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* Overview: RBM emulators for challenges in nuclear physics

* More effective RBMs and offline training: 2N and 3N scattering

* Non-affine models: optical potentials

* Complex energies: extracting and emulating continuum physics

* Summary and outlook
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* Overview: RBM emulators for challenges in nuclear physics



Universe of model reduction methods
reduced order models

UQ need: to vary parameters for
calibration, sensitivity analyses, ...

data driven model driven

Exploit: much information in high-
fidelity models is superfluous.

Gaussian process -
reduced basis

neural network methods

ergenvector

dynamic mode _ ,
continuation

decomposition

Solution: reduced-order models =2
emulators (fast & accurate™).

Data driven: interpolate output of high-fidelity model w/o understanding
Examples: Gaussian processes; artificial neural networks; dynamic mode decomposition; ...

Model driven: derive reduced-order equations from high-fidelity equations
Features: physics-based, respects underlying structure = can extrapolate; often uses projection

Hybrid: learn from data but physics-informed. E.g., Parametric Matrix Models (PMMs).

Here: developments with Reduced Basis Models (RBMs)



Schematic picture of projection-based emulators

H(O;) |np:) = E(O;) |ub:)

* High-fidelity trajectory is in blue.

* Two high-fidelity snapshots (0, , 6,)

* They span the ROM subspace (grey)

* Subspace projection shown for (0))

Variational = stationary functional

EW] = (Y|H(6)|v) — B(O)({¢l¥) — 1)
Use trial|)) = 327, Bils) and ()]
Solve generalized elgenvalue problem:
H(6)5(6) = E(§)NS(6)
H(O)]i; = (il H(O)5), [N(0)]i = (tilts)

Galerkin projection = use weak form
(C[H(0) — E(0)[y) =0, V((|
Reduce dimension: |¢) — |1Z) — ZZ 1 Bils)
Limit orthogonality: (¢;|H(0) — E(0)|¢) = 0
Choose ((;| = (1| (Ritz) = variational
More general: ((;| # (1; | (Petrov-Galerkin)



Schematic picture of projection-based emulators
How to choose the snapshot basis?

high-fidelit
8 i space‘ i) Space-filling sampling (e.g., LHC) then
singular value decomposition (POD)
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Parametric eigenvalue problem

H(0;) |v;) = E(0;) i)

* High-fidelity trajectory is in blue.
* Two high-fidelity snapshots (0, , 6,)
* They span the ROM subspace (grey) ii) Develop error estimator and greedy

* Subspace projection shown for (0)) algorithm [E. Bonilla et al. (2022); A. Sarkar et al.
(2022)]
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Snapshot RBM emulators for nuclear observables

Ground-state eigenvectors from a selection
of parameter sets is an extremely effective
variational basis for other parameter sets.
Characteristics: fast & accurate! Scales!

14k 3 dimensions, 12 training data ]
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Applied to many different observables:
e Ground-state properties (energies, radii)
* Transition matrix elements
e Excited states
* Resonances

Adapted to special situations and methods
* Pairing; shell model
* Coupled cluster approach; MBPT
e Systems in a finite box
e Subspace diag. on quantum computers

Extended to non-eigenvalue problems
* Reactions and scattering; fission
* Quantum spin system phase diagrams

See Duguet et al., RMP (2024) for more details and refs.



https://inspirehep.net/literature/2715640
https://inspirehep.net/literature/2715640
https://www-sciencedirect-com.proxy.lib.ohio-state.edu/science/article/pii/S0370269320306171?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.032501

Constructing a reduced-basis model (aka emulator)

High-fidelity system

H(0) ¥) =E [¥)
= B
Nh X Nh o Nh- ] Nh-
Time: ( ) per 6 sample

CPU time scales with the length of ( )

e J.A. Melendez et al., J. Phys. G
49, 102001 (2022)

e E. Bonilla, P. Giuligni et al.,
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Constructing a reduced-basis model (aka emulator)

Constructing a reduced-order model for bound states

High-fidelity system
Offline stage

H(6) )y =E |¢¥) Snapshots (6;) Projectio

after orthonormalizing snapshots

L

Nh X Nh Nh Nh Nh X Np np X Nh Nh X Nh Nh X Np Nnp X Np

Time: ( ) per 6 sample np X @ ) ~ ( )

CPU time scales with the length of ( )

« Offline stage (pre-calculations of size N,): | Z:'llgzeéeo';dgzo‘;;"” L Phys. G

