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Universe of model reduction methods

UQ need: to vary parameters for 
calibration, sensitivity analyses, ... 

Exploit: much information in high-
fidelity models is superfluous.

Solution: reduced-order models → 
emulators (fast & accurate ).

Data driven: interpolate output of high-fidelity model w/o understanding
   Examples: Gaussian processes; artificial neural networks; dynamic mode decomposition; …

Model driven: derive reduced-order equations from high-fidelity equations
   Features: physics-based, respects underlying structure → can extrapolate; often uses projection

Hybrid: learn from data but physics-informed. E.g., Parametric Matrix Models (PMMs).

PMMs

Here: developments with Reduced Basis Models (RBMs)



Variational → stationary functional

Use trial                                 and  

Solve generalized eigenvalue problem:

Schematic picture of projection-based emulators

• High-fidelity trajectory is in blue. 
• Two high-fidelity snapshots (θ1 , θ2)
• They span the ROM subspace (grey) 
• Subspace projection shown for 

Galerkin projection → use weak form

Reduce dimension:

Limit orthogonality: 

Choose                      (Ritz)  ≡ variational

More general:                     (Petrov-Galerkin) 



How to choose the snapshot basis?

i) Space-filling sampling (e.g., LHC) then 
singular value decomposition (POD)

ii) Develop error estimator and greedy 
algorithm [E. Bonilla et al. (2022); A. Sarkar et al. 

(2022)]

Schematic picture of projection-based emulators

• High-fidelity trajectory is in blue. 
• Two high-fidelity snapshots (θ1 , θ2)
• They span the ROM subspace (grey) 
• Subspace projection shown for 

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.023214
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.023214


Ground-state eigenvectors from a selection 
of  parameter sets is an extremely effective 
variational basis for other parameter sets.
Characteristics: fast & accurate! Scales!

Applied to many different observables:
• Ground-state properties (energies, radii)
• Transition matrix elements
• Excited states
• Resonances

Adapted to special situations and methods
• Pairing; shell model
• Coupled cluster approach; MBPT
• Systems in a finite box
• Subspace diag. on quantum computers

Extended to non-eigenvalue problems
• Reactions and scattering; fission
• Quantum spin system phase diagrams 

Snapshot RBM emulators for nuclear observables

See Duguet et al., RMP (2024) for more details and refs.

35	

EC as emulator: König et al. (2020)

4He energy

EC from Frame et al., (2018)

https://inspirehep.net/literature/2715640
https://inspirehep.net/literature/2715640
https://www-sciencedirect-com.proxy.lib.ohio-state.edu/science/article/pii/S0370269320306171?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.032501


Constructing a reduced-basis model (aka emulator)

• J. A. Melendez et al., J. Phys. G 
49, 102001 (2022)

• E. Bonilla, P. Giuliani et al., 
Phys. Rev. C 106, 054322 (2022)

• P. Giuliani, K. Godbey et al., 
Front. Phys. 10, 1212 (2022)

• C. Drischler et al., Quarto + 
Front. Phys. 10, 1365 (2022)

https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd/meta
https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd/meta
https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd/meta
https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd/meta
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://doi.org/10.3389/fphy.2022.1092931
https://doi.org/10.3389/fphy.2022.1092931
https://doi.org/10.3389/fphy.2022.1092931
https://doi.org/10.3389/fphy.2022.1092931
https://doi.org/10.3389/fphy.2022.1092931


• Offline stage (pre-calculations of size Nh):
• Construct basis using snapshots from high-fidelity system (simulator)
• Project high-fidelity system to small-space using snapshots

Constructing a reduced-basis model (aka emulator)

• J. A. Melendez et al., J. Phys. G 
49, 102001 (2022)

• E. Bonilla, P. Giuliani et al., 
Phys. Rev. C 106, 054322 (2022)

• P. Giuliani, K. Godbey et al., 
Front. Phys. 10, 1212 (2022)

