GT+ chiral
potential at N2LO with cutoff R0 = 1.0 fm and spectral function
cutoff !̃ = 1000 MeV. The corresponding absolute errors of the
matrix Numerov method with respect to RK45 are depicted in panel
(b). Panel (c) shows the corresponding root mean squared deviation
(RMSD) of the scattered wave function χ (r).

with the solution vector y(r; θ) = {y(r; θ), y′(r; θ)}. The
solver’s relative and absolute tolerances are set to εrel = εabs =
10−12 to obtain accurate results for the benchmark. As ini-
tial values for RK45, we set y′

0 = 0 (y′
0 = 1) for solving the

inhomogeneous (homogeneous) RSE and y0 = r0y′
0/(l + 1)

following the discussion of the near-origin limit in Sec. II B 1.
To avoid division by zero due to the centrifugal term for ℓ > 0,
we slightly shift grid points in the interval r = [0, 12] fm to
rn = nh + η, with 0 < η = 10−12 ≪ h and n = 0, 1, . . . , N .
Specifically, we use N = 103 grid points with η = 10−12 and
the last τ = 25 grid points to extract the phase shifts via
the least-squares approach (14). We find similar results when
solving the homogeneous RSE (1).

In conclusion, Fig. 2 shows that phase shifts can be ac-
curately extracted using the matrix Numerov method, with
an accuracy of ≈10−7 degrees or better for N = 103 grid
points. The largest absolute error is in the 1S0 channel at

low energies, where the phase shift is the largest across the
energies shown.

III. REDUCED-ORDER MODEL:
PETROV-GALERKIN PROJECTIONS

In this section, we examine two types of projection-based
ROMs applied to the matrix Numerov method: the G-ROM
results from a straightforward Galerkin projection of the lin-
ear system onto the subspace of (high-fidelity) solutions (see
Sec. III A); the LSPG-ROM from a Petrov-Galerkin projec-
tion that minimizes the residual later defined in Eq. (34) (see
also Sec. III B). We implement efficient offline-online decom-
positions, exploiting affine decompositions of the emulator
equations to improve the computational efficiency.

The two emulators approximate the high-fidelity solution
of the RSE at a given parameter vector θ as follows:

y(θ) ≈ ỹ(θ) = Xc(θ), (29)

where the nb column vectors of X span the emulator’s re-
duced space. These column vectors can, and should, be made
orthonormal for numerical stability such that X†X = Inb . Sec-
tion IV provides a comprehensive discussion of how X can be
obtained. For now, we can assume X is a given matrix of full
rank. The G-ROM and LSPG-ROM implement two different
strategies to determine the coefficient vector c(θ).

To keep the discussion applicable to linear systems in
general,11 we use the variable y(θ) although we aim to solve
the inhomogeneous RSE (6) for the (unmatched) scattered
wave function y(θ) = χ (θ) from here on. Solving for χ (θ)
has the numerical advantages discussed in Sec. II A. However,
the main quantity of interest here is not the wavefunction;
it is K (θ) and the corresponding δ(θ), which are nonlinear
functions of y(θ). Hence, we do not need to explicitly match
the sequence obtained from the matrix Numerov method to
the asymptotic limit parametrization (3). On the other hand,
a(θ) and b(θ) are the least-squares solution of Eq. (14) and as
such depend only linearly on y(θ):

[
a(θ)

b(θ)

]

= D+F†y(θ) +
[
ζ p

0

]

, (30)

where the superscript + denotes the pseudo-inverse,

D = 1
p

⎡

⎢⎢⎢⎢⎢⎣

F
(
prm1

)
G

(
prm1

)

F
(
prm2

)
G

(
prm2

)

...
...

F
(
prmτ

)
G

(
prmτ

)

⎤

⎥⎥⎥⎥⎥⎦
(31)

is the design matrix in Eq. (14), and F is a (N − 1) × τ matrix
with components Fit = δi,mt . As in Sec. II B, ζ = 0 (ζ =
1) when solving the homogeneous (inhomogeneous) RSE.

