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BAND: Bayesian Analysis of Nuclear Dynamics

http://www.bandframework.github.io

• Integrate diverse software tools into a cohesive framework
(Python/Taweret).

• Physics simulators, Emulation, Calibration, Bayesian Model
Mixing (BMM)

• BMM Frameworks
• Moment (mean) mixing

• Gaussian Process based mixing (Semposki et al.)
• Tree-based mixing (Yannotty et al.)

• Density mixing
• Linear density mixing (Liyanage et al.)
• Approximate Likelihood mixing (Ingles et al.)

http://www.bandframework.github.io


General BMM Framework

• A process, Y , is observed, which depends on some
p-dimensional inputs x.

• This observation is of some underlying phenomena of interest,
f†(x).

• A simple model that we often adopt linking the observations to
the underlying phenomena is

Y |x ∼ N (f†(x), c(·))

• Problem: we don’t know f†.



BMM (Mean Mixing)

• Assume we have K models M1, . . . ,MK . One approach is to
average the mean predictions of these models,

f̂l = Ê [Y |Ml ],

in our model for Y ,

Y ∼ N
( K∑

k=1
wk(x)f̂k(x), c(·)

)
.



Regression Trees

• Popular tool in Machine/Statistical Learning - divide and
conquer!

• Binary trees define “multivariate step function” bases.

• Internal nodes (η’s) have variable<cutpoint rules (xv < c).
• Coefficients are the terminal node parameters (µ’s).

• Each path from terminal node to root defines a basis function.

• T = ({ηj}, {vj}, {cj}), M = (µ1, . . . , µB)



Regression Trees



Bayesian Additive Regression Trees (BART)

• BART is an additive model:

Z (x) =
m∑

j=1
g(x; Tj ,Mj) + ϵ, ϵ ∼ N(0, σ2)

• Given observations z = (z1, . . . , zn), we are interested in
sampling the posterior distribution

π(σ2, {Tj ,Mj}m
j=1|z) ∝

L(σ2, {Tj ,Mj}m
j=1|z)π(σ2)

m∏
j=1

π(Mj |Tj)π(Tj)



BART-BMM Model
• Conditional on the values of the theoretical predictions at a

given point, f1(xi), . . . , fK (xi), the model can be defined by

Yi | f(xi),w(xi), σ2 ∼ N
(
f⊤(xi)w(xi), σ2)

where f(·) =
(
f1(·), ..., fK (·)

)⊤ and w(·) = (w1(·), ...,wK (·))⊤.

• The weight vectors are modeled as a sum-of-trees,

w(xi) =
m∑

j=1
g(xi ,Tj ,Mj ,Zj)

where g(xi ,Tj ,Mj ,Zj) is the K -dimensional output of the jth

tree using the set of terminal node parameters, Mj , at the
input, xi

Yannotty et al., Model Mixing using Bayesian Additive Regression Trees, Technometrics, vol. 66 (2024)



Terminal Node Prior
• For the pth terminal in tree j ,
µpj | Tj ∼i .i .d . NK

( 1
mK 1K , τ

2IK
)
.

• The induced prior on the lth model weight is
wl(xi) ∼ N( 1

K ,mτ
2).

• Then τ selected so that wl(xi) ∈ [0, 1] with high probability.
To do so, a CI for wl(xi) is constructed s.t.

0 = 0.5 − kτ
√

m and 1 = 0.5 + kτ
√

m.

Subtracting the first equation from the second and solving
yields

τ = 1
2k

√
m .

• Default choice is k = 1. Larger k concentrates on 1/K , smaller
k allows more flexibility.



Tree-depth Prior

• Exponentially decreasing prior probability that the ith internal
node ηji of tree Tj will split:

π(ηji splits) = α(1 + d(ηji , ηj1))−β

where d(ηji , ηj1) is the depth from node ηji to the root node
ηj1 in tree Tj .

• Defaults are α = 0.95, β = 2 implies trees of depth 2-3.



EFT Expansion Example

Motivating EFT from Honda (2014). The posterior mean prediction of f†(x) when
applying BMA to the 2nd order weak and 4th order strong coupling expansions.



