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Why are we doing this?

2



Why?

Information from hadron data is limited by incomplete and potentially inconsistent 
datasets.
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Current issues?

• Current hadron analyses can use data from 40+ years ago, which are unlikely to be 
taken again. 

• These coupled channel analyses require data from different experiments which can 
disagree, leading to arbitrary weighting in χ2 minimisation for theoretical modelling. 

• This produces inconsistencies in the fitting of resonances which are still a matter of 
debate today, e.g. Λ1405. 
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Specifics of this GP model

5



Kernel Choice

The Radial Basis Function kernel can be used:

𝜅 𝑎, 𝑏 = exp ෍

𝑖=0

𝑝−1
−𝑑(𝑎𝑖 , 𝑏𝑖)2

2𝑙𝑖
2

Where:
• 𝑎, 𝑏 are some vectors of length p (e.g. have p parameters)
• 𝑑(∙,∙) is the Euclidean distance.
• 𝑙 is a hyperparameter called the length scale. For this kernel, it is a measure of how smooth the 

function is. 

The RBF kernel gives smooth, continuous posterior distribution which is appropriate 
for the cases presented here. 



Convex Hull 

• It was found in testing that the GP performs well at interpolating but not at 
extrapolating. 

• As such a set of discrete points of the convex hull1 of the known datapoints is the 
space that the GP gives a prediction for (with resolution in each dimension chosen 
by the user). 
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Hyperparameter Choice

The choice of length scale dictates the smoothness of our posterior and how good the 
overall fit is
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Standard Approach for Hyperparameter Optimisation

The normal approach is to use the marginal likelihood function:

log 𝑝 𝑦 𝑋, Ԧ𝑙 = −
1

2
𝑦𝑇𝐾𝑦

−1𝑦 −
1

2
log 𝐾𝑦 −

𝑛

2
log 2𝜋

For low number of datapoints this is not well defined6:



Hyperparameter Search

• The hyperparameters are measured in the same quantities as our kinematic 
dimensions (in this case energy and scattering angle (cos 𝜃).

• We know from standard statistics the percentage of datapoints that we expect with 
different multiples of the standard deviation (e.g. 50% in 0.67σ, 68.3% in 1σ, etc.). 

• For a given set of hyperparameters, the percentage of points within different 
multiples of the GP error (up to 3σ) from the GP mean can also be measured. 

• The Wasserstein distance can be used as a measure of the similarity between the 2 
CDFs. 



Expected vs Measured Percents



Bounds for Hyperparameter Search

• Upper – Full range (per kinematic dimension)
• We know that the GP fails at extrapolation so want to keep within interpolating range

• Lower – Minimum distance between (sorted) adjacent datapoints.
• Take for instance the energy hyperparameter
• We know that we cannot infer anything smaller than the smallest distance between adjacent 

energy levels, (think resolution)



Hyperparameters on boundary

• In certain cases, the returned optimal hyperparameters sit on or close to the 
boundary.

• Often these still give good physical results but sometimes can return GP fits 
showing unphysical behaviour. 

• The Wasserstein distance (or the Kolmogorov-Smirnov statistic) alone cannot be 
used as a suitable loss function



Loss surface – optimum close to boundary



Results not totally physical



Projection at E=1.6 (no measured data)



Boundary Penalty Term

• For each kinematic dim, if the prospective length scale is on any boundary 
assign it 1, decreasing linearly until the centre is assigned 0. 

• Weight this to 1% in the final loss. 
• This ensures that if there are local minima (with a similar loss to the global 

minima) but far from the boundary then this will be the returned optimum. 
• By weighting it to only 1% it ensures that if the only viable hyperparameters lie 

on the boundary then these will still be the returned set. 



How do we know it works?
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Pseudodata

We can test the GP using some suitable pseudodata. Thus, define a 2D surface of the 
form, modelled on polarisation observables:

𝑦𝑓𝑢𝑛𝑐 = 𝑓 𝐸𝛾 , cos θ = ෍

𝑙=0

𝑛

𝑐𝑙 ∗ 𝑔𝑙 𝐸𝛾 ∗ 𝑃𝑙(cos θ) 

With 
• 𝑐𝑙  𝜖 −1,1  is some weight
• 𝑔𝑙 𝐸𝛾 ∼𝒩 𝜇𝑙 , 𝜎2

𝑙

• 𝑃𝑙(cos θ) is an ordinary Legendre polynomial 

In our case n=3 so we have 12 parameters. 