11In the general case, we only assume that A is invertible, so all
eigenvalues are nonzero.
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C. CA-EC with complex scaling
for few/many-body Gamow states

The original EC method was introduced to efficiently ap-
proximate the eigenvectors of a Hermitian Hamiltonian H (c),
depending smoothly on the set of parameters c, using a small
number of known exact eigenstates for different values of c
called “training points.” This is achieved by projecting the
Hamiltonian H (c∗) for the target set of parameters c∗ of in-
terest onto the reduced space spanned by the training states.
Because these training states are in general not orthogonal,
one then solves the generalized eigenvalue problem shown in
Eq. (13):

HEC |ψ (c∗)⟩EC = E (c∗)EC NEC |ψ (c∗)⟩EC . (13)

The projected Hamiltonian HEC and norm matrix NEC are
defined as

(HEC)i j = ⟨ψ (ci )|H (c∗)|ψ (c j )⟩ , (14)

(NEC)i j = ⟨ψ (ci )|ψ (c j )⟩ . (15)

In Ref. [20], we introduced the CA-EC method to perform
bound-to-resonance (B2R) extrapolations in two-body sys-
tems. This was achieved by generalizing the EC method
to non-Hermitian Hamiltonians generated with the uniform
complex-scaling method. The matrix elements in Eqs. (14)
and (15) are then evaluated using the so-called “c-product”
[36,37], which, compared to the standard inner prod-
uct, amounts to omitting complex conjugation for bra-side
operands. In this setup, bound states still have real energies,
but their wave functions become genuinely complex, i.e., they
cannot be made real by eliminating a global phase factor.
In CA-EC, the reduced basis is spanned by these complex
bound-state wave functions, along with their complex conju-
gates. Adding the latter is key to being able to obtain complex
resonance energies in the reduced space.

The method can be intuitively understood in the two-
body case. Indeed, in the CA-EC method with uniform
complex-scaling, before the complex rotation, the asymptotic
momenta3 associated with the training bound states lie on the
positive imaginary axis, while the target (decaying) resonance
lies in the fourth quadrant (see Fig. 2). After rotation by an
angle 0 < φ < 45◦, the now rotated bound states move into
the second quadrant, while the target resonance moves into the
first. This is where taking the complex conjugate of the rotated
bound states is critical as it moves the asymptotic momenta of
the rotated bound states into the first quadrant, together with
the target resonance, giving them the same type of asymptotic
behavior.

In fact, we can make the exact matching condition explicit
in the two-body case. Here, we provide the precise condi-
tions on the training bound state energy and rotation angle
that must be satisfied to make the asymptotic momentum of
the complex-conjugated rotated bound state agree with the

3We use the expression “asymptotic momentum” to denote the
complex value p that determines the asymptotic wave function. It
may not necessarily refer to the physical momentum, especially after
complex conjugation.

FIG. 2. Illustration of the CA-EC method. Top panel: The
asymptotic momenta of the training bound states originally lie on
the positive imaginary axis, while that of resonances exist inside the
fourth quadrant. Middle panel: Complex scaling can be thought of
as rotating the entire plane by an angle of φ counterclockwise. This
effectively moves the resonances into the second quadrant, thereby
making their wave functions convergent. Bottom panel: Complex
conjugation of the complex-scaled bound states, which effectively
reflects their positions about the y axis, places their asymptotic mo-
menta in the second panel, in better proximity to the target resonance.

asymptotic momentum of the rotated resonance. We denote
the complex momenta of the target resonance and training
bound state in polar coordinates as |kR|e−iθR and |kB|eiπ/2,
respectively, where θR is positive. After a clockwise rotation
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FIG. 6. Bound-to-resonance extrapolations for the 6He ground
state energy using (a) the EC method with ten training states, (b) CA-
EC with three training states, and (c) CA-EC with ten training states.

estimate of the energy positions and widths of the targeted
resonances.

This proof-of-principle in a realistic case demonstrates
that accurate and scalable B2R extrapolations in many-body
fermionic systems are possible using CA-EC in the Berggren
basis.

C. Resonance involving a bound subsystem

In this section, we conclude this work by considering a
three-body system with a bound two-body subsystem. The
first two particles interact with each other via the fixed
interaction

Vbound(r) = −2e− r2
4 , (36)

which supports an S-wave bound subsystem at E =
−0.39196. The third particle interacts with the other two via
the potential

Vres(r) = c[−e− r2
3 + e− r2

10 ]. (37)

As before, the system transitions from bound to resonant
states as the interaction is made weaker (c is decreased).
However, unlike before, the threshold is not located at E = 0.
Nevertheless, CA-EC works as expected, as shown in Fig. 7.
This calculation was performed in a complex-scaled HO basis
constructed identically to the one described in Sec. III A.