* Construct basis using snapshots from high-fidelity system (simulator) . . iuliani et
* Project high-fidelity system to small-space using snapshots Phys. Rev. C 106, 054322 (2022)
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Constructing a reduced-basis model (aka emulator)

High-fidelity system

Constructing a reduced-order model for bound states

Offline stage

Online stage

H(6) ) =E |¢) Snapshots (8,) Projection (after orthonormalizing snapshots) Emulation (E = E)
A <l [<] | A ||<<] H®) B =ENG
| = EElel
(N=1)
Np X Np - Nh- ] Nh- l-\/h X n-b np X Np Np X Np - l-\lh X n-b Ny X Np All size-n, operations
Time: ( ) per 8 sample np X @ D ~ ( D () per 6 sample

CPU time scales with the length of (

* For speed: only size-n, operations in online stage = affine structure

H(6) =Ho+ Y 0,Hy

< affinein 6,

What if non-affine?
We'll do that later!

= (Wl H(0) ) = (Wil Holws) + 3 0, (il Haltpy) — mp x ny matrices



Outline

* More effective RBMs and offline training: 2N and 3N scattering



Challenges of XEFT for nuclear many-body theory

2N Force 3N Force 4N Force 5N Force
LO
* Tremendous progress in ab @y X}J Constrained by chiral symmetry
initio calculations with multiple NL02 >< \C:\ F:l Q ~ {momentum, mﬂ}
many-body methods (@74 [:;;{ [::] l;x;:j Ay 600 MeV
* Precision caIcuIatic:Ens needb NNLO \lHj H{ ﬁ(@) — ﬁo + 9(1)‘71
: e /A3 N N
e e KK 0074007, 4
* Largest uncertainties from (S/Iﬁl ><+Hl il HH [ J*J 1
Hamiltonian (2N + 3N forces) +] * + sk [>< i
+ Systematic EFT ion but N‘LO b | RAERIES
r;yin‘i”;g!§1¢tezi‘%”§;?%m‘?ne @A bodbd XK. 1A
t trit t dist t :
not best fits but distributions (g;i(;(j >< *zx:ﬂ:{_(l }+HH H'H [ l*J } J
DU = ¥ SO L LI



Reduced order models: (Petrov-)Galerkin projections

scattered - Reduction: Galerkin (G) ROM

/ wavefunction
(1 + 1)) 0+ 27 (1)(r) #(0) ~ Z B:(0)Z(6;) = XB(0)

free wavefunction ~ Snapshot matrix 7
/
(@) =yo and y(a) =y

= — (pz —2uV(r) -

Projection: [XTA(QX] E(é) = be(é)

|

|
Numerov’s method (iterative) Reduced matrix

p

h 6
Yn+1 — 2Yn + Yn-1 = ﬁ(f'"""‘l +10fn + fa-1) + O(R%). Least-Squares Petrov-Galerkin (LSPG) ROM

Reduction: Tyt A(9) X B = YTh(6)

Projection:

AGZO) =b0) | vo(ax - 4yX b o byl
Already FAST!

Construct Y'Y Tas orthogonal projector onto

residuals R(E) = A(J)Xg— 5(5)




Emulator basis construction

PO Approach

Maldonado, Drischler, rjf, Mlinaric.,
arXiv:2504.06092 (PRC 2025)

Greedy Algorithm

high-fidelity space|

FOM trajectory

y_.- ----- i

\ S |2)
LA \
/ ................ W(G)) Snapshot #2

Snapshot #1

Where to place the emulator’s
snapshots?

1. Space-filling sampling combined with a Proper
Orthogonal Decomposition (POD)

2. Active learning approach based on error estimation and
a greedy algorithm

See also: Sarkar & Lee, PRR 4, 023214 ; Bonilla et al., PRC 106, 054322

l

"

Truncated SV Urthonormalization
(100 FOM samples) (6 FOM samples)

N .

e

{ny =)

greedy method uses far fewer FOM solutions
iteratively adding snapshots




Proper Orthogonal Decomposition (POD)

POD is based on a (truncated) Singular Value Decomposition (SVD) of the snapshot basis:
See also Principal Component Analysis (PCA)

al

U and V are unitary matrices (e.g., UU' = U'U = 1|) containing the singular vectors
Z is a diagonal matrix with decreasing, nonnegative diagonal entries (singular values)

Truncating singular vectors corresponding to the r smallest singular values results in the best possible rank-r
approximation (in Frobenius norm) to the original M (low-rank approximation)



|l — x| (G-ROM) |l — x| (LEPG-ROM)

Greedy Algorithm o
in Action (preview)

start with 2
randomly placed
initial snapshots

=1

=

abs, emroms (iteration #0)