• C. Drischler et al., Quarto + 
Front. Phys. 10, 1365 (2022)

https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd/meta
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• For speed: only size-nb operations in online stage → affine structure

Constructing a reduced-basis model (aka emulator)

 affine in 𝜃n

⇒

What if non-affine?
We’ll do that later!
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Challenges of χEFT for nuclear many-body theory

• Tremendous progress in ab 
initio calculations with multiple 
many-body methods

• Precision calculations need 
uncertainty quantification but 
calculations are expensive

• Largest uncertainties from 
Hamiltonian (2N + 3N forces)

• Systematic EFT expansion but 
many parameters to determine 
→ not best fits but distributions

R. MachleidtNN pots up to N4LO          TRIUMF, 02/28/2017 4

Constrained by chiral symmetry



Reduced order models: (Petrov-)Galerkin projections

Full-Order Model: inhomogeneous RSE

High-Fidelity Solver: here, Numerov’s method (iterative) 

Other methods include RK 
and leapfrog methods

special second-order ODE

scattered 
wavefunction

free wavefunction

Obtain matrix form of ODE solver

In the case of Matrix Numerov:
lower triangular, low-bandwidth matrix

The generated sequence has to be matched to an 
asymptotic limit parametrization

Already FAST!

Least-Squares Petrov-Galerkin (LSPG) ROM

Affine decompositions from 
potential carry over:

Galerkin (G) ROMReduction:

Projection:

Reduced matrix

Snapshot matrix

Reduction: 
Projection:

Construct            as orthogonal projector onto 
residuals



Emulator basis construction

Snapshot #1

FOM trajectory

Where to place the emulator’s 
snapshots?

1. Space-filling sampling combined with a Proper 

Orthogonal Decomposition (POD) 

2. Active learning approach based on error estimation and 

a greedy algorithm

Snapshot #2

See also: Sarkar & Lee, PRR 4, 023214 ; Bonilla et al., PRC 106, 054322

The greedy method uses far fewer FOM solutions to 
construct its basis, iteratively adding snapshots where the 
(estimated) emulator error is maximum.

Maldonado, Drischler, rjf, Mlinarić., 
arXiv:2504.06092 (PRC 2025)



Proper Orthogonal Decomposition (POD)
POD is based on a (truncated) Singular Value Decomposition (SVD) of the snapshot basis:
See also Principal Component Analysis (PCA)
 

U and V are unitary matrices (e.g., UU† = U†U = 1|) containing the singular vectors

Σ is a diagonal matrix with decreasing, nonnegative diagonal entries (singular values)

Truncating singular vectors corresponding to the r smallest singular values results in the best possible rank-r 
approximation (in Frobenius norm) to the original M (low-rank approximation)



Greedy Iteration 
increasing accuracy 

start with 2 
randomly placed 
initial snapshots

Estimate the 
emulator error 

across the 
parameter space

Place the next 
snapshot(s) at the 

location(s) of 
maximum 

estimated error

Iterate until the 
requested accuracy 

is obtained

#0

#1

#2

Greedy Algorithm
in Action (preview)

(1D problem for 
illustration)

Maldonado, Drischler, rjf, 
Mlinarić., arXiv:2504.06092 

(PRC 2025)



Emulator error estimation for greedy algorithm

Theoretical 
error bounds

Opportunities/challenges: 

• estimate the extremal singular values using the 

Successive Constraint Method (SCM) 

• use the upper bound as a conservative error estimate
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start with 2 
randomly placed 
initial snapshots

Estimate the 
emulator error 

across the 
parameter space

Place the next 
snapshot(s) at the 

location(s) of 
maximum 

estimated error

Iterate until the 
requested accuracy 

is obtained

Error estimates: residual as a proxy for exact error

exact error (approximatively proportional 
to each other)

Fast & accurate error estimation in the reduced space

Also derived: similar error bounds for phase shifts



POD vs greedy algorithm

POD obtains high accuracy as it has 
access to the most information. But: 
expensive!