EFT Expansion Example

The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing
f (2)
s (x) (dashed) and f (4)

l (x) (dotted). Results are obtained from a BART-BMM model
with 10 trees and a Hierarchical Stacking model with a linear unconstrained weight

function (bottom).



Higher-Dimensional BMM

• No obvious reason why this can’t extend well into
higher-dimensional problems.

• But in practice we have observed overfitting issues.

• This problem arises in regular BART regressions as well.



E.g. BART Overfitting

The dotted line is the BART prediction with outliers A and B included in the data, the
black line is the BART prediction with the outliers removed.

Pratola et al., Influential Observations in Bayesian Regression Tree Models, Journal of Computational and Graphical
Statistics, vol. 33 (2024)



Random Path BART (RPBART)
• Follow left/right splits at internal nodes with some probability.

• Latent indicator variable zbj(xi) denotes if observation i maps
to terminal node b in tree j .

• Definining Zj = {zj(xi)}n
i=1 where

∑Bj
b=1 zbj(xi) = 1 we have

Y (xi)|{Tj ,Mj ,Zj}m
j=1, σ

2 ∼ N

 m∑
j=1

g(xi ; Tj ,Mj ,Zj), σ2


where

g(xi ; Tj ,Mj ,Zj) =
Bj∑

b=1
µbjzbj(xi).

Yannotty et al., Bayesian Model Mixing of Computer Simulators with Applications to Climate, arXiv::2407.13169
(2025)



Random Path BART (RPBART)

• Idea: conditional on Zj ’s we still have usual BART step
functions. But marginally we have a smooth, continuous
function.

• Prior:

zj(xi)|Tj , γj ∼ Multinomial(1, ϕ1j(xi ; Tj , γj), . . . , ϕBj j(xi); Tj , γj)

• ϕbj() is the probability an observation maps to terminal b in
tree j .

• γj ∈ (0, 1) is a bandwidth parameter, with prior

γj ∼ Beta(α1, α2), j = 1, . . . ,m.



Path Probabilities
• The path probabilities are determined by the probability of

branching left/right at each internal node along paths from
root node to termninal nodes:

ϕbj(x; Tj , γj) =
D∏

d=1
ψ(x; v(dj), c(dj), γj)R(dj)×

(
1−ψ(x; v(dj), c(dj), γj)

)1−R(dj)

where R(dj) = 1 (R(dj) = 0) denotes if a right (left) move defines
the path and

ψ(x; v(dj), c(dj), γj) =


1 − 1

2

(
1 −

xv(dj) −c(dj)

γj (Ud
v −c(dj))

)q

+
xv(dj) ≥ c(dj),

1
2

(
1 −

c(dj)−xv(dj)
γj (c(dj)−Ld

v )

)q

+
xv(dj) < c(dj),



Smooth Predictions

• Marginalizing over the random path assignments gives us the
desired smooth fitted response,

E [Y (x) | {Tj ,Mj , γj}m
j=1] =

m∑
j=1

Bj∑
b=1

µbj ϕbj(x; Tj , γj).

• How do we calibrate the priors?



Semivariogram for RPBART

• The semivariogram is a low-dimensional summary of
smoothness and correlation properites of random fields popular
in spatial statistics:

ν(∥h∥) = 1
|χ|

∫
χ
ν(x,h) dx

where
ν(x,h) = 1

2Var
(
Y (x + h) − Y (x)

)
.

• Can compare an empirical estimate with the a priori theoretical
semivariogram to calibrate hyperparameters.

Yannotty et al., Bayesian Model Mixing of Computer Simulators with Applications to Climate, arXiv::2407.13169
(2025)



Semivariogram for RPBART

Prior hyperparameters can be tuned by comparing the theoretical semivariogram with
the empirical version.



Semivariogram for RPBART

Example of calibrating RPBART semivariogram to empirical semivariogram calculated
from the Miroc climate simulator dataset.



RPBART-BMM Model
• Conditional on the values of the theoretical predictions at a

given point, f1(xi), . . . , fK (xi), the model can be defined by

Yi | f(xi),w(xi), σ2 ∼ N
(
f⊤(xi)w(xi), σ2)

where f(·) =
(
f1(·), ..., fK (·)

)⊤ and w(·) = (w1(·), ...,wK (·))⊤.