Maldonado, Drischler, rjf,
Mlinari¢., arXiv:2504.06092
(PRC 2025)

Estimate the
emulator error
across the
parameter space

Place the next
snapshot(s) at the
location(s) of
maximum
estimated error

abs. errors [terstion #1)

Iterate until the
requested accuracy
is obtained

abe, errors [iteration #2)

—:0  -150 —100 —50 D -200 -150 -l00 -S5O 0
V, [MeV] V. [Me¥]

m— frus erros Ehimrwtical bounds

Greedy Iteratlon = ganimated eTroT mEEE ian SrTorE

(1D problem for
increasing accuracy — = scaled estimated error

illustration)




Emulator error estimation for greedy algorithm

1)

abe, emors [iteration #00

. . start with 2 .
Error estimates: residual as a proxy for exact error randomly placed 1
— — — — — e ene :|.|:."I B -
= _ initial snapshots i)
% — 2| — |R(B)| = |A(6) X5 — 5(6)| L FECTOON IOV
\exacterror = - T
-
Fast & accurate error estimation in the reduced space 5
P
B
Place the next B i)
:H:I-?I... L B g g g ik
|2 < ——1 snapshot(s) at the 1ot
O'min(A) location(s) of 0!
maximum .
Also derived: similar error bounds for phase shifts estimated error 1w

Greedy lteration
increasing accuracy

Opportunities/challenges:

abs, errars [iteration #2)

e estimate the extremal singular values using the
Successive Constraint Method (SCM)
e use the upper bound as a conservative error estimate

W =26 -151 -1k =5 0

V. [MeV)

m— frus erros Ehimsreticnl bounds
= panimated error =EEE ENEAE SITOE

== mraled csbimated ermor




Maldonado, Drischler, rjf et al.,

POD VS greedy algorithm arXiv:2504.06092 (PRC 2025)

relative error in pf K

- 1 | | [:_,I-z.pu:' oM | i POD obtains high accuracy as it has 107l (a) E =100 MeV
- I [ E=50MeV ] access to the most information. But: _
B expensive! 2
10 I I &5
- b}
10* | 5 !
B =) :
10" F = Chiral Potential Greedy emulator: 8 !
ok 30 Gezerlis et al. (N2LO) < 106! !
1o-" [ Groedy fwores; W ,.,:,u‘ . sm_*ular accuracy throughout but
U Credy () W LR using far fewer high-fidelity L ~ G-ROM LSPG-ROM
= | | r calculations. Much less expensive! 10 (b) —— Bxact 1 - Estimated|
1n-| [LE-E"::-].T.[.J:'.']% 3 ) o ] ) 103 - === Qcaled Est. : Bound
' e identifies & remedies poor choices !
12 ] E =100 MeV L. = !
of the initial snapshot bases 2 100 |
o 3 - . 2 Vet
. * Finds and removes spurious g : IR
10 1 . .- =10~ :
. . singularities known as Kohn _% 10720 RLLITT T
e X * anomalies (LSPG-ROM is free of < !
" 1 such anomalies) 10 !
1077 | Gresdy (wuee} S POD 1 :
Bl Gresdy (best] B 1LH= (b 10_9 : J
1" —= ' ' ! - . —2 1 4 7 10 13
&+ 4 5 fi T ]

Sumber of snapshots/dominant PO modes — 43ining set: 200 random points, validation set: 104 random points



T3y (k, k' B) = Vi, (k, k') + ) / dk"

Extension to coupled channels & momentum space

Giri, Kim, Drischler, Elster, rjf et al., in prep.

EH

2 Vi (s K" T (K", s )

E — FE" + ¢

As before, the greedy algorithm exhibits a fast convergence pattern.

Proof of principle: Bayesian calibration
of chiral NN potentials
(including emulator errors)
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gives access to a wide range of
modern chiral potentials

Here: local N2LO GT+

chiral potentials
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Extension to coupled channels & momentum space

Giri, Kim, Drischler, Elster, rjf et al., in prep.
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EH

gives access to a wide range of

As before, the greedy algorithm exhibits a fast convergence pattern. . .
greedy ale gencep modern chiral potentials
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ﬂ Proof of principle: Bayesian calibration
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Here: local N2LO GT+ chiral potentials