Greedy emulator: 

• similar accuracy throughout but 
using far fewer high-fidelity 
calculations. Much less expensive!

• identifies & remedies poor choices 
of the initial snapshot bases

• Finds and removes spurious 
singularities known as Kohn 
anomalies (LSPG-ROM is free of 
such anomalies)

Chiral Potential
Gezerlis et al. (N2LO)

Maldonado, Drischler, rjf et al., 
arXiv:2504.06092 (PRC 2025)

training set: 200 random points, validation set: 104 random points



Extension to coupled channels & momentum space
Giri, Kim, Drischler, Elster, rjf et al., in prep.

gives access to a wide range of 
modern chiral potentials

Here: local N2LO GT+ 
chiral potentials

As before, the greedy algorithm exhibits a fast convergence pattern.

Lippmann-Schwinger (integral) equation

HPC:
More 
rigorous 
speed-up 
factors 
thanks to

Emulation of 
phase shifts

Proof of principle: Bayesian calibration 
of chiral NN potentials
(including emulator errors)

CS, CT, 
C1, C2, C3, C4, C5, C6, C7



Extension to coupled channels & momentum space
Giri, Kim, Drischler, Elster, rjf et al., in prep.

gives access to a wide range of 
modern chiral potentials

Here: local N2LO GT+ chiral potentials

As before, the greedy algorithm exhibits a fast convergence pattern.

Lippmann-Schwinger (integral) equation

HPC:
More 
rigorous 
speed-up 
factors 
thanks to

Emulation of total cross sections
Proof of principle: Bayesian calibration 
of chiral NN potentials
(including emulator errors)

CS, CT, 
C1, C2, C3, C4, C5, C6, C7



ROM: G-ROM (G) or LSPG-ROM (LS)

N-d scattering emulator

Emulate three-body scattering with greedy 

snapshot selection

FOM: KVP for three-body scattering & 

hyperspherical harmonics method (linear 

system)

Gnech, Zhang, Drischler, rjf, Grassi, 
Kievsky, Marcucci, and Viviani, 
arXiv:2511.01844, arXiv:2511.10420

So far: N-d scattering below the deuteron 

break-up threshold with 

• fixed N3LO NN potential (Norfolk)

• N2LO 3N interactions (cD, cE)

FOM trial wave function

p-d scattering

Example:

Greedy algorithm: systematic reduction of emulator errors

Needed: extension to higher energies is critical for Bayesian calibration 
of chiral 3N interactions

https://arxiv.org/abs/2511.01844
https://arxiv.org/abs/2511.10420


Emulation errors at first and second order
Gnech, Zhang, 
Drischler, rjf, Grassi, 
Kievsky, Marcucci, and 
Viviani, 
arXiv:2511.01844, 
arXiv:2511.10420

G-ROM results; similar from LSPG-ROM. Second order gives significant error reduction.

https://arxiv.org/abs/2511.01844
https://arxiv.org/abs/2511.10420


Summary points

Systematic reduction of the emulator error with increasing 
number of snapshots (as expected)

G-ROM and LSPG-ROM behave similarly

R11 is much larger than the other two components

½
- 

is less sensitive to 3N forces (= smaller residuals)

Opportunities/challenges:

• Emulation of all NN+3N LECs and up to higher E

• Computation of scattering observables; requires emulation 
across partial waves (and energy)

• Implementation in Bayesian parameter estimation

• Application to four-body scattering?

p-d scattering

Gnech, Zhang, Drischler, rjf, Grassi, 
Kievsky, Marcucci, and Viviani, 
arXiv:2511.01844, arXiv:2511.10420

See also:
Witala, Golak, Skibinski, 
EPJA 57, 241

https://arxiv.org/abs/2511.01844
https://arxiv.org/abs/2511.10420
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Thanks to Manuel Catacora-Rios 
and Pablo Giuliani for graphics

Optical potential motivation
Reaction theory connects experiment 

to quantities of interest. 