• The weight vectors are modeled as a vectorized RPBART,

w(xi) =
m∑

j=1
g(xi ,Tj ,Mj ,Zj)

where g(xi ,Tj ,Mj ,Zj) is the K -dimensional output of the jth

tree using the set of terminal node parameters, Mj , at the
input, xi

Yannotty et al., Bayesian Model Mixing of Computer Simulators with Applications to Climate, arXiv::2407.13169
(2025)



Climate Models

• Motivated by work of Harris et al.† – empirically observed some
models seemed better over land, others over water.

• Combining multiple GCM’s has been a topic of interest for
some time (e.g Knutti et al.⋆).

• Apply BMM to perform local mixing of a set of 8 climate
models.

† Harris et al., Multimodel ensemble analysis with neural network Gaussian processes, The Annals of Applied
Statistics, vol.17 (2023)

⋆ Knutti et al., Challenges in combining projections from multiple climate models, Journal of Climate, vol.23 (2010).



Climate Models Example

RPBART-BMM fit to ERA5 data using 8 climate simulators, compared to three
stacking alternatives.



Climate Models Example

Projected constrained weights of Laha et al.† minimizing the discrepancy.

† Laha et al., On controllable sparse alternatives to softmax, Advances in Neural Information Processing Systems,
vol.31 (2018)



Climate Models Example

Sum of unconstrained weights (top row) and discrepancy remaining after constrained
prediction of ERA5 field using the constrained weights (bottom row).



Beyond Mean Mixing

• Currently extending RPBART for distribution-to-distribution
regression motivated by Chen et al.†

• Minimizes the Wasserstein distance between the input and
response distributions,

dW (µ1, µ2) =
[∫ 1

0

(
F −1

1 (p) − F −1
2 (p)

)2
dp
]1/2

,

where D is a (possibly closed) subset of R, W(D) is the
Wasserstein space of probability distirbutions on D with finite
second moments, and µ1, µ2 ∈ W with quantile functions
F −1

1 ,F −1
2 respectively.

† Chen et al., Wasserstein Regression, Journal of the American Statistical Association, vol.118 (2023)



Beyond Mean Mixing

• In practice, regression performed via a PCA-like procedure over
a grid of percentiles to extract bases which are then used in a
functional linear regression, minimizing the empirical dW .

• For RPBART variant, we replace the linear regression step with
an RPBART model.

• In preliminary explorations, we see comparable performance for
“nice” distributions like Gaussians, and a significant
improvement for the RPBART-based model using “fun”
distributions like the GEV.

• Goal is to extend to BMM setting for the situation of an input
distribution from multiple models and an output distribution of
a response of interest.



RPBART-BMM Experimental Design

• Improve mixed-model prediction performance using sequential
design.

• Mean-squared error is a popular criteria. For a BMM-type
model, the pointwise theoretical MSE has the following
decomposition:

where E [f (x⋆)] := Eθ,m [fm(x⋆; θ,m)] .



RPBART-BMM Experimental Design

• A: Reduction in variance (uncertainty arising from all sources:
emulation, not knowing calibration paramter, not knowing best
model)

• B: Reduction in bias to the idealized simulator (uncertainty due
to emulation)

• C: Reduction in bias from idealized simulator to truth (no
emulation, uncertainty only comes from not knowing
calibration parameter and/or best model)

• D: Cross term captures tradeoff from terms (B) and (C).



Conclusion

• BART is a highly successful divide and conquer strategy.

• BART-BMM for (mean) mixing multiple simulation models of
a phenomena of interest.

• RPBART-BMM adds smoothness with a principled approach to
prior calibration.

• Flexible data-driven regressors, posterior projections for
interpretation.

• Distributional BMM and experimental design are next steps.



Conclusion

• Want to learn Bayesian tree models?
http://www.matthewpratola.com/teaching/stat8810-fall-2017/

(slides 11-14)

http://www.matthewpratola.com/teaching/stat8810-fall-2017/