FIG. 7. Bound-to-resonance extrapolation for three-body system
that decays into a two-particle bound subsystem and a spectator
particle. Notice how the threshold is not located at E = 0.

While we already established in previous work that CA-EC
works well for genuine two-body systems [20], the results
presented here demonstrate that this remains true for a state
with a two-body decay mode generated by genuine three-body
dynamics.

IV. DISCUSSION AND OUTLOOK

In this work, building upon Ref. [20], we extended the
CA-EC method to perform efficient bound-to-resonance ex-
trapolations for three-body systems and in particular for
resonance states that exhibit genuine three-body decay. We
showed that the CA-EC method can be formulated using not
only the uniform complex-scaling method, but also with a
Berggren basis expansion, thus opening the door to efficient
CA-EC extrapolations in many-body systems. To demonstrate
that CA-EC can be efficiently applied in realistic systems, we
performed a CA-EC B2R extrapolation using the Berggren
basis for the ground state of the 6He isotope.

In the future, we will apply the CA-EC method in the
many-body sector, and consider extensions towards anti-
bound states to study systems at the limit of nuclear stability.
At a more fundamental level, we will also investigate the
precise relation between the uniform complex-scaling method
and the Berggren basis expansion.
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RBM for resonances
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o Training basis 𝑿𝐭𝐫𝐚𝐢𝐧: at different parameters such as potential strength 𝒄 or the complex energy 𝑬
o Projecting basis 𝒀𝐩𝐫𝐨𝐣: smoothly changed subspace, such as high-momentum free-particle wave

Internal region of a nucleus
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Principal-component analysis
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o Training wave function can be bound states R. Y. Cheng et al., Phys. Rev. C 111, 064315 (2025)
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Accuracy & efficiency
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k ∈ [0.5, 1.0]  corresponds to the inner-nucleus region strongly impacted by the structure 
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But at what cost?
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o Wavefunction matches inside the nucleus (mid- & high-momenta), but fails asymptotically for 
both emulators 

o Asymptotic-observable predictions might be challenging  
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Wavefunction correction
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Problem: the emulated wavefunction has ignored the asymptotic behavior

Consider the numerical stability:

• Maintain the localized component as a reference
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o L-S correction improves the overall wave function 
o Require additional steps 

Introduction
Emulators

Response function
Resonance energy/width
Asymptotic observable



Emulator for asymptotic observables
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Challenges: handle structure and asymptotic observables on the same footings

Potential solutions:

1. RBM for resonances/response function
a) Good for structure & energy
b) Require additional process for asymptotic wave function

2. PMM for open quantum systems (ongoing project)
a) Maintains quantum mechanical interpretability 
b) Train energy and observable simultaneously

R
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Introduction Practical Overview

Build-a-PMMTM

Your Underlying Equations
$
’&

’%

Hpcq “ H0 ` cH1

Hpcq |Âpcqy “ Epcq |Âpcqy
xÂpcq|O|Âpcqy “ fpcq

$
’’&

’’%

Bv̨

Bt
“ Apc̨qv̨ ` fpt, c, v̨q

v̨pt “ 0q “ v̨0

viptq “ b.c.

Your PMM
$
’&

’%

Mpcq “ M0 ` cM1

Mpcq
ˇ̌
Ẫpcq

D
“ Ẽpcq

ˇ̌
Ẫpcq

D
@
Ẫpcq

ˇ̌
X

ˇ̌
Ẫpcq

D
“ f̃pcq

Okay it’s not always that
simple. . .

Then fit to whatever data you have!
Danny Jammooa (FRIB) arXiv:2401.11694 May 2025

Underlying equations PMM

Adopted from D. Jammooa’s presentation
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PMM first attempt
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PMM for closed systems PMM for open systems

Symmetric complex Hamiltonian

o PMM works very well for closed quantum systems (CQSs)
o Extend to rigged Hilbert space for open quantum systems (OQSs)
o Fails to reproduce the eigen values directly
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Emulator for asymptotic observables
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Train CQSs

Open quantum system QP

Closed quantum physics

Continuum coupling

Continuum physics

Prepare training data (E, O) 
for close and open systems

Train OQSs similarly

Find E through
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Emulator for asymptotic observables

