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Why are we doing this?



Why?

Information from hadron data is limited by incomplete and potentially inconsistent
datasets.
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Currentissues?

 Current hadron analyses can use data from 40+ years ago, which are unlikely to be
taken again.

* These coupled channel analyses require data from different experiments which can
disagree, leading to arbitrary weighting in x> minimisation for theoretical modelling.

* This produces inconsistencies in the fitting of resonances which are still a matter of
debate today, e.g. A1405.



Specifics of this GP model



Kernel Choice

The Radial Basis Function kernel can be used:

- R
_ z —d(a;, b;)
k(a,b) = exp 2
= 2L

Where:

* a, b are some vectors of length p (e.g. have p parameters)
* d(-,) isthe Euclidean distance.

* lis a hyperparameter called the length scale. For this kernel, it is a measure of how smooth the
function is.

The RBF kernel gives smooth, continuous posterior distribution which is appropriate
for the cases presented here.



Convex Hull

* |twas found in testing that the GP performs well at interpolating but not at
extrapolating.

» As such a set of discrete points of the convex hull’ of the known datapoints is the
space that the GP gives a prediction for (with resolution in each dimension chosen
by the user).

a) Set of points b) Its convex hull




Hyperparameter Choice

The choice of length scale dictates the smoothness of our posterior and how good the

overall fitis
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Standard Approach for Hyperparameter Optimisation

The normal approach is to use the marginal likelihood function:

1 3 1 n
logp(y|X,f) = —EyTKy 1y —Elog|Ky| —Elog 2T

For low number of datapoints this is not well defined®:
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Hyperparameter Search

The hyperparameters are measured in the same quantities as our kinematic
dimensions (in this case energy and scattering angle (cos 9).

We know from standard statistics the percentage of datapoints that we expect with
different multiples of the standard deviation (e.g. 50% in 0.670, 68.3% in 10, etc.).

For a given set of hyperparameters, the percentage of points within different
multiples of the GP error (up to 3o0) from the GP mean can also be measured.

The Wasserstein distance can be used as a measure of the similarity between the 2
CDFs.



Expected vs Measured Percents
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Bounds for Hyperparameter Search

* Upper - Full range (per kinematic dimension)
* We know that the GP fails at extrapolation so want to keep within interpolating range

* Lower - Minimum distance between (sorted) adjacent datapoints.
* Take for instance the energy hyperparameter

* We know that we cannot infer anything smaller than the smallest distance between adjacent
energy levels, (think resolution)



Hyperparameters on boundary

* |n certain cases, the returned optimal hyperparameters sit on or close to the
boundary.

* Often these still give good physical results but sometimes can return GP fits
showing unphysical behaviour.

* The Wasserstein distance (or the Kolmogorov-Smirnov statistic) alone cannot be
used as a suitable loss function



Loss surface — optimum close to boundary
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Results not totally physical




Projection at E=1.6 (no measured data)

GP prediction at 1.60 GeV (no measured data)
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Boundary Penalty Term

* For each kinematic dim, if the prospective length scale is on any boundary
assign it 1, decreasing linearly until the centre is assigned 0.

* Weight this to 1% in the final loss.

* This ensures that if there are local minima (with a similar loss to the global
minima) but far from the boundary then this will be the returned optimum.

* By weighting it to only 1% it ensures that if the only viable hyperparameters lie
on the boundary then these will still be the returned set.



How do we know 1t works?



Pseudodata

We can test the GP using some suitable pseudodata. Thus, define a 2D surface of the
form, modelled on polarisation observable%:

Viunc = f(Ey, coS 6) = z Cy * gl(Ey) * P;(cos 0)
1=0

With
* ¢; € [—1,1] is some weight

« 9i(Ey)~N(uy,02))
* P;(cos0)is anordinary Legendre polynomial

In our case n=3 so we have 12 parameters.

Note also that |yfunc| < 1.



2 lests

A 2D known surface is generated, some points are selected and given appropriate
noise and error bars. This is pseudodata which can be used to test the GP is
performing as intended.

