Bayesian Model Mixing, Bayesian Trees and Experimental Design

Matthew T. Pratola

ISNET11, Trento Italy

X: @MattPratola web: www.matthewpratola.com email: mpratola@iu.edu

Wednesday November 19th, 2025

BAND: Bayesian Analysis of Nuclear Dynamics

http://www.bandframework.github.io

- Integrate diverse software tools into a cohesive framework (Python/Taweret).
 - Physics simulators, Emulation, Calibration, Bayesian Model Mixing (BMM)
- BMM Frameworks
 - Moment (mean) mixing
 - Gaussian Process based mixing (Semposki et al.)
 - Tree-based mixing (Yannotty et al.)
 - Density mixing
 - Linear density mixing (Liyanage et al.)
 - Approximate Likelihood mixing (Ingles et al.)

General BMM Framework

- A process, Y, is observed, which depends on some p-dimensional inputs x.
- This observation is of some underlying phenomena of interest, $f_{\dagger}(\mathbf{x})$.
- A simple model that we often adopt linking the observations to the underlying phenomena is

$$Y|\mathbf{x} \sim N(f_{\dagger}(\mathbf{x}), \mathbf{c}(\cdot))$$

• Problem: we don't know f_{\dagger} .

BMM (Mean Mixing)

• Assume we have K models $\mathcal{M}_1, \dots, \mathcal{M}_K$. One approach is to average the mean predictions of these models,

$$\hat{f}_I = \hat{E}[Y|\mathcal{M}_I],$$

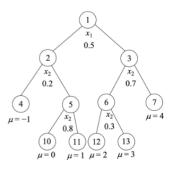
in our model for Y,

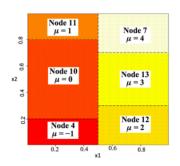
$$Y \sim N\left(\sum_{k=1}^K w_k(\mathbf{x})\hat{f}_k(\mathbf{x}), c(\cdot)\right).$$

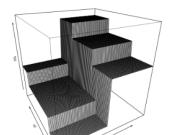
Regression Trees

- Popular tool in Machine/Statistical Learning divide and conquer!
- Binary trees define "multivariate step function" bases.
- Internal nodes $(\eta's)$ have variable<cutpoint rules $(x_v < c)$.
- Coefficients are the terminal node parameters (μ 's).
- Each path from terminal node to root defines a basis function.
- $\mathcal{T} = (\{\eta_j\}, \{v_j\}, \{c_j\}), \mathcal{M} = (\mu_1, \dots, \mu_B)$

Regression Trees







Three different views of a bivariate single tree.

Bayesian Additive Regression Trees (BART)

BART is an additive model:

$$Z(\mathbf{x}) = \sum_{j=1}^{m} g(\mathbf{x}; T_j, M_j) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

• Given observations $\mathbf{z} = (z_1, \dots, z_n)$, we are interested in sampling the posterior distribution

$$\pi(\sigma^2, \{T_j, M_j\}_{j=1}^m | \mathbf{z}) \propto$$

$$L(\sigma^2, \{T_j, M_j\}_{j=1}^m | \mathbf{z}) \pi(\sigma^2) \prod_{j=1}^m \pi(M_j | T_j) \pi(T_j)$$

BART-BMM Model

• Conditional on the values of the theoretical predictions at a given point, $f_1(\mathbf{x}_i), \ldots, f_K(\mathbf{x}_i)$, the model can be defined by

$$Y_i \mid \mathbf{f}(\mathbf{x}_i), \mathbf{w}(\mathbf{x}_i), \sigma^2 \sim N(\mathbf{f}^{\top}(\mathbf{x}_i)\mathbf{w}(\mathbf{x}_i), \sigma^2)$$

where
$$\mathbf{f}(\cdot) = (f_1(\cdot), ..., f_K(\cdot))^{\top}$$
 and $\mathbf{w}(\cdot) = (w_1(\cdot), ..., w_K(\cdot))^{\top}$.

• The weight vectors are modeled as a sum-of-trees,

$$\mathbf{w}(\mathbf{x}_i) = \sum_{j=1}^{m} \mathbf{g}(\mathbf{x}_i, T_j, M_j, Z_j)$$

where $\mathbf{g}(\mathbf{x}_i, T_j, M_j, Z_j)$ is the K-dimensional output of the j^{th} tree using the set of terminal node parameters, M_j , at the input, \mathbf{x}_i

Terminal Node Prior

- For the *p*th terminal in tree *j*, $\mu_{pj} \mid T_j \sim_{i.i.d.} N_K(\frac{1}{mK} \mathbf{1}_K, \tau^2 \mathbf{I}_K)$.
- The induced prior on the /th model weight is $w_I(\mathbf{x}_i) \sim N(\frac{1}{K}, m\tau^2)$.
- Then τ selected so that $w_l(\mathbf{x}_i) \in [0,1]$ with high probability. To do so, a CI for $w_l(\mathbf{x}_i)$ is constructed s.t.

$$0 = 0.5 - k\tau \sqrt{m}$$
 and $1 = 0.5 + k\tau \sqrt{m}$.