Gnech, Zhang, Drischler, rjf, Grassi,

N'd Scattering em u Iator Kievsky, Marcucci, and Viviani,

arXiv:2511.01844, arXiv:2511.10420

Emulate three-body scattering with greedy
snapshot selection g GROM, NVIIb, |||

) —_—G,2 == G, 12
E =2 MeV p-dscattering — 18 3 == L& 12
FOM: KVP for three-body scattering & ¥ F '9‘ = Ty — 'ES ! E‘* I7
m— —_— ) -I| - q ]-_r
hyperspherical harmonics method (linear = 1 , : , |
o N - |
system) o 0 ‘q"_q"—L-___"-.‘:...-.ﬂ-z,_:-
’ PN ]n—l B _
Fuu [wa,wa}z'}aw—(w H—E';[l“'> .
: ; | | . L L a_dff2= Example: Jyy
) EE" d -‘J-l,ﬁ';: . o i i
ROM: G-ROM (G) or LSPG-ROM (LS) g 10 Ees———
| —ifi - v
So far: N-d scattering below the deuteron = | = f 10" I e i WP
break-up threshold with Mean of |5/ R|
e fixed N3LO NN potential (Norfolk) S e T n - - 10~ : : : :
2 ] . | | L 1.0 1.5 Z.0
e N“LO 3N interactions (cp, ¢) cE cE E{MeV)

Greedy algorithm: systematic reduction of emulator errors

Needed: extension to higher energies is critical for Bayesian calibration
of chiral 3N interactions
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Gnech, Zhang,

Emulation errors at first and second order Drischler, rif, Grassi

Kievsky, Marcucci, and

LY MWL, T2y at the first order, emulation error Viviani,

d

G, E=20 N =2 G, E=20,Ny=7 G E=20M=12 G E=20 N=17 arXiv:2511.01844,
T T T T T T T T T 1] arXiv:2511.10420

Ll
logy o[ |88 )

cE CE CE cE
% I, NYIlb, 'Ry at the second order, emulation etror
G, E=20 M=2 G, E=20M=T G, E=20 N,=12 G, E=20, N

L e
.
H - BN

cE cE CE CE

Il
—
==l

log ;o (|8 5] )

G-ROM results; similar from LSPG-ROM. Second order gives significant error reduction.


https://arxiv.org/abs/2511.01844
https://arxiv.org/abs/2511.10420

See also: L

Summary points

Gnech, Zhang, Drischler, rjf, Grassi,
Kievsky, Marcucci, and Viviani,
arXiv:2511.01844, arXiv:2511.10420

Witala. Golak. Skibinski 5 - NV¥Ilb, R at the second order, emulation relative error p-d scattering
EPJA 57, 241 Ky Hi—a HKaz
T T T T T T T 1 I 1
10 1r 1t Ny Type
— ] — — G
"y e ————— - —_— — T = 5
E- ]|'_|_= - ) = | = -1 L] lIlll_|r
% ll' ¥ r.l_ ﬂﬂ:ﬂ: —————— Eun--l
et -u L === I e e T P R |
i = = b e e S
= 1o 8k o b :—:J_-.--—lr-—'e-:'::'ﬂ"'-'ﬂ. . o
----_-:::::M _-I-r--';—ldl----—l-'—
ll:l-:ll i i i i . i i i i i i i i
(1 I3 1.0 1.5 2.0 .5 1.4k 1.5 2.0 (.5 1.4} 1.5 2.0
B Mel) B MeV ) M [Mﬂ"r"]

Systematic reduction of the emulator error with increasing

number of snapshots (as expected)

G-ROM and LSPG-ROM behave similarly

Opportunities/challenges:

e Emulation of all NN+3N LECs and up to higher E

e Computation of scattering observables; requires emulation
across partial waves (and energy)

R, is much larger than the other two components

% is less sensitive to 3N forces (= smaller residuals)

e Implementation in Bayesian parameter estimation

e Application to four-body scattering?
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Outline

* Non-affine models: optical potentials



Optical potential motivation

Reaction theory connects experiment

to quantities of interest. a
Particl
bocim \ FRIB

’ \

**Effective interaction parameters.

&

U(r,0) =

Detector

" ' l A
\ y,
7 u

) .
.

(Optical Potentials)

—V,[1+ e R /e ™

Thanks to Manuel Catacora-Rios
and Pablo Giuliani for graphics



RBM emulators for non-affine scattering problems

Nuclear ROSE in BAND Framework (free software!).
P AKNIN Reduced Order Scattering Emulator can handle local,

n Analysis of Nuclea Dy amic
R complex, non-affine interactions.