We can perform 2 tests on this:
* Number of points in different confidence intervals

e Unbiased Pull of Fitted coefficients



Points within confidence intervals

Yfunc~Yfit

efit
lpull] <1 = yrync € [yﬁt — €fit , Vrit T efit], i.e., the predicted point is within its
uncertainty of the actual point.

Calculate pull: pull =

From this the total percentage of points within different confidence intervals can be
calculated by scaling ef;; as required and repeat.

Assuming n known datapoints, select n random GP datapoints and compare.



Points within confidence intervals

Confidence interval

Expected percentage of
points within confidence
interval (%)

Mean percentage of GP
points within
confidence interval (%)

0.670 50 62.6
1o 68.3 77.0
1.960 95 96.4




Fitting Parameters

* The functional form of the 2D surface can be fitted using the known datapoints as

well as the n random datapoints (to check the GP performs well in all kinematic
regions).

* The pull of the 12 fitted coefficients compared to the actual coefficients can be
calculated for both.
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What does real data look
like?



Data from CLAS

The GP has been used on data recently published by the CLAS collaboration at

Jefferson Lab, specifically 5 polarisation observables (Z, P, T, O, and O,) of the K°2*
reaction.? Example plots for 2:
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GP 1D Projections for 2

1.23GeV GP Fit for
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GP 1D Projections for 2

1.73GeV GP Fit for 1.98GeV GP Fit for
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Inconsistencies across
Datasets



Simple 1D case - KbarN Cross Section

Try to run a GP fit on the world data for K "p - K°n

sigma(KbarOn)[b]
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KbarN

Instead running a GP on each individual experiment produces the following:

sigma(KbarOn)[b]
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Probability surface

* Taking a 1D projection in energy, each result (from the different GPs) can be
assumed to form a normalised gaussian.

* This means that results with larger error bars have a lower amplitude and thus
contribute less to the 1D projection.



Probability Surface

By normalising each slice, the (log) probability of a cross-section value at a

given energy can be found:
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Conclusion

A Gaussian Process is an extremely useful machine learning tool to expand existing,
limited datasets.

* The methodology presented here has been demonstrated to work on pseudodata,
modelled on real-life sparse datasets.

* |Inconsistencies between experiments can be measured and a probability surface
found.

 Code to run GP fits and probability surface calculations can be found on the GitHub
here, https://github.com/rferguson22/Gaussian-Process
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Thanks for listening
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Coefficient Mean of Variance of Mean of Variance of
pull pull pull pull
distribution distribution distribution distribution
from known from known from GP from GP
datapoints datapoints datapoints datapoints
fit fit fit fit

Co 0.04 0.91 0.06 0.92
o -0.04 0.82 -0.05 0.84
00> 0.0 0.77 -0.01 0.79
Cq 0.04 0.89 0.04 0.91
Uq -0.03 0.74 -0.02 0.73
0,2 -0.1 0.77 -0.09 0.78
Cy -0.06 1.01 -0.06 1.05
Uo -0.05 0.73 -0.05 0.75
0,2 -0.17 0.82 -0.17 0.83
C3 -0.06 0.95 -0.07 0.96
U3 -0.02 0.73 -0.04 0.74
032 -0.07 0.73 -0.07 0.76
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Cross Section [b]
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New minima far from boundary

1.6
® Global Minima (Loss = 0.1381)
- 0.76

1.4
- 0.69

1.2 0.62

0.55

Lo
o

0.48

0.41

Hyperparameter 2 - Angle
o o
[o)] o]

0.34

0.4
0.27

0.20

T T T T T T T T 0-13
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Hyperparameter 1 - Energy

Loss value



Gives reasonable looking surface
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Check at E=1.6 (no measured data)
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GP prediction at 1.60 GeV (no measured data)
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But what about other points still on the
boundary?