**Effective interaction parameters.

(Optical Potentials)



RBM emulators for non-affine scattering problems

Strategy: convert non-affine to affine → hyper-reduction methods
Example: calibrating phenomenological optical potential with EIM

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local, 

complex, non-affine interactions. 

Scattering → Galerkin projection but potential is non-affine 
in the parameters to fit (                                          ):

Problem: U doesn’t factor into products of r and 𝞱 functions, so integrals between test 
and basis functions have to be calculated every time → no offline-online speed-up!

[Odell et al., PRC (2024)]

ROSE Team: Daniel Odell,
Pablo Giuliani, Kyle Beyer,
Manuel Catacora-Rios,
Moses Chan, Edgard 
Bonilla, rjf, Kyle Godbey,
Filomena Nunes

https://inspirehep.net/literature/2738540
https://inspirehep.net/authors/1724909
https://inspirehep.net/authors/1907144
https://inspirehep.net/authors/2096269
https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/2738541
https://inspirehep.net/authors/2695291
https://inspirehep.net/authors/2695291
https://inspirehep.net/authors/1009173
https://inspirehep.net/authors/1410735
https://inspirehep.net/authors/1027887


Applications 
and Results

3
almost done….

r

1) Choose a basis

Principal components of

Empirical Interpolation Method: one work-around

⇒

Strategy: convert non-affine to affine → hyper-reduction methods
Example: calibrating phenomenological optical potential with EIM

Scattering → Galerkin projection but potential 
is non-affine in the parameters to fit:

RBM emulators for non-affine scattering problems

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local, 

complex, non-affine interactions. 

[Odell et al., PRC (2024)]

https://inspirehep.net/literature/2738540


RBM emulators for non-affine scattering problems
[Odell et al., PRC (2024)]

https://inspirehep.net/literature/2738540


[Odell et al., 
PRC (2024)]

RBM emulators for non-affine scattering problems

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local, 

complex, non-affine interactions. 

Accurate wave 
functions from 
POD (or PCA) 
applied to 
snapshots.

Leading 
principle 
components. 

Accurate potentials 
from EIM.

Leading PCA basis 
components.

https://inspirehep.net/literature/2738540
https://inspirehep.net/literature/2738540


[Odell et al., PRC (2024)]

RBM emulators for non-affine scattering problems

Nuclear ROSE in BAND Framework (free software!).
Reduced Order Scattering Emulator can handle local, 

complex, non-affine interactions. 

https://inspirehep.net/literature/2738540


RBM emulator for coupled channels

*Integrate out the     -dependence𝜉

Radial equations!

Deformed Potentials

Coupling matrix 
elements 
(Angular 
momentum)

Radial and 
parameter 
dependence

Spherical Potentials (Woods-Saxon)

* Single channel operator

Coupling term

*Elastic channel *Inelastic channel

Example: Inelastic scattering

M. Catacora-Rios
et al., in prep.

https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303


Coupled channel emulator: Fast & Accurate

M. Catacora-Rios
et al., in prep.

https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303
https://inspirehep.net/authors/1073303
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“A non-Hermitian quantum mechanics approach for extracting and emulating continuum physics based on bound-
state-like calculations (: technical details)” Xilin Zhang, 2408.03309, 2411.06712 (to appear in PRL and PRC)

Complex-𝑬 emulator for continuum physics

• Extract continuum physics from bound−state−like 

calculations → use complex 𝐸    (Type-II methods)

• [𝐸 - 𝐻 𝜽 ] 𝜓 𝐸, 𝜽 = 𝑆(𝜽)  w/ complex 𝐸 

        → 𝜓 𝐸, 𝜽  is spatially localized

• A → response function; scattering amplitude; opt. potl.