24

6He Ground state 6He 2+ state

o Based on PQ method, construct GSM emulator
o Use SM emulator to obtain eigenstates,  guide the selection of corresponding states
o GSM emulator reproduce the high-fidelity results very well
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Emulator for asymptotic observables
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6He Ground state Eigenvalue distribution

o Based on PQ method, construct GSM emulator
o Use SM emulator to obtain eigenstates,  guide the selection of corresponding states
o GSM emulator reproduce the high-fidelity results very well
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Perspectives
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6He Ground state 6He 2+ state

o Try to study the continuum coupling
o 𝑉𝑇11 shows weakest constraint with widest posterior distribution 
o Parameter correlations reveal compensation effects in nuclear force components 
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Summary

1. Open quantum systems: complex physics, asymptotic behavior, decaying property

2. Emulators
a) EC for response function 
b) RBM for resonance energy/width
c) PMM for continuum coupling 

Collaborators
o Z. C. Xu
o X. L. Zhang
o Y. G. Ma
…

Acknowledgements

Thank you for your attention!

…

o R. Y. Cheng
o K. Godbey
o W. Nazarewicz 
o A. Volya

3. Perspectives
a) Uncertainty quantifications 
b) Time evolution 
c) Other observables: nn correlations



1. How to handle both internal and external wave function properly?

2. How to connect the asymptotic observables with structure information?

3. How to improve the prediction power of an emulator?

4. If there are some uncertainties/errors in the training data, can the emulator handle it?

5. A data driven PMM?

Questions
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Backup



Structure Asymptotic observables

30

“fingerprint”“characteristics”

structure
pairing correlation

Numerical method

K. Miernik et al., Phys. Rev. Lett. 
99, 192501 (2007)

Structure Decay & reaction

’

macroscopic distance

Introduction
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GSM emulator extrapolation

31

l The eigenvalues of the matrices are widely dispersed.
l The extrapolation capability appears to be bad.
l The eigenvalues on the extrapolation line do not originate from the same energy 

level series.

We change the way to train the emulator, in which we find the closest value to 
train. The results is better, but not good enough.

extrapolationtrain data



Quantum picture of decay
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Gamow coupled-channel (GCC) method

33

1. Jacobi coordinates
a) No spurious center-of-mass motion
b) Proper 3-body asymptotic behavior

2. Berggren basis
a) Bound, scattering, and Gamow states
b) Structure and decay information

• The 3-body Hamiltonian can be written as: 

• Total wave-function 
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Time dependent (TD) approach

34

In order to study the dynamics of 2p decay

• Time dependent approach

o Time propagator can be expanded with Chebyshev polynomials.
o Initial wave function is obtained by GCC, which includes configuration mixing and proper asymptote.
o Two-proton wave function has been propagated to over 500 fm.

• Green’s functional method to benchmark

o Time propagator and Green’s function can be connected by Fourier transformation. 

TIME-DEPENDENT APPROACH TO THE CONTINUUM . . . PHYSICAL REVIEW C 79, 044308 (2009)

electromagnetic decay equals to the reduced transition rate
B(EM) = |⟨c|α⟩|2 with our normalization of amplitudes. The
transition rates and spectroscopic factors are defined here
as in Ref. [39]. Electromagnetic transitions are typically
orders of magnitude weaker than the particle decays but the
time-dependent approach allows one to treat all channels on the
same footing. In the traditional SM the self-energy is usually
included implicitly by fitting the parameters of the interaction
to observations. However, in the above perturbation approach
the correction to energy "α = ⟨α|"(Eα)|α⟩ gives

"α =
∑

c

"c(Eα)|⟨c|α⟩|2. (10)

From random interactions to realistic systems that range
from microwave cavities to hadrons, there are numerous stud-
ies of the dynamics generated by the non-Hermitian energy-
dependent Hamiltonians (1), where the complex eigenvalue
problem

H(E)|α⟩ = E |α⟩ (11)

is solved; see Refs. [27–29,40] and references therein. Summa-
rizing the challenges, the Hamiltonian has an explicit energy
dependence, making the internal dynamics highly nonlinear.
The transition into a complex energy plane may be rather
impractical. It causes computational complications related to
the complex-plane branch cuts and unphysical roots, and the
relation to observables becomes perplexing. The Hamiltonian
(1) that emerges as a result of the projection contains many-
body interaction terms.