Strategy: convert non-affine to affine = hyper-reduction methods [Odell et al., PRC (2024)]
Example: calibrating phenomenological optical potential with EIM

ROSE Team: Daniel Odell,

Scattering = Galerkin projection but potential is non-affine Pablo Giuliani. Kvle Bever

in the parameters to fit (0 = {V,,, R, Gy, ...} ): Manuel Catacora-Rios,
Moses Chan, Edgard
. —1 Bonilla, rjf, Kyle Godbey,
U('r, 9) — —VrU [1 -+ G(r RU)/av] + ... Filomena Nunes

Problem: U doesn’t factor into products of r and @ functions, so integrals between test
and basis functions have to be calculated every time = no offline-online speed-up!
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https://inspirehep.net/authors/1410735
https://inspirehep.net/authors/1027887

RBM emulators for non-affine scattering problems

Nuclear ROSE in BAND Framework (free software!).
D A KNI Reduced Order Scattering Emulator can handle local,
complex, non-affine interactions.

Strategy: convert non-affine to affine = hyper-reduction methods [Odell et al., PRC (2024)]
Example: calibrating phenomenological optical potential with EIM

Scattering = Galerkin projection but potential Principal components of U(r, 6)

is non-affine in the parameters to fit: — fl(fr')
_ fa(r)
U(r,0) = =V, [14 /@] ™ 4 — ()

= U(r,0) ~ Zbi(e)fi(”')

| Empirical Interpolation Method: one work-around | 3 10 15 20



https://inspirehep.net/literature/2738540

RBM emulators for non-affine scattering problems

" Offline stage

snapshots with high '  basis using N,
fidelity (Eq. 6)  , snapshots (Eq. 15)

{onhil, = ¢

I PL‘.’L[{m . - I—L'ﬂni“'l}m l]
I
Y

Un(s)

.-*( } complex conjugated

) Build projectors as

. J, , N
f/- {n}j‘;“ i Fa,, [ﬂ("‘}] - “‘\] {'l}rrt == 'E*'I{H: )
1)Create N, , 2)Build 7. PCA

. I

1) Create  2) Build My PCA
interactions in I basis using N

high fidelity space ' interactions

(Eq. 7) ' (Eq. 21)

{w(s)}i%) = PCA[{U(s, am) 1o
|
i

3} Select 1y interpolation
* locations on the s-grid (Eq. 23)

\ ‘ = Okls €17

R = MaxVol [(u(2)} 4] )

—

i 'l}
M, = (05| F9x)

1) Compute elements of
all M 'matrices (Eg. 29)

.

2} Compute elements of
all ¢ vectors (Eq. 29)

= F—

—(W;|FD|gg)  (UPM)

/ Online st age

[Odell et al., PRC (2024)]

| Input parameter X \\

T o o o oy o oy o Er o Er B o E

3) Compute EIM inverse
matrix (Eq. 24)

r’ - ™
EIM __ . - . EIM Lll"rl
¢ =Ulsjia) -+ b= (U ]
I
1) Compute the exact interaction 1 2) Compute the EIM
at selected s; locations (Eq. 22) : coefficients b (Eq. 25)
Fe===decccccea- I
- — (0) w¥ o np ¥ _
sM=M " +) bM 2=2c" 1+ b -
i=1 =1
3) Enmpute‘apprn:imate 4) Compute approximate
matrix M (Eq. 28) vector ¢ (Eq. 28)
¥ ] > )
— 2) Forward dg
— 1~ solution for
M | |a|=|c

\_1: Solve approximated reduced equations (Eq. 27)

calculating

observables d Q
Flg X N N
'
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RBM emulators for non-affine scattering problems

P A KNI

Bayesian Analysis of Nuclear Dynamics

Accurate wave
functions from

POD (or PCA) *

applied to
snapshots.

Leading <

principle
components.

a)

0.5

0.0

_D.EI'

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local,

complex, non-affine interactions.

0.05

=0.05 -

— o |
— M
— ¢
— P

0.0

25 50 7.5 10.0 125 15.0

5

_1 R
Accurate potentials

[Odell et al.,

PRC (2024)]

(D 5
from EIM.
=34
b)
0.05
Leading PCA basis < ol
components. =
-0.05
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do /dS2 (mr/sr)

do /dS) (ratio to Ruth.)

RBM emulators for non-affine scattering problems

P A KNI

Bayesian Analysis of Nuclear Dynamics

=
o
o

=
o
A

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local,
complex, non-affine interactions.

40Ca(n n) ---- ROSE
’ —— Runge-Kutta
a)
b) “Ca(p.p)
0 50 1100 150

0 (deg)

Accuracy

10°

=
o
=

=
o
.

