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Crash course in nuclear theory workflow

To go from (physics) model parameters—low-energy constants/couplings
(LECs)—to observables, we:

1 Input LECs into χEFT, construct an interaction potential

2 Input the potential into a many-body method and solve the Schrödinger
equation

3 Output: scattering cross sections, nuclear binding energies, radii, equation of
state (EOS) . . .

Steps 1 and 2 both introduce separate truncation errors!

(Also, the parameters/couplings/LECs are unknown and inferred from data)
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Part one: assessing truncation errors in many-body methods

Based on arXiv:2507.09079

All code and data: https://github.com/svisak/manybody_uncertainties

Accepted by Phys. Rev. C last night :)

3

https://github.com/svisak/manybody_uncertainties


Part one: assessing truncation errors in many-body methods

Based on arXiv:2507.09079

All code and data: https://github.com/svisak/manybody_uncertainties

Accepted by Phys. Rev. C last night :)

3

https://github.com/svisak/manybody_uncertainties


Motivation - errors in chiral effective field theory (χEFT)1

χEFT calculations of (e.g.) nuclei have four main sources of error:

• Uncertainty in the determination of the χEFT model parameters

• Truncation of the EFT expansion (See Hannah’s talk yesterday)

• Truncation of the many-body method

• Limited model spaces

Goal:
Rigorous treatment of uncertainties arising from truncating the many-body
perturbation theory (MBPT) expansion at finite order, replacing
ad-hoc/expert assessments

Model is heavily inspired by the BUQEYE model for EFT truncation errors, in
particular Wesolowski, IS et al., Phys. Rev. C 104 (2021)

1Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Meißner, . . .
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Inference framework

Ground-state energy E in MBPT:

E = EHF +MBPT(2) +MBPT(3) + . . .

We assume that the ratios of contributions are (roughly) constant, i.e.:

MBPT(2)

EHF
≈ MBPT(3)

MBPT(2)
≈ MBPT(4)

MBPT(3)
≈ . . . ≈ constant

Similar to EFT, where each order is suppressed by ≈ Q!
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MBPT data and input nuclear interaction models

Our inference data: binding energies2 for 37 nuclei from 14O to 208Pb

Use three different χEFT interaction models (sets of LECs):

• 1.8/2.0 (EM) (“Magic”)3

• ∆N2LOGO
4

• 1.8/2.0 (EM7.5)2

2P. Arthuis et al., arXiv:2401.06675
3K. Hebeler et al., Phys. Rev. C 83 (2011)
4W. Jiang et al., Phys. Rev. C 102 (2020)
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MBPT ratios
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Calculated [1.8/2.0 (EM)] ratios of MBPT corrections. Gives an idea of the convergence of
the expansion as well as the correlation structure across nuclei. Symmetric nuclear matter
(SNM) results are not used in the main inference.
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Inference framework – EFT inspiration

BUQEYE model for EFT errors:

y = yref

∞∑
i=0

ciQ
i, Q ≈ 1

3
, pr(ci) = N (0, c̄2), c̄ ≈ 1

Yields a truncation error5:

δy = N
(
0, y2refc̄

2Q
2(ν+1)

1−Q2

)
(ν chiral order)

Q and c̄2 can be learned from data (calculations)
via:

ci =
yi − yi−1

yrefQi Wesolowski, IS et al., Phys. Rev. C
104 (2021)

5S. Wesolowski et al., J. Phys. G 46, 045102 (2019)
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Inference framework6

We assume that the MBPT expansion can be expressed as

E = Eref

∞∑
n=0

γnR
n

where n = k − 1 and k is the MBPT order (counting HF as k = 1)

Yields an MBPT truncation error: δE = N
(
0, E2

refγ̄
2R2(n+1)

1−R2

)
Assumes R < 1 (i.e., a convergent series). If not, replace variance with ∞!