• RBM complex-𝐸 emulator extrapolates the training 

results “downward” to the real axis 

• 𝐻→ 𝐻 𝑛𝑏×𝑛𝑏
→ spectrum

• Emulation for 𝜽 can be done simultaneously

A 𝐸, 𝜽  ≡ ሚ𝑆
1

𝐸−𝐻
𝑆 = ሚ𝑆 𝜓

𝑅𝑒(𝐸)

𝐼𝑚(𝐸)

𝜽

. . .

Challenge: sampling over many parameters when continuum physics is involved 
X. Zhang

https://arxiv.org/abs/2408.03309
https://arxiv.org/abs/2411.06712


Complex-𝑬 emulator for continuum physics

Relative errors of emulated resolvent matrix element when varying 
basis size and training point location in the complex E plane.



Complex-𝑬 emulator for continuum physics

Left: Successful emulation in 𝐸 at fixed 𝜽 for three-body 
system of A’s eigenvalues and –Im A at real energies.

Above: Successful emulation of the spectra of A.



Complex-𝑬 emulator for continuum: scattering amplitudes

• Beyond response function extractions: 
compute scattering amplitudes!

• And emulate in 𝜽!

• Figures: λ and B2 fixed; average over λ4’s

• Related methods: “Lorentz integral 
transform (LIT)” and “complex energy” 

• Enables 𝜽-emulations for existing methods 
(and DFT linear-response calculations)

Particle-dimer scattering
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Summary of RBM emulator extensions

• Greedy algorithm / error estimates and multiple RBMs for 2N and 3N scattering

• EIM for non-affine optical potentials (including coupled channels)

• Joint emulation in complex energy 𝐸 and parameters 𝜽 

• Parametric matrix models: impose matrix structure but learn from data

Alternative to RBM?

Many opportunities

• Extend 3N emulators to full Bayesian calibration and UQ for chiral EFT

• Efficient Bayesian calibration for optical potentials (and beyond) → next steps?

• Many continuum applications are waiting!



Thank you!

Jupyter and Quora books:

Learning from Data for Physicists (Forssén, rjf, Phillips)
BUQEYE Guide to Projection-Based Emulators in Nuclear Physics
Reduced Basis Methods in Nuclear Physics 

See Duguet et al., RMP (2024) for more on EC/RBM emulators

https://nucleartalent.github.io/LFD_for_Physicists/LearningFromData-content/Intro/About.html
https://github.com/buqeye/frontiers-emulator-review
https://github.com/buqeye/frontiers-emulator-review
https://github.com/buqeye/frontiers-emulator-review
https://kylegodbey.github.io/nuclear-rbm/introduction/introduction.html
https://inspirehep.net/literature/2715640
https://inspirehep.net/literature/2715640
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R. Somasundaram et al., 
arXiv:2404.11566 (2024)

P. Cook, D. Jammooa et al., arXiv:2401.11694 (2025)

RBM/EC: matrix elements 
of eigenvector snapshots 

→ model driven

PMM: learn matrix elem. 
from data (eigenvalues) 
→ hybrid data driven

Application to emulate noisy AFDMC calculations

PMMs capture essential structures such as smooth 
analytic behavior, symmetries, and conservation laws. 



Parametric matrix models bridge physics 
and machine learning

Impact

• Parametric matrix models represent a paradigm shift in 
scientific machine learning.  

• By embedding physical and mathematical structure directly into 
their design, PMMs produce interpretable results that adhere 
to known constraints, unlike many “black box” neural networks. 

• This makes them especially powerful for scientific discovery, 
where extrapolation, efficiency, and interpretability are critical. 

• PMMs can outperform state-of-the-art methods in scientific 
computing and compete strongly on broader machine learning 
tasks.

Accomplishments

• “Parametric Matrix Models,” Cook, Jammooa, Hjorth-Jensen, 
Lee, Lee, Nat. Commun. 16, 5929 (2025).