Subtracting the first equation from the second and solving yields

$$\tau = \frac{1}{2k\sqrt{m}}.$$

• Default choice is k = 1. Larger k concentrates on 1/K, smaller k allows more flexibility.

Tree-depth Prior

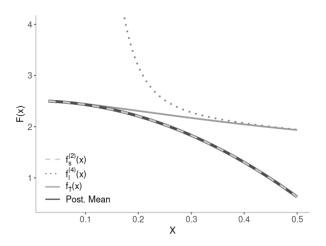
• Exponentially decreasing prior probability that the *i*th internal node η_{ji} of tree \mathcal{T}_j will split:

$$\pi(\eta_{ji} \text{ splits}) = \alpha(1 + d(\eta_{ji}, \eta_{j1}))^{-\beta}$$

where $d(\eta_{ji}, \eta_{j1})$ is the depth from node η_{ji} to the root node η_{j1} in tree \mathcal{T}_j .

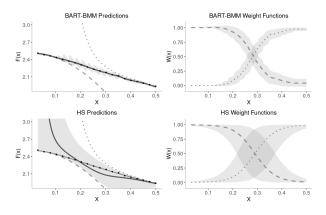
• Defaults are $\alpha = 0.95, \beta = 2$ implies trees of depth 2-3.

EFT Expansion Example



Motivating EFT from Honda (2014). The posterior mean prediction of $f_{\uparrow}(x)$ when applying BMA to the 2nd order weak and 4th order strong coupling expansions.

EFT Expansion Example

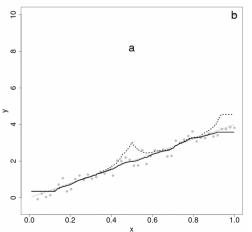


The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing $f_s^{(2)}(x)$ (dashed) and $f_l^{(4)}(x)$ (dotted). Results are obtained from a BART-BMM model with 10 trees and a Hierarchical Stacking model with a linear unconstrained weight function (bottom).

Higher-Dimensional BMM

- No obvious reason why this can't extend well into higher-dimensional problems.
- But in practice we have observed overfitting issues.
- This problem arises in regular BART regressions as well.

E.g. BART Overfitting



The dotted line is the BART prediction with outliers A and B included in the data, the black line is the BART prediction with the outliers removed.

Pratola et al., Influential Observations in Bayesian Regression Tree Models, Journal of Computational and Graphical Statistics, vol. 33 (2024)

Random Path BART (RPBART)

- Follow left/right splits at internal nodes with some probability.
- Latent indicator variable $z_{bj}(\mathbf{x}_i)$ denotes if observation i maps to terminal node b in tree j.
- Definining $Z_j = \{\mathbf{z}_j(\mathbf{x}_i)\}_{i=1}^n$ where $\sum_{b=1}^{B_j} z_{bj}(\mathbf{x}_i) = 1$ we have

$$Y(\mathbf{x}_i)|\{T_j, M_j, Z_j\}_{j=1}^m, \sigma^2 \sim N\left(\sum_{j=1}^m g(\mathbf{x}_i; T_j, M_j, Z_j), \sigma^2\right)$$

where

$$g(\mathbf{x}_i; T_j, M_j, Z_j) = \sum_{b=1}^{B_j} \mu_{bj} z_{bj}(\mathbf{x}_i).$$

Random Path BART (RPBART)

- Idea: conditional on Z_j 's we still have usual BART step functions. But marginally we have a smooth, continuous function.
- Prior:

$$\mathbf{z}_{j}(\mathbf{x}_{i})|T_{j},\gamma_{j}\sim\mathsf{Multinomial}(1,\phi_{1j}(\mathbf{x}_{i};T_{j},\gamma_{j}),\ldots,\phi_{B_{j}j}(\mathbf{x}_{i});T_{j},\gamma_{j})$$