=

o

|
w

[Odell et al., PRC (2024)]
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RBM emulator for coupled channels

Example: Inelastic scattering

4
2
4 0
2 . Y
0 2
2 -4
4

}
Ul — g1 (€)1 (R) + asda (€)1 (R)

*Elastic channel *Inelastic channel

(H-E)¥tot =0

*Integrate out the ¢-dependence

(6il(H — E)¥*|¢;) = 0

Coupling term

Radial equations!

Y1 = 2 M. Catacora-Rios
etal., in prep.

2 — 1
* Single channel operator
Spherical Potentials (Woods-Saxon)
Vi =V(R;a) +iWs(R; a) + iW,(R; )

Deformed Potentials

Uij = Mz')}VA(R5 )
7/ \

Coupling matrix Radial and

elemelnts parameter a
(Angular dependence m
momentum)

FRIB
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Coupled channel emulator: Fast & Accurate

Median Relative Error [%]

Median Relative Error [%]

10°3£,, =12 MeV !
lab ® O @ elastic (inelastic): Ny, Ny = (8, 10)
/A A elastic (inelastic): Ny, Ny = (10, 10)
107! [] M elastic (inelastic): Ny, Ny = (12,12) —  Frescox
> @ elastic (inelastic): Ny, Ny = (14,12) 103 - Eiap =12 MeV = = Emulator
10—2 g7 4k elastic (inelastic): Ny, Ny = (16, 12) M . CataCOra-RiOS
' a) & etal., in prep.
1034 | > o 1044
K £
L 3Ig
10744 " i § 1014
:Ll_
105 l .
! a) elastic
O 1004 (a)
10%3£,., =26 Mev
lab 208 "\ 208 —
i Pb(n,n')**Pb(37)
1071 & i
: - D ARIN
| Bayesian Analysis of Nuclear Dynamics
102 i LY 1001 g
£ b) =
| > S
-3 : 8 ~
F 2
1074 | <
| (b) inelastic m
107 i ) 25 50 75 100 125 150 175
10—3 “10'—2 1d—1 O 0 9 (dego)o O F R I B

Time per sample (s)
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Outline

* Complex energies: extracting and emulating continuum physics



Complex-E emulator for continuum physics ,,,

Challenge: sampling over many parameters when continuum physics is involved % o
X. Zhang
* Extract continuum physics from bound-state-like

calculations > use complex E (Type-ll methods) | 4(g @) = <S‘ _‘ > (S|w)
* [E-H(O)][Y(E, 0)) =|5(8)) w/ complex E
> |W(E, 0)) is spatially localized Im(E)
* A - response function; scattering amplitude; opt. potl. é
* RBM complex-E emulator extrapolates the training l
results “downward” to the real axis .

c H-> [H]nbxnb9 spectrum / Re(E)
: . 0

* Emulation for @ can be done simultaneously

“A non-Hermitian guantum mechanics approach for extracting and emulating continuum physics based on bound-
state-like calculations (: technical details)” Xilin Zhang, 2408.03309, 2411.06712 (to appear in PRL and PRC)



https://arxiv.org/abs/2408.03309
https://arxiv.org/abs/2411.06712

Complex-E emulator for continuum physics

{Ns = 3. ImE;’ = 30) {23, 30) (Ne = 9, ImE" = 30) (31, 30) -
1{X) A -y = S0 0 R~
= 2 E
- = S =
2 E - 2§
& 0 E 2 0 =
= s = @
5 i E -4}
~100 : -50 5
E‘: - _6 §
100 ) g
— = x, 41-8 §
- = -
= Q % z £
5 ~10 £ r =g
- 5 L =
= : ¥ | -12 =
-1} S -12 = S = =) = k-3
S S u |
l ' ReE (MeV) ReE (MeV)

ReE (MeV) ReE (MeV)

Relative errors of emulated resolvent matrix element when varying
basis size and training point location in the complex E plane.
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Complex-E emulator for continuum physics
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Left: Successful emulation in E at fixed @ for three-body
system of A’s eigenvalues and —Im A at real energies.

Above: Successful emulation of the spectra of A.



Complex-E emulator for continuum: scattering amplitudes

Particle-dimer scattering

ImEY = 3 MeV ImEY = 10 MeV
i ) 104 Py 1 —r T —
Beyond response function extractions: -
compute scattering amplitudes! 4 g
And emulate in 0! e 103
il
Figures: A and B, fixed; average over A,’s g 1t
Related methods: “Lorentz integral F 10T
transform (LIT)” and “complex energy” =
. - 5 10"
Enables 8-emulations for existing methods :E

(and DFT linear-response calculations) 1)




Outline

* Summary and outlook



Summary of RBM emulator extensions

* Greedy algorithm / error estimates and multiple RBMs for 2N and 3N scattering
e EIM for non-affine optical potentials (including coupled channels)

* Joint emulation in complex energy E and parameters 0

Many opportunities
* Extend 3N emulators to full Bayesian calibration and UQ for chiral EFT
* Efficient Bayesian calibration for optical potentials (and beyond) = next steps?