R and γ̄2 can be learned from order-by-order calculations, just like Q and c̄2

6“BUQEYMBM”: Bayesian Uncertainty Quantification: Errors in Your Many-Body Method
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Finding an expression for pr(R, γ̄2)

By the product rule:

pr(R, γ̄2|γ⃗, I) = pr(γ̄2|R, γ⃗, I)× pr(R|γ⃗, I) (1)

γ⃗ = γ⃗(R) is input data from order-by-order calculations. Assuming γ⃗ ∼ N , placing
a conjugate prior

pr(γ̄2|I) = IG(α, β)
yields

pr(γ̄2|R, γ⃗, I) = IG(α′, β′)

with

α′ = α+
NnucleiNorders

2
,

β′ = β +
γ⃗2

2

Downside: does not account for correlated data. → only use 3 nuclei in inference

Q: How do we verify γ⃗ ∼ N with ∼ 5 coefficients?
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Finding an expression for pr(R, γ̄2)

For R, we take a uniform prior U(0, 2) (allowing for divergent series’ !)

With these priors and pr(γ̄2|R, γ⃗, I) in place, we get the posterior for R:

pr(R|γ⃗, I) ∝ pr(R|I)(
β′

α′

)α′∏
k R

Nnuclei(k−1)

.

We now have every ingredient for pr(R, γ̄2|γ⃗, I) and sample it with MCMC
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Posterior for the hyperparameters – 1.8/2.0 (EM)

We find the most likely value for
R ≈ 0.15 (with rather large uncertainty)

Most likely value for γ̄2 ≈ 1

Naturally, R and γ̄2 are correlated (larger
R can compensate for smaller γ̄2 etc.)

Each new MBPT order contributes
≈ 15% of the previous order
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Posterior predictive distributions for nuclei
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Uncertainty bands for selected nuclei, scaled by the mass number A. IMSRG(2) results for
comparison as gray circles. Credibility intervals shown at the 68% and 90% levels.
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Interaction sensitivity – hyperparameter posteriors
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Note that R is larger than for 1.8/2.0 (EM) – slower convergence
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Interaction sensitivity – PPDs
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These interactions are harder (converge slower), hence larger uncertainties
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Empirical coverage of MBPT bands with respect to IMSRG data
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Empirical coverages. Measures the observed (y-axis) vs expected (x-axis) coverage of
the credibility intervals. Ideal result is a diagonal line. Gray areas are confidence intervals
that measure whether the observed result is compatible with the ideal.

Q: How to model check when error is mostly a systematic offset?
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Future work: including nuclear matter
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Data from F. Alp, Y. Dietz et al.,
arXiv:2504.18259

For symmetric nuclear matter
(bottom), ratios behave similarly to
those of finite nuclei. We have tested the
inference with two density points (0.5
and 1.0 n0), with similar results to
before.

Pure neutron matter (top), on the
other hand, behaves quite differently: the
MBPT(3)/MBPT(2) ratio is larger than
the MBPT(2)/EHF ratio.

In the future, we would like to model this
kind of data using Gaussian processes
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Part two: Inferring three-nucleon couplings from multi-messenger neutron-star
data

Based on Nature Commun. 16 (2025) 1, 9819

Code and data: https://github.com/svisak/multimessenger_3N_constraints
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Inferring three-nucleon couplings from neutron-star (NS) data

χEFT: Low-momentum-scale (Q)
expansion

New orders introduce unknown
low-energy constants (LECs) that
need to be fit to data:

• NN LECs fit to NN scattering data

• 3N LECs fit to properties of light
nuclei

• πN (pion-nucleon) LECs fit to πN
scattering data Figure adapted from Entem et al., Phys.

Rev. C 96.2 (2017).
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Inferring three-nucleon couplings from neutron-star (NS) data

χEFT: Low-momentum-scale (Q)
expansion

New orders introduce unknown
low-energy constants (LECs) that
need to be fit to data:

• Two-nucleon (2N) LECs fit to 2N
scattering data

• 3N LECs fit to properties of light
nuclei

• Pion-nucleon (πN) LECs fit to πN
scattering data

• This work: fit πN LECs (governing
3N forces) to multimessenger NS
data

πN

Figure adapted from Entem et al., Phys.
Rev. C 96.2 (2017).
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Bayesian inference

χEFT calculations of neutron matter depend on πN LECs c1, c3

−→ In principle, neutron-star observables can constrain c1, c3

From LECs to NS observables:

1 Input LECs into χEFT

2 Compute neutron-matter EOS using many-body perturbation theory

3 Solve TOV and quadrupolar tidal perturbation equations

4 Output: neutron-star masses, tidal deformabilities

With Bayesian inference, we can go from NS data to LECs

Problem: huge computational cost
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Solution: emulators, allow us to calculate O(108) samples

Emulators for the EOS (energy per particle): parametric matrix models (PMM)7,
trained on 30 MBPT curves (+70 for validation)

Emulators for NS observables: neural networks8

Very good accuracy in
both cases (< 0.05% on
average)

Use a metamodel9 to provide smooth interpolation of EOS and extrapolation to
matter in beta equilibrium

7Cook et al., arXiv:2401.11694 (2024), Somasundaram et al., arXiv:2404.11566 (2024).
8Reed et al., arXiv:2405.20558 (2024)
9Margueron et al., Phys. Rev. C 97 (2018)
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LEC posteriors using currently available data

We use NICER mass-radius data10 and
GW170817 gravitational wave event11
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(πN result from Hoferichter et al., Phys.
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10Riley et al., ApJ Lett. 887 (2019), Salmi et al., ApJ 941 (2022), Choudhury et al., ApJ Lett. 971 (2024)
11Abbott et al., PRL 119 (2017) 23



Can we improve this with more&better GW data?

Next, use simulated next-generation GW data from Einstein Telescope12 and
Cosmic Explorer13, ∼ 1 year of observation

• Select 20 highest-SNR events,
perform Bayesian inference

• c3 converges quickly with number of
observed events

• Final constraints almost comparable
with πN scattering constraints

• Must marginalize over high-density
parameters; 2-parameter model has
large systematic uncertainty

Prio
r

A
st
ro

(p
re

se
nt

)
1 5 10 15 20

Number of events

−7

−6

−5

−4

−3

−2

−1

0

c 3
[G

eV
−

1
]

2-parameter model
5-parameter model
7-parameter model

Injected value
Zero-noise injection
πN scattering

Uncertainties given as 90% credibility
intervals.

12Punturo et al., Class. Quant. Grav. 27 (2010)
13Reitze et al., Bull. Am. Astron. Soc. 51, (2019)
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Future work: determining the EFT breakdown scale for nuclear matter

Before we used χEFT up to 2n0

If we instead trust χEFT only to 1.5n0

then constraints on c3 become much
weaker

Demonstrates the importance of learning
the breakdown scale

Distributions appear to converge to
the same value – use this to infer
breakdown scale?

−6 −4 −2 0

c3 [GeV−1]

0.0

0.5

1.0

1.5

2.0

P
D

F

2nsat(20 events)

1.5nsat(20 events)

1.5nsat(50 events)

1.5nsat(100 events)

1.5nsat(400 events)

Prior

Posterior for c3 with different upper limit for
χEFT.

25



Summary and outlook (MBPT UQ)

• BUQEYE-style Bayesian error model for many-body perturbation theory

• Tested on three interactions with varying convergence properties, appears to
work quite well

• Gaussian processes for nuclear matter

• Handle correlated input data for finite nuclei

• Further validation of the error model – does it do what it’s supposed to?

• Does the assumption of normality for γ⃗ hold?

• Refinements to the model, maybe make R vary with order?

Collaborators:

Alex Tichai, Kai Hebeler, Achim Schwenk
Also thanks to Dick Furnstahl, Zhen Li, Pierre Arthuis, Matthias Heinz,
Takayuki Miyagi, Yannick Dietz, and Faruk Alp for discussions and input
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Summary and outlook (3N inference)

• We have developed a framework to infer 3N couplings from multi-messenger
NS data

• Current and future data can provide constraints on c3

• Provides constraints complementary to πN scattering, enables consistency
checks for χEFT

• Infer χEFT breakdown scale for nuclear matter?

Collaborators:

Rahul Somasundaram, Soumi De, Andrew E. Deneris, Yannick Dietz, Philippe
Landry, Achim Schwenk, Ingo Tews

isak.svensson@tu-darmstadt.de
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Prior for the hyperparameter γ̄2
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