® Global Minima (Loss = 0.08062)
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1.5 GeV

0.1 :
\ — GPfit
‘.. GP std. dew.
—0.2 4 ‘\ ——- True function
\ ® Known data
_0.3 -
_0.4 -
_0.5 P
_06 -
_0',’ -
T T T T T T T T
-1.00 —-0.75 —0.50 —0.25 0.00 0.25 0.50 0.75
Angle
1.26 GeV
—0.2 — GPfit
GP std. dev.
‘\ === True function
\ ® Known data
—0.3 -
_04 P
_05 -
—0.6 -

T
-1.00

T
—0.75

T T T
—0.50 -0.25 0.00 0.25 0.50 0.75
Angle

1.75 GeV
\ — GPfit
\ GP std. dew.
—0.1+ \ ——- True function
\ ® Known data
_0.2 -
_0.3 -
_0.4 -
_0.5 P
—0.6 - - .
T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Angle
1.89 GeV
\ — GPfit
—0.14 \\ GP std. dev.
\\ === True function
\\ ® Known data
_02 -
_03 -
_04 -
_05 .
_0.6 .

T
-1.00

T T T T
-0.75 —0.50 -0.25 0.00 0.25
Angle




Check at E=1.6 (no measured data)

GP prediction at 1.60 GeV (no measured data)
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Generating Pseudodata |

A generated asymmetry datapoint is based on the effective number of counts
measured. This can be expressed as
N+ - N_
A=
N+ N_

where N, N_ are used to describe the 2 different states which are used to estimate

the effective count. These take into account beam polarisation, recoils, target dilution

and other such factors. These random variables are generated from “true” values:
N~Pois(n4)

where ng = %ne[l + f(w, cos 8)]. Here n, is defined as the effective number of events
and is in the range [200,1000] which is estimated based on real data.
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Generating Pseudodata

By using standard propagation of errors, the error on Ais given by:

2
5A = N TN JNLN_(N, + N_)
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How does it work?



Mathematical Process

Assume that we have n known datapoints of the form (x;, y;) with known errors e;
used to define the expression form y = f(X). Here X; is a vector of the kinematic
variables (e.g. energy, scattering angle, etc.) and X is a matrix whose rows are x4, Xp,.

e.g. if we have 3 points a,b,c that have some energy E and scattering angle cos0, then
Xis

X E, cos6,
X=|%,|=|Ep, coséb,
x.| |Ec cos6f.

l.e. Xwill always be a 2D matrix, regardless of the number of input dimensions



Mathematical Process

Assume that y is drawn from a Multivariate Gaussian of the form p(y|X) ~ N(6 K)
(the zero mean assumption S|mpl|f|es some maths later but doesn’t impact the

prediction), where K = k(X, X, l) + é2I,, is the n x n covariance matrix.

Here k is some kernel function that is used to measure the covariance and [ are

hyperparameters (more on this later). Here K, = x(X4, X, ) + 64,42, Where X, X}, are
rows of the matrix X.
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Mathematical Process

Assume that there are m known datapoints of the form outlined previously, with
known x_*’l.with unknown scalars Vi s which are correlated to the n known datapoints.

A matrix X, can then be generated whose rows are the vectors x,.

As y, is correlated to y, they are drawn from the same multivariate Gaussian:
i K K,
~N|O,
3’*] <_ [K*T K**D

where K, = (X, X,), K.. = x(X,, X,).

Essentially, our data can be thought of as a single sample drawn from this multivariate
Gaussian.



Example Case

 Assume we have a single point (1,0.5) and want to get a prediction for x, = 0.9.

* Pluggingthevaluesofx =1, x, = 0.9 into K,K,, K. and plotting the multivariate
Gaussian gives the graph below

* Note this plot is generated with the specificvaluesx =1, x, = 0.9, = 1, changing
any of these values will result in a different multivariate Gaussian

15

1.0 1
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Example Case

We know that y = 0.5 so can do a 1D projection to get the value for y,
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Mathematical Process ll|

By using the conditional of a multivariate Gaussian, a prediction for y, can be
obtained:

p(y.|X,,X,y) ~ N(u,,~,) where
w =KK™y
>. =K., — KKK,

Thus, the GP now has a prediction for the mean and covariance matrix, and thus the
standard deviation, of y,. ®



Example
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1 Sample drawn from GP
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10 Samples drawn from GP
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