B. Scattering matrix and reactions

The same dynamics can be explored with the Feshbach
formalism from the reaction side, represented by the channel
space. Here, the transition matrix of the scattering theory is
given by

Tcc′ (E) = ⟨Ac(E)|
[

1
E − H(E)

]
|Ac′

(E)⟩, (12)

which describes a process with an entrance channel c′, an
intrinsic propagation driven by the effective Hamiltonian (1),
and an exit in the channel c; see Refs. [12,13]. The scattering
matrix can be written as

Scc′ (E) = exp(iξc) {δcc′ − i Tcc′ (E)} exp(iξc′). (13)

The additional phase shifts ξc(E) describe the potential scatter-
ing or a contribution of remote resonances outside of the model
space. In our studies we include Coulomb phase shifts ξC

l =
arg[%(1 + l + iη)] that depend on the angular momentum
l and the Coulomb parameter η. Then the total scattering
amplitude is a sum of the nuclear terms from Eq. (12),
appropriately modified by the additional phases, and the
Coulomb amplitude f C(θ ); explicit equations are summarized
in Appendix C. The studies reported here show no need in
the additional potential contributions, although in the spirit of
R-matrix techniques one can consider using hard-sphere phase
shifts.

The total cross section follows directly from the above T -
matrix [12]:

σ = π

k′2

∑

cc′

(2J + 1)
(2s ′ + 1)(2I ′ + 1)

|Tcc′ |2, (14)

where the primed variables k′, s ′, and I ′ stand for the initial in-
cident momentum, projectile spin, and target spin, respectively.
The J = J ′ is the total spin of the channel. The summation is
over all incoming and outgoing channels contributing to the
reaction. In the approximation of an isolated narrow resonance
α of spin Jα the T -matrix in Eq. (12) is dominated by a single
complex eigenvalue of the Hamiltonian Eα = Eα − i%α/2.
This eigenvalue is determined by treating the non-Hermitian
components in the interaction perturbatively using Eqs. (8) and
(9). The approximation results in the Breit-Wigner expression
for cross section:

σ = π

k′2

∑

cc′

(2Jα + 1)
(2s ′ + 1)(2I ′ + 1)

%c
α%c′

α

(E − Eα)2 + %2
α/4

. (15)

An in-depth discussion, expressions for the differential cross
section, and its Blatt-Biedenharn angular decomposition are
presented in Appendix C; related information is also available
in the literature [11,12,14,41].

III. STATIONARY SYSTEMS

A. Time evolution approach

The many-body evolution operator is at the center of the
TDCSM approach. Although the method is general, we start
with stationary systems. We build the evolution operator as
a function of time using a Chebyshev polynomial expansion
method, suggested in Refs. [42–44]. The expansion factorizes
the evolution operator as follows:

exp(−iH t) =
∞∑

n=0

(−i)n(2 − δn0)Jn(t)Tn(H ), (16)

where Jn is the Bessel function of the first kind and Tn

stands for the Chebyshev polynomials; see Appendix D. In
comparison to the Taylor expansion or other methods of
evaluating the Green’s function, the Chebyshev polynomials
provide a complete set of orthogonal functions covering
uniformly the interval [−1, 1]. The asymptotic behavior of
the Bessel functions assures convergence of the series (16) at
long times, which allows controlling of energy resolution in
the cross sections. The “angular addition” relation in Eq. (D5)
provide an efficient iterative technique for evaluating Cheby-
shev polynomials of the Hamiltonian operator acting on
any state [Eq. (E2)]. For technical details and numerical
advantages, see Appendix E.

The energy representation of the retarded propagator is
given by the Fourier image of the evolution operator,

G(E) = 1
E − H

= −i

∫ ∞

0
dt exp(iEt) exp(−iH t), (17)

where H is set to have an infinitesimal negative-definite
imaginary part.

044308-3

GCC

Open quantum system
Configuration mixing Correlation

High precision in asymptote
Coulomb field

~500 fm

SW and W. Nazarewicz, Phys. Rev. Lett. 126, 142501 (2021)
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Two-proton (2p) decay
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o Diproton structure will introduce configuration mixing.