• https://frib.msu.edu/news-center/news/researchers-develop-
new-machine-learning-method

Objectives

• Researchers have introduced a new class of machine learning 
algorithms called parametric matrix models (PMMs).  

• Unlike traditional approaches that mimic neurons or optimize 
generic functions, PMMs are built from matrix equations that 
resemble the governing equations of physical systems.  

• By treating inputs as parameters for the matrix elements, 
PMMs capture essential structures such as smooth analytic 
behavior, symmetries, and conservation laws.  

• PMMs are universal function approximators, able to solve 
general machine learning tasks while retaining strong 
interpretability. 

Parametric matrix models emulate physical systems through matrix 
equations, enabling accurate and interpretable predictions with 
fewer parameters than conventional machine learning methods.

https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://www.nature.com/articles/s41467-025-61362-4
https://frib.msu.edu/news-center/news/researchers-develop-new-machine-learning-method
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Fast & accurate emulation of two-body scattering observables without 
wave functions (Newton Variational Principle)

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Toward emulating nuclear reactions using eigenvector continuation
 (General Kohn Variational Principle)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777

Wave-function-based emulation for nucleon-nucleon scattering in momentum 
space (General Kohn & Newton Variational Principle)

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

Efficient emulators for scattering using eigenvector continuation (Kohn 
Variational Principle for the K-matrix)

Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

See also: CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931 | see also ROSE in Odell et al., PRC 109, 044612 
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Highlight: VP without (trial) wave functions  |  in momentum space  |  coupled channels

Highlight: introduces snapshot-based trial wave functions for ROMs

Highlight: Schwartz anomaly mitigation  |  proof of principle: parameter estimation

Highlight: extends snapshot-based KVP to momentum space & coupled channels

Codes (Jupyter notebooks) 
publicly available!

2020

2021

2021

2023

RBM implementation freedom: examples from scattering



RBM implementation freedom: examples from scattering
Quantum mechanical two-body scattering problem can be formulated in multiple ways: 
Schrödinger equation in coordinate or momentum space; variational methods; … 

See Drischler et al., (2022) 
for details and references

What is the best way to implement a 3-body scattering emulator?
• E.g, for Bayesian χEFT LEC estimation or nuclear reactions.
• X. Zhang, rjf, PRC (2022) gave proof of principle (bosons) using KVP.

Every variational way 
for scattering has a 

Galerkin counterpart!

Non-variational, also, 
e.g., “origin” emulator

https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064004


Illustrative example: anharmonic oscillator  [Try your own!]

 affine!

6 random 𝜃s

3 test 𝜃s

Eigenvalue problem:                                 

Variational emulator → diagonalize the Hamiltonian       in a finite basis:                    

https://github.com/buqeye/frontiers-emulator-review


Illustrative example: anharmonic oscillator  [Try your own!]

 affine!

3 test 𝜃s

Eigenvalue problem:                                 

Variational emulator → diagonalize the Hamiltonian       in a finite basis:                    

3 test 𝜃s

https://github.com/buqeye/frontiers-emulator-review


Illustrative example: anharmonic oscillator  [Try your own!]

 affine!

Summary: GP doesn’t use the structure of the high-fidelity system to its advantage; 
HO emulator knows the problem to be solved is an eigenvalue problem; RBM (aka EC) 
training data are curves rather than scalars, takes advantage of system structure.



Role of emulators: new workflows for NP applications
From Xilin Zhang, rjf, Fast emulation of quantum three-body scattering, Phys. Rev. C 105, 064004 (2022).

If you can create fast & accurate  emulators for observables, you can do 
calculations without specialized expertise and expensive resources!

How can ISNET 
facilitate these new 
workflows based on 
shared emulators?