- $\phi_{bj}()$ is the probability an observation maps to terminal b in tree j.
- $\gamma_i \in (0,1)$ is a bandwidth parameter, with prior

$$\gamma_i \sim \mathsf{Beta}(\alpha_1, \alpha_2), j = 1, \dots, m.$$

Path Probabilities

 The path probabilities are determined by the probability of branching left/right at each internal node along paths from root node to terminal nodes:

$$\phi_{bj}(\mathbf{x}; T_j, \gamma_j) = \prod_{d=1}^{D} \psi(\mathbf{x}; \mathbf{v}_{(dj)}, c_{(dj)}, \gamma_j)^{R_{(dj)}} \times \left(1 - \psi(\mathbf{x}; \mathbf{v}_{(dj)}, c_{(dj)}, \gamma_j)\right)^{1 - R_{(dj)}}$$

where $R_{(dj)}=1$ $(R_{(dj)}=0)$ denotes if a right (left) move defines the path and

$$\psi(\mathbf{x}; \mathbf{v}_{(dj)}, c_{(dj)}, \gamma_j) = \begin{cases} 1 - \frac{1}{2} \left(1 - \frac{x_{\mathbf{v}_{(dj)}} - c_{(dj)}}{\gamma_j (U_v^d - c_{(dj)})} \right)_+^q & x_{\mathbf{v}_{(dj)}} \ge c_{(dj)}, \\ \frac{1}{2} \left(1 - \frac{c_{(dj)} - x_{\mathbf{v}_{(dj)}}}{\gamma_j (c_{(dj)} - L_v^d)} \right)_+^q & x_{\mathbf{v}_{(dj)}} < c_{(dj)}, \end{cases}$$

Smooth Predictions

 Marginalizing over the random path assignments gives us the desired smooth fitted response,

$$E[Y(\mathbf{x}) \mid \{T_j, M_j, \gamma_j\}_{j=1}^m] = \sum_{j=1}^m \sum_{b=1}^{B_j} \mu_{bj} \ \phi_{bj}(\mathbf{x}; T_j, \gamma_j).$$

• How do we calibrate the priors?

Semivariogram for RPBART

 The semivariogram is a low-dimensional summary of smoothness and correlation properites of random fields popular in spatial statistics:

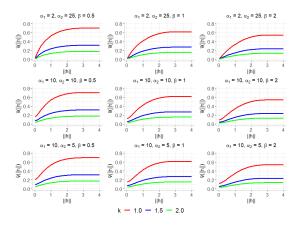
$$\overline{\nu}(\|\mathbf{h}\|) = \frac{1}{|\chi|} \int_{\chi} \nu(\mathbf{x}, \mathbf{h}) \ d\mathbf{x}$$

where

$$u(\mathbf{x}, \mathbf{h}) = \frac{1}{2} \mathsf{Var}(Y(\mathbf{x} + \mathbf{h}) - Y(\mathbf{x})).$$

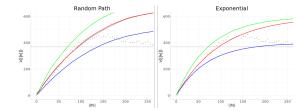
 Can compare an empirical estimate with the a priori theoretical semivariogram to calibrate hyperparameters.

Semivariogram for RPBART



Prior hyperparameters can be tuned by comparing the theoretical semivariogram with the empirical version.

Semivariogram for RPBART



Example of calibrating RPBART semivariogram to empirical semivariogram calculated from the Miroc climate simulator dataset.

RPBART-BMM Model

• Conditional on the values of the theoretical predictions at a given point, $f_1(\mathbf{x}_i), \dots, f_K(\mathbf{x}_i)$, the model can be defined by

$$Y_i \mid \mathbf{f}(\mathbf{x}_i), \mathbf{w}(\mathbf{x}_i), \sigma^2 \sim N(\mathbf{f}^{\top}(\mathbf{x}_i)\mathbf{w}(\mathbf{x}_i), \sigma^2)$$

where
$$\mathbf{f}(\cdot) = (f_1(\cdot), ..., f_K(\cdot))^{\top}$$
 and $\mathbf{w}(\cdot) = (w_1(\cdot), ..., w_K(\cdot))^{\top}$.

The weight vectors are modeled as a vectorized RPBART,

$$\mathbf{w}(\mathbf{x}_i) = \sum_{i=1}^m \mathbf{g}(\mathbf{x}_i, T_j, M_j, Z_j)$$

where $\mathbf{g}(\mathbf{x}_i, T_j, M_j, Z_j)$ is the *K*-dimensional output of the j^{th} tree using the set of terminal node parameters, M_j , at the input, \mathbf{x}_i

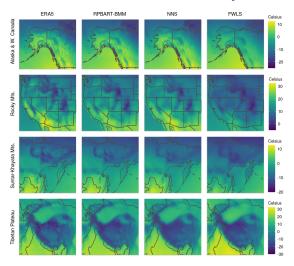
Climate Models

- Motivated by work of Harris et al.[†] empirically observed some models seemed better over land, others over water.
- Combining multiple GCM's has been a topic of interest for some time (e.g Knutti et al.*).
- Apply BMM to perform local mixing of a set of 8 climate models.