Jacobi Single-particle

(0, 0)

(s, s)
(p, p)
(d, d)
(f, f)clustering

45Fe

K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007)

J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)

This yields the branching ratio for the 2p decay of 0.70(4).
Using the maximum likelihood method, the decay half-life
of 45Fe was determined as 2.6(2) ms. The partial 2p decay
half-life of 45Fe is then T1=2!2p" # 3:7!4" ms and the cor-
responding 2p decay width !2p#1:23$0:15

%0:12&10%19 MeV.
The deduced partial 2p decay width of 45Fe is presented

in Fig. 2 showing the dependence of the 2p half-life on the
decay energy as predicted by the 3-body model of
Grigorenko and Zhukov [13,21]. The experimental decay
energy is taken from Ref. [11] as it is the most precise value
to date. The various theoretical lines correspond to differ-
ent configurations of the two valence protons in the initial
nucleus. The location of the experimental point suggests
that the initial state is characterized by the ratio of the
dominant p2 and f2 configurations equal to about 30=70.
This finding is consistent with the realistic shell-model
calculation for 45Fe predicting the dominant role of the f
orbitals with a significant contribution of the p states [12].

The information contained in the image and in the time
profile allows the reconstruction of the decay event in three
dimensions. By using a fitting procedure that takes into
account the ionization density distribution along a proton
track in the OTPC gas and includes corrections for the
detector response, the angles # of both proton tracks with
respect to the axis normal to the image plane can be
determined. This procedure, applied to the event shown
in Fig. 1, resulted in values #1 # 110' ( 3' and #2 #
70' ( 2'. The combination of these angles with the angle
! between tracks measured on the image plane allows the
calculation of the angle "pp between the momenta of the
two protons. For the event of Fig. 1, ! # 140' ( 3' and
"pp # 143' ( 5'.

This procedure was applied to all recorded 2p decay
events, and for 75 of them it yielded reliable and unambig-
uous results. The distribution of the opening angle has been
constructed in the following way. Each event was repre-
sented by a Gaussian distribution centered at the deter-
mined value of "pp, with the area and the variance equal to
one and to the estimated error, respectively. The sum of all
such contributions is shown as a histogram in Fig. 3. A two-
bumped structure is evident—one broad peak is centered
around 50' and a second smaller one is present at about
145'. In the case of the pure diproton scenario, the distri-
bution was expected to contain one narrow peak centered
at about 30' [22] while in the case of fully uncorrelated
emission, the distribution would be proportional to sin"pp.
Evidently, measured distribution does not follow these
scenarios. It agrees, however, with the prediction of the
3-body model for the f-p shell nuclei. The calculated
distributions for three mixtures of p2 and f2 configura-
tions, normalized to the same integral as the experimental
spectrum, are shown in Fig. 3 by smooth lines. Using a
quadratic interpolation we estimate that the experimental
data are best described by the model when the contribution
of the p2 configuration is equal to !30( 10"%.

We would like to stress the following points. (i) There is
remarkable consistency between observables shown in
Figs. 2 and 3 and theoretical predictions [21]. Both the
2p decay width as a function of the decay energy and the
opening angle distribution are best described by the same
composition of the initial 2p wave function. (ii) In two-
body decays, like proton radioactivity, the structure infor-
mation (spectroscopic factor) is extracted only by the
comparison of the measured width with the theoretically
calculated value (namely, the Wigner limit). In this experi-
ment we show for the first time that in a three-body decay
the structure information can be extracted both from the

FIG. 2 (color online). The partial 2p half-life of 45Fe as a
function of the 2p decay energy. The experimental result is
shown superimposed on predictions of the 3-body model
[13,21]. The decay width is taken from this work; the energy
is taken from Ref. [11]. The numerical labels indicate the relative
weights of the p2 and f2 configurations, respectively.

FIG. 3 (color online). The measured distribution of the open-
ing angle between two protons emitted in the decay of 45Fe
(histogram). Lines show the predictions of the 3-body model for
the same mixtures of p2 and f2 configurations as shown in Fig. 2
with the dashed lines.