CC-Emulator Workflow Chart
User inputs:

)−𝟏𝒄𝒋
𝒔𝒑𝒉

Frescox

𝛼𝑘 𝑘=1
𝑁𝑅𝐵𝑀 𝛼𝑘 𝑘=1

𝑁𝐸𝐼𝑀 P−T system (states, numerical details)

𝑛𝑅𝐵𝑀 𝑛𝐸𝐼𝑀
𝑠𝑝ℎ

𝑛𝐸𝐼𝑀
𝑑𝑒𝑓 𝛿−strength

𝜶𝒌 𝒌=𝟏
𝑵𝑹𝑩𝑴 P−T system

Generate Frescox 
input file

𝜶𝒌 𝒌=𝟏
𝑵𝑬𝑰𝑴

𝒏𝑬𝑰𝑴
𝒔𝒑𝒉

𝒏𝑬𝑰𝑴
𝒅𝒆𝒇

Coupling matrix 
elements:

Free waves:

𝑴𝒊𝒋

𝝓𝒊
𝒇𝒓𝒆𝒆

𝜹−strength

𝒏𝑹𝑩𝑴

Coupling and Free Waves

𝝍𝒊
𝒆𝒙 (𝑹, 𝜶𝒌) 𝒌=𝟏

𝑵𝑹𝑩𝑴

{𝝍𝒊;𝒌
𝑺𝑽𝑫}𝒌=𝟏

𝒏𝑹𝑩𝑴 = SVD[ 𝝍𝒊
𝒆𝒙 (𝑹, 𝜶𝒌) 𝒌=𝟏

𝑵𝑹𝑩𝑴]

SVD Basis

SVD basis elements:

Integrals

෡𝑨𝒊𝒋𝒌, ෡𝑩𝒊𝒋𝒌, 𝒄𝒊

Precompute all integrals 
with affine EIM basis:

Empirical Interpolation

Compute EIM coefficients
𝜹−strength

𝑽(𝑹, 𝜶𝒌) 𝒌=𝟏
𝑵𝑬𝑰𝑴

𝑼(𝑹, 𝜶𝒌) 𝒌=𝟏
𝑵𝑬𝑰𝑴

𝒖𝒊
𝒔𝒑𝒉

(𝑹)
𝒊=𝟏

𝒏𝑬𝑰𝑴
𝒔𝒑𝒉

𝒖𝒊
𝒅𝒆𝒇

(𝑹)
𝒊=𝟏

𝒏𝑬𝑰𝑴
𝒅𝒆𝒇

Obtain SVD 
basis 
functions

Select interpolation locations

𝒔𝒊
𝒔𝒑𝒉

(𝑹)
𝒊=𝟏

𝒏𝑬𝑰𝑴
𝒔𝒑𝒉

𝒔𝒊
𝒅𝒆𝒇

(𝑹)
𝒊=𝟏

𝒏𝑬𝑰𝑴
𝒅𝒆𝒇

Invert EIM matrix: (𝑼𝒊𝒋
𝑬𝑰𝑴)−𝟏

After off-line: 𝛼𝑘 𝑘=1
𝑁𝑠𝑜𝑙𝑣𝑒

For each 𝛼  in the set 𝜶𝒌 𝒌=𝟏
𝑵𝒔𝒐𝒍𝒗𝒆

𝒄𝒋
𝒔𝒑𝒉

= 𝑽𝒔𝒑𝒉(𝒔𝒋, 𝜶), 𝒄𝒋
𝒅𝒆𝒇

= 𝑽𝒅𝒆𝒇(𝒔𝒋, 𝜶) 

𝒃𝒌
𝒔𝒑𝒉

= (𝑼𝒌𝒋
𝑬𝑰𝑴)−𝟏𝒄𝒋

𝒔𝒑𝒉
, 𝒃𝒌

𝒅𝒆𝒇
= (𝑼𝒌𝒋

𝑬𝑰𝑴)−𝟏𝒄𝒋
𝒅𝒆𝒇

Offline Online
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