Note also that 𝑦𝑓𝑢𝑛𝑐 ≤ 1.
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2 Tests

A 2D known surface is generated, some points are selected and given appropriate 
noise and error bars. This is pseudodata which can be used to test the GP is 
performing as intended.

We can perform 2 tests on this: 

• Number of points in different confidence intervals

• Unbiased Pull of Fitted coefficients 
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Points within confidence intervals 

• Calculate pull: 𝑝𝑢𝑙𝑙 =
𝑦𝑓𝑢𝑛𝑐−𝑦𝑓𝑖𝑡

𝑒𝑓𝑖𝑡

• 𝑝𝑢𝑙𝑙 ≤ 1 ⟹ 𝑦𝑓𝑢𝑛𝑐 ϵ 𝑦𝑓𝑖𝑡 − 𝑒𝑓𝑖𝑡 , 𝑦𝑓𝑖𝑡 + 𝑒𝑓𝑖𝑡 , i.e., the predicted point is within its 
uncertainty of the actual point. 

• From this the total percentage of points within different confidence intervals can be 
calculated by scaling 𝑒𝑓𝑖𝑡 as required and repeat.

• Assuming n known datapoints, select n random GP datapoints and compare.  
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Points within confidence intervals 

Confidence interval Expected percentage of 
points within confidence 

interval (%) 

Mean percentage of GP 
points within 

confidence interval (%) 

0.67σ 50 62.6

1σ 68.3 77.0

1.96σ 95 96.4
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Fitting Parameters 

• The functional form of the 2D surface can be fitted using the known datapoints as 
well as the n random datapoints (to check the GP performs well in all kinematic 
regions).

• The pull of the 12 fitted coefficients compared to the actual coefficients can be 
calculated for both. 
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What does real data look 
like?
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Data from CLAS

The GP has been used on data recently published by the CLAS collaboration at 
Jefferson Lab, specifically 5 polarisation observables (Σ, P, T, Ox and Oz) of the K0Σ+ 
reaction.2 Example plots for Σ:
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GP 1D Projections for Σ
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GP 1D Projections for Σ
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Inconsistencies across 
Datasets



Simple 1D case - KbarN Cross Section 

Try to run a GP fit on the world data for 𝐾−𝑝 → ഥ𝐾0𝑛
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KbarN

Instead running a GP on each individual experiment produces the following:
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Probability surface

• Taking a 1D projection in energy, each result (from the different GPs) can be 
assumed to form a normalised gaussian. 

• This means that results with larger error bars have a lower amplitude and thus 
contribute less to the 1D projection. 
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Probability Surface

By normalising each slice, the (log) probability of a cross-section value at a 
given energy can be found:
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Conclusion

• A Gaussian Process is an extremely useful machine learning tool to expand existing, 
limited datasets. 

• The methodology presented here has been demonstrated to work on pseudodata, 
modelled on real-life sparse datasets.

• Inconsistencies between experiments can be measured and a probability surface 
found. 

• Code to run GP fits and probability surface calculations can be found on the GitHub 
here, https://github.com/rferguson22/Gaussian-Process
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Thanks for listening 
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Back-up Slides
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Coefficient Mean of
pull 
distribution
from known
datapoints
fit

Variance of
pull 
distribution
from known
datapoints
fit

Mean of
pull 
distribution
from GP
datapoints
fit

Variance of
pull 
distribution
from GP
datapoints
fit

𝑐0 0.04 0.91 0.06 0.92

𝜇0 -0.04 0.82 -0.05 0.84

𝜎0
2 0.0 0.77 -0.01 0.79

𝑐1 0.04 0.89 0.04 0.91

𝜇1 -0.03 0.74 -0.02 0.73

𝜎1
2 -0.1 0.77 -0.09 0.78

𝑐2 -0.06 1.01 -0.06 1.05

𝜇2 -0.05 0.73 -0.05 0.75

𝜎2
2 -0.17 0.82 -0.17 0.83

𝑐3 -0.06 0.95 -0.07 0.96

𝜇3 -0.02 0.73 -0.04 0.74

𝜎3
2 -0.07 0.73 -0.07 0.76



Kbar0n
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New minima far from boundary



Gives reasonable looking surface





Check at E=1.6 (no measured data)



But what about other points still on the 
boundary?