 $^{^\}dagger$ Harris et al., Multimodel ensemble analysis with neural network Gaussian processes, The Annals of Applied Statistics, vol.17 (2023)

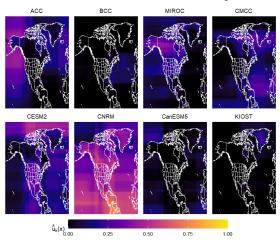
^{*} Knutti et al., Challenges in combining projections from multiple climate models, Journal of Climate, vol.23 (2010).

Climate Models Example



RPBART-BMM fit to ERA5 data using 8 climate simulators, compared to three stacking alternatives.

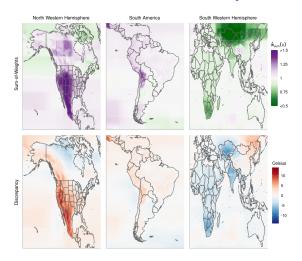
Climate Models Example



Projected constrained weights of Laha et al.[†] minimizing the discrepancy.

 $^{^\}dagger$ Laha et al., On controllable sparse alternatives to softmax, Advances in Neural Information Processing Systems, vol.31 (2018)

Climate Models Example



Sum of unconstrained weights (top row) and discrepancy remaining after constrained prediction of ERA5 field using the constrained weights (bottom row).

Beyond Mean Mixing

- Currently extending RPBART for distribution-to-distribution regression motivated by Chen et al.[†]
- Minimizes the Wasserstein distance between the input and response distributions,

$$d_W(\mu_1,\mu_2) = \left[\int_0^1 \left(F_1^{-1}(p) - F_2^{-1}(p) \right)^2 dp \right]^{1/2},$$

where D is a (possibly closed) subset of \mathbb{R} , $\mathbb{W}(D)$ is the Wasserstein space of probability distirbutions on D with finite second moments, and $\mu_1,\mu_2\in\mathbb{W}$ with quantile functions F_1^{-1},F_2^{-1} respectively.

[†] Chen et al., Wasserstein Regression, Journal of the American Statistical Association, vol.118 (2023)

Beyond Mean Mixing

- In practice, regression performed via a PCA-like procedure over a grid of percentiles to extract bases which are then used in a functional linear regression, minimizing the empirical d_W .
- For RPBART variant, we replace the linear regression step with an RPBART model.
- In preliminary explorations, we see comparable performance for "nice" distributions like Gaussians, and a significant improvement for the RPBART-based model using "fun" distributions like the GEV.
- Goal is to extend to BMM setting for the situation of an input distribution from multiple models and an output distribution of a response of interest.

RPBART-BMM Experimental Design

- Improve mixed-model prediction performance using sequential design.
- Mean-squared error is a popular criteria. For a BMM-type model, the pointwise theoretical MSE has the following decomposition:

$$\mathbb{E}_{\mathcal{D}}\left[\left(\hat{f}(x_{\star}; \mathcal{D}) - \zeta(x_{\star})\right)^{2}\right] = \underbrace{\operatorname{Var}_{\mathcal{D}}\left(\hat{f}(x_{\star}; \mathcal{D})\right)}_{A} + \underbrace{\operatorname{Bias}^{2}\left(\hat{f}(x_{\star}), \mathbb{E}[f(x_{\star})]\right)}_{B} + \underbrace{\operatorname{Bias}^{2}\left(f(x_{\star}), \zeta(x_{\star})\right)}_{C}$$
$$- \underbrace{2\left(\mathbb{E}_{\mathcal{D}}[\hat{f}(x_{\star})] - \mathbb{E}[f(x_{\star})]\right)\left(\zeta(x_{\star}) - \mathbb{E}[f(x_{\star})]\right)}_{D}.$$

where
$$\mathbb{E}\left[f(x_{\star})\right] := \mathbb{E}_{\theta,m}\left[f_m(x_{\star};\theta,m)\right]$$
.

RPBART-BMM Experimental Design

- A: Reduction in variance (uncertainty arising from all sources: emulation, not knowing calibration paramter, not knowing best model)
- B: Reduction in bias to the idealized simulator (uncertainty due to emulation)
- C: Reduction in bias from idealized simulator to truth (no emulation, uncertainty only comes from not knowing calibration parameter and/or best model)
- D: Cross term captures tradeoff from terms (B) and (C).

Conclusion

- BART is a highly successful divide and conquer strategy.
- BART-BMM for (mean) mixing multiple simulation models of a phenomena of interest.
- RPBART-BMM adds smoothness with a principled approach to prior calibration.
- Flexible data-driven regressors, posterior projections for interpretation.
- Distributional BMM and experimental design are next steps.

Conclusion

Want to learn Bayesian tree models?

 $http://www.matthewpratola.com/teaching/stat8810-fall-2017/\\ (slides 11-14)$