* Many continuum applications are waiting!

Alternative to RBM?

e Parametric matrix models: impose matrix structure but learn from data



Thank you!

Jupyter and Quora books:

Learning from Data for Physicists (Forssén, rjf, Phillips)

BUQEYE Guide to Projection-Based Emulators in Nuclear Physics

Reduced Basis Methods in Nuclear Physics

See Duguet et al., RMP (2024) for more on EC/RBM emulators



https://nucleartalent.github.io/LFD_for_Physicists/LearningFromData-content/Intro/About.html
https://github.com/buqeye/frontiers-emulator-review
https://github.com/buqeye/frontiers-emulator-review
https://github.com/buqeye/frontiers-emulator-review
https://kylegodbey.github.io/nuclear-rbm/introduction/introduction.html
https://inspirehep.net/literature/2715640
https://inspirehep.net/literature/2715640

Extra Slides



H(6) = Ho+ ) 6,

o~

P. Cook, D. Jammooa et al., arXiv:2401.11694 (2025)

M(9;, 8,)

PMMs capture essential structures such as smooth
analytic behavior, symmetries, and conservation laws.

Hybrid approach: Parametric M

M(,, 6,)

M(8) =M+ 6,M,

~  RBMY/EC: matrix elements
H, of eigenvector snapshots
= model driven

"

EEEE

+ 0, g
B i
= M6, 0,)

+ 0,

|
=

PMM: learn matrix elem.
from data (eigenvalues)
— hybrid data driven

EEEE

atrix Models (PMMs)
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R. Somasundaram et al.,
arXiv:2404.11566 (2024)
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Application to emulate noisy AFDMC calculations
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WENERGY | scence and machine learning

Objectives

» Researchers have introduced a new class of machine learning
algorithms called parametric matrix models (PMMs).

« Unlike traditional approaches that mimic neurons or optimize
generic functions, PMMs are built from matrix equations that
resemble the governing equations of physical systems.

« By treating inputs as parameters for the matrix elements,
PMMs capture essential structures such as smooth analytic
behavior, symmetries, and conservation laws.

« PMMs are universal function approximators, able to solve
general machine learning tasks while retaining strong
interpretability.

EEN ENEN | BB N
M©,0)| = |gmm |+ |m-m-|+6:
g = | o L =
M(0,, 6,) 2 = M0O,, 0,)

Parametric matrix models emulate physical systems through matrix
equations, enabling accurate and interpretable predictions with
fewer parameters than conventional machine learning methods.

. .Parametric matrix models bridge physics
\ Office of ge pny NUELEI

Nuclear Computational Low-Energy Initiative

Impact

o Parametric matrix models represent a paradigm shift in
scientific machine learning.

» By embedding physical and mathematical structure directly into
their design, PMMs produce interpretable results that adhere
to known constraints, unlike many “black box” neural networks.

» This makes them especially powerful for scientific discovery,
where extrapolation, efficiency, and interpretability are critical.

« PMMs can outperform state-of-the-art methods in scientific
computing and compete strongly on broader machine learning
tasks.

Accomplishments

o “Parametric Matrix Models,” Cook, Jammooa, Hjorth-Jensen,
Lee, Lee, Nat. Commun. 16, 5929 (2025).

» https://frib.msu.edu/news-center/news/researchers-develop-
new-machine-learning-method
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RBM implementation freedom: examples from scattering

Codes (Jupyter notebooks)
publicly available!
Wave-function-based emulation for nucleon-nucleon scattering in momentum
space (General Kohn & Newton Variational Principle)

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

2023 Highlight: extends snapshot-based KVP to momentum space & coupled channels

Toward emulating nuclear reactions using eigenvector continuation
(General Kohn Variational Principle)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777

2021 Highlight: Schwartz anomaly mitigation | proof of principle: parameter estimation

Fast & accurate emulation of two-body scattering observables without
wave functions (Newton Variational Principle)

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

2021
Highlight: VP without (trial) wave functions | in momentum space | coupled channels

Efficient emulators for scattering using eigenvector continuation (Kohn
Variational Principle for the K-matrix)

Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

2020
Highlight: introduces snapshot-based trial wave functions for ROMs

See also: CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931 | see also ROSE in Odell et al., PRC 109, 044612



RBM implementation freedom: examples from scattering

Quantum mechanical two-body scattering problem can be formulated in multiple ways:
Schrodinger equation in coordinate or momentum space; variational methods; ...