Check at E=1.6 (no measured data)



Generating Pseudodata I

A generated asymmetry datapoint is based on the effective number of counts 
measured. This can be expressed as

𝐴 =
𝑁+ − 𝑁−

𝑁+ + 𝑁−

where 𝑁+, 𝑁− are used to describe the 2 different states which are used to estimate 
the effective count. These take into account beam polarisation, recoils, target dilution 
and other such factors. These random variables are generated from “true” values:

𝑁~Pois 𝑛±

where 𝑛± =
1

2
𝑛𝑒 1 ± 𝑓 𝑤, cos 𝜃 . Here 𝑛𝑒  is defined as the effective number of events 

and is in the range [200,1000] which is estimated based on real data. 
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Generating Pseudodata II

By using standard propagation of errors, the error on A is given by:

𝛿𝐴 =
2

𝑁+ + 𝑁−
2

𝑁+𝑁− 𝑁+ + 𝑁−

51



How does it work?
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Mathematical Process

Assume that we have n known datapoints of the form Ԧ𝑥𝑖 , 𝑦𝑖  with known errors 𝑒𝑖 
used to define the expression form Ԧ𝑦 = 𝑓 𝑋 . Here Ԧ𝑥𝑖  is a vector of the kinematic 
variables (e.g. energy, scattering angle, etc.) and 𝑋 is a matrix whose rows are Ԧ𝑥𝑎, Ԧ𝑥𝑏. 

e.g. if we have 3 points a,b,c that have some energy E and scattering angle cosθ, then 
X is

𝑋 =

Ԧ𝑥𝑎

Ԧ𝑥𝑏

Ԧ𝑥𝑐

=

𝐸𝑎 cos 𝜃𝑎

𝐸𝑏 cos 𝜃𝑏

𝐸𝑐 cos 𝜃𝑐

i.e. X will always be a 2D matrix, regardless of the number of input dimensions
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Mathematical Process

Assume that Ԧ𝑦 is drawn from a Multivariate Gaussian of the form 𝑝 Ԧ𝑦 𝑋 ∼ 𝒩 0, 𝐾  
(the zero mean assumption simplifies some maths later but doesn’t impact the 
prediction), where 𝐾 = 𝜅(𝑋, 𝑋, Ԧ𝑙) + Ԧ𝑒2𝐼𝑛 is the n x n covariance matrix.

Here κ is some kernel function that is used to measure the covariance and Ԧ𝑙 are 
hyperparameters (more on this later). Here 𝐾𝑎𝑏 = κ Ԧ𝑥𝑎, Ԧ𝑥𝑏 + 𝛿𝑎𝑏𝑒𝑎

2, where Ԧ𝑥𝑎, Ԧ𝑥𝑏  are 
rows of the matrix 𝑋. 
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Mathematical Process

Assume that there are m known datapoints of the form outlined previously, with 
known 𝑥∗𝑖with unknown scalars 𝑦∗𝑖

,  which are correlated to the n known datapoints. 

A matrix 𝑋∗ can then be generated whose rows are the vectors 𝑥∗. 

As 𝑦∗ is correlated to Ԧ𝑦, they are drawn from the same multivariate Gaussian:

Ԧ𝑦

𝑦∗
∼ 𝒩 0,

𝐾 𝐾∗

𝐾∗
𝑇 𝐾∗∗

 

where 𝐾∗ = κ 𝑋, 𝑋∗ , 𝐾∗∗ = κ 𝑋∗, 𝑋∗ .

Essentially, our data can be thought of as a single sample drawn from this multivariate 
Gaussian. 
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Example Case

• Assume we have a single point (1,0.5) and want to get a prediction for 𝑥∗ = 0.9. 

• Plugging the values of 𝑥 = 1, 𝑥∗ = 0.9 into 𝐾,𝐾𝑠, 𝐾𝑠𝑠 and plotting the multivariate 
Gaussian gives the graph below

• Note this plot is generated with the specific values 𝑥 = 1, 𝑥∗ = 0.9 , 𝑙 = 1, changing 
any of these values will result in a different multivariate Gaussian
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Example Case

57

We know that 𝑦 = 0.5 so can do a 1D projection to get the value for 𝑦∗



Mathematical Process III

By using the conditional of a multivariate Gaussian, a prediction for 𝑦∗ can be 
obtained:

𝑝 𝑦∗ 𝑋∗, 𝑋, Ԧ𝑦 ∼ 𝑁 𝜇∗, 𝛴∗  where 

    𝜇∗ = 𝐾∗
𝑇𝐾−1 Ԧ𝑦

     Σ∗ = 𝐾∗∗ − 𝐾∗
𝑇𝐾−1𝐾∗

Thus, the GP now has a prediction for the mean and covariance matrix, and thus the 
standard deviation, of 𝑦∗. 5
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Example
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