PRL 99, 192501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 NOVEMBER 2007

192501-3



2p decay in 6Be
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θ12
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p2θ12
core

p1
p2

Two types of tunneling:
1. diproton (primarily)
2. cigarlike

Diproton branch bends 
due to Coulomb repulsion

Asymptotic correlation 
begin to converge

Protons inside nucleus

SW and W. Nazarewicz, Phys. Rev. Lett. 126, 142501 (2021)



Complex-plane framework
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• Decay width/Lifetime

o Complex symmetric Schrödinger equation 

                               , where 
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Asymptotic nucleon-nucleon correlation
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K. Miernik et al. PRL 99, 192501 (2007)

This yields the branching ratio for the 2p decay of 0.70(4).
Using the maximum likelihood method, the decay half-life
of 45Fe was determined as 2.6(2) ms. The partial 2p decay
half-life of 45Fe is then T1=2!2p" # 3:7!4" ms and the cor-
responding 2p decay width !2p#1:23$0:15

%0:12&10%19 MeV.
The deduced partial 2p decay width of 45Fe is presented

in Fig. 2 showing the dependence of the 2p half-life on the
decay energy as predicted by the 3-body model of
Grigorenko and Zhukov [13,21]. The experimental decay
energy is taken from Ref. [11] as it is the most precise value
to date. The various theoretical lines correspond to differ-
ent configurations of the two valence protons in the initial
nucleus. The location of the experimental point suggests
that the initial state is characterized by the ratio of the
dominant p2 and f2 configurations equal to about 30=70.
This finding is consistent with the realistic shell-model
calculation for 45Fe predicting the dominant role of the f
orbitals with a significant contribution of the p states [12].

The information contained in the image and in the time
profile allows the reconstruction of the decay event in three
dimensions. By using a fitting procedure that takes into
account the ionization density distribution along a proton
track in the OTPC gas and includes corrections for the
detector response, the angles # of both proton tracks with
respect to the axis normal to the image plane can be
determined. This procedure, applied to the event shown
in Fig. 1, resulted in values #1 # 110' ( 3' and #2 #
70' ( 2'. The combination of these angles with the angle
! between tracks measured on the image plane allows the
calculation of the angle "pp between the momenta of the
two protons. For the event of Fig. 1, ! # 140' ( 3' and
"pp # 143' ( 5'.

This procedure was applied to all recorded 2p decay
events, and for 75 of them it yielded reliable and unambig-
uous results. The distribution of the opening angle has been
constructed in the following way. Each event was repre-
sented by a Gaussian distribution centered at the deter-
mined value of "pp, with the area and the variance equal to
one and to the estimated error, respectively. The sum of all
such contributions is shown as a histogram in Fig. 3. A two-
bumped structure is evident—one broad peak is centered
around 50' and a second smaller one is present at about
145'. In the case of the pure diproton scenario, the distri-
bution was expected to contain one narrow peak centered
at about 30' [22] while in the case of fully uncorrelated
emission, the distribution would be proportional to sin"pp.
Evidently, measured distribution does not follow these
scenarios. It agrees, however, with the prediction of the
3-body model for the f-p shell nuclei. The calculated
distributions for three mixtures of p2 and f2 configura-
tions, normalized to the same integral as the experimental
spectrum, are shown in Fig. 3 by smooth lines. Using a
quadratic interpolation we estimate that the experimental
data are best described by the model when the contribution
of the p2 configuration is equal to !30( 10"%.

We would like to stress the following points. (i) There is
remarkable consistency between observables shown in
Figs. 2 and 3 and theoretical predictions [21]. Both the
2p decay width as a function of the decay energy and the
opening angle distribution are best described by the same
composition of the initial 2p wave function. (ii) In two-
body decays, like proton radioactivity, the structure infor-
mation (spectroscopic factor) is extracted only by the
comparison of the measured width with the theoretically
calculated value (namely, the Wigner limit). In this experi-
ment we show for the first time that in a three-body decay
the structure information can be extracted both from the

FIG. 2 (color online). The partial 2p half-life of 45Fe as a
function of the 2p decay energy. The experimental result is
shown superimposed on predictions of the 3-body model
[13,21]. The decay width is taken from this work; the energy
is taken from Ref. [11]. The numerical labels indicate the relative
weights of the p2 and f2 configurations, respectively.

FIG. 3 (color online). The measured distribution of the open-
ing angle between two protons emitted in the decay of 45Fe
(histogram). Lines show the predictions of the 3-body model for
the same mixtures of p2 and f2 configurations as shown in Fig. 2
with the dashed lines.

PRL 99, 192501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 NOVEMBER 2007

192501-3
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o Epp and Y-type angular correlations are strongly impacted by nucleon-nucleon interaction.
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