Variational Principle Galerkin Projection Information See Drischler et al., (2022)
for details and references
Name Functional for K Strong Form Trial Basis Test Basis Constrained?
(Kﬁhn Kg + (Y|H — EJ) H|y) = E|y) %) (il Yes Every variational way
I S O i R B O B No o perng hoe |
(No \) +(¢[H — El¢) + (X|V]¢) Galerkin counterpart!
. (WVIg) + (4|V )
Schwinger ~ * _ ~ ) = [¢) + GoV [¢) [i) (il No et
|V = VGV Non”varla.\tll?nal, zi\Iso,
~ e.g., ‘origin” emulator
V+VGyK + KGygV
Newton . . s K=V +VGyK K; K No (r)(0) = 0, (rp)’(0) = 1
—KGoK + KGogVGoK

What is the best way to implement a 3-body scattering emulator?
e E.g, for Bayesian XEFT LEC estimation or nuclear reactions.
e X.Zhang, rjf, PRC (2022) gave proof of principle (bosons) using KVP.



https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064004

lllustrative example: anharmonic oscillator [try your own!]

3
Eigenvalue problem: H(0)|y) = Elp) V(r;0) = Vao(r) + Z g e=r/on" & affinel
n=1

rip(r) V(0) | Fixed: o, = [()5’ 2, 4] fm Basis — Exact cooo FEmulator
°T - — T RBM
0 — \/ 7
i i i
—9 Iy | I @ - | : @ 3 '
S : F e
\/ Stest s — oo
0F -

|

_ \m

S 3

s 2

] IO
3
D

i v

8

rip(r) [fm ™/

0 1 2 3 0 1 2 3 0 1 2 3

r [fm)] r [fm)] r [fm]

Variational emulator = diagonalize the Hamiltonian H (0)in a finite basis: Z?:bl Bibi



https://github.com/buqeye/frontiers-emulator-review

lllustrative example: anharmonic oscillator [try your own!]

3
Eigenvalue problem: H(0)|¢) = E|Y) V(r;0) = Vao(r) + Z g e=m/n" & affinel
n=1

Basis — Exact ocooo KEmulator

Wave Function Absolute Residuals

RBM

HO
B 3 test Os RBM
| | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
r [fm]

rip(r) [fm="/?]

r(r) [fm™'/?]

3test@s — "eeooeo

r [fm]

Variational emulator - diagonalize the Hamiltonian H (@) in a finite basis: > ity Bits


https://github.com/buqeye/frontiers-emulator-review

3
V(r;0) = Vuao(r) + ZG(”)e_T2/0”2 < affine!  Fixed: o,, = [0.5,2,4] fm

1072

107°

107°

lllustrative example: anharmonic oscillator [try your own!]

n=1

Ground-State Energy Residuals

GP
HO 10t
RBM

0 20 40
Validation Index

Summary: GP doesn’t use the structure of the high-fidelity system to its advantage;
HO emulator knows the problem to be solved is an eigenvalue problem; RBM (aka EC)
training data are curves rather than scalars, takes advantage of system structure.

Ground-State Radius Residuals

GP
HO
RBM

20
Validation Index

40




Role of emulators: new workflows for NP applications
From Xilin Zhang, rjf, Fast emulation of quantum three-body scattering, Phys. Rev. C 105, 064004 (2022).

[ Expensive ] \
[Q calculations
Y, XY\

\
sf'q/ll;é‘“ ¢ ‘“\\\% How can ISNET
f,’,’ge *@\\\\% facilitate these new
S Emulators ANY workflows based on
11 LA 5
pl & ‘Y shared emulators:

New experiments Other
Experiments t SeiSeisi -. applications

Data assimilation

If you can create fast & accurate™ emulators for observables, you can do
calculations without specialized expertise and expensive resources!



CC-Emulator Workflow Chart

N
RBM { ak} EIM

User inputs: {ak}k P-T system (states, numerical details) After off-line: {a; }ksolve

h
Nrem Mooy ngle;, 5-strength
Offline Online

Coupling and Free Waves

Compute EIM coefficients

Empirical Interpolation

Frescox

ALY B2 bef aj| [
BlLbiet A2 bt a c?
I l 4
] Integrals
SVD Basis g 1

Bayesian Analysis of Nuclear Dynamics
v Sy L\l U
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