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Data from Above
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And on the 3rd day of ISNET-11, God said 
“Let there be data.“      - Bayes 3:14159…

Generated from a specific function with a 5% experimental error 
on the points.

Table 1: Data given. The humble theorist

Divine intervention
(or experimentalist)

X Y σexp

0.03183 0.31694 0.01585

0.06366 0.33844 0.01692

0.09549 0.42142 0.02107

0.12732 0.57709 0.02885

0.15915 0.56218 0.02811

0.19099 0.68851 0.03443

0.22282 0.73625 0.03681

0.25465 0.8727 0.04364

0.28648 1.0015 0.050075

0.31831 1.0684 0.05342

DATA



Statistical Modeling
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Figure 1: Data given.

With our God-given data, let g(x) 
represent the underlying  theory, i.e. 
the true values. 
Then,

model discrepancy 
from truncation of 
the polynomial 
(might call it 
truncation 
uncertainty), can’t 
calculate to infinite k 
unfortunately…

From EFT considerations, 
model discrepancy is 
dominated by the higher 
order terms,



Modeling like Brook Taylor Intended
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Figure 1: Data given.

How might we model this data?

Luckily, Taylor Series exist.

Loosely speaking, continuous functions can be 
represented as a polynomial, safe choice!

Coordinates well with ideas of Low Energy 
Constants in Effective Field Theory for a small 
expansion parameter.



Forming the Posterior
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Bayes Theorem:

Likelihood Prior

Assume N independent data points, then 
the likelihood can be represented by the 
product of N Gaussian distributions.

where

Expect “natural” parameters.

The prior’s parameter,   , determines the 
extent which the parameters can deviate 
from their mean value of 0.



Using both Bayes’ Theorem and Marginalization, the posterior is
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Now apply the polynomial model, then

Because of the relationship between g(x), the model, and the model discrepancy,



Using both Bayes’ Theorem and Marginalization, the posterior is
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Now apply the polynomial model, then

Because of the relationship between g(x), the model, and the model discrepancy,

Let us now assume the truncation term’s parameter is independent of all the other parameters…



The red term then factorizes:

Perform the integral over the parameters, a, and replace them by a single integral 
over a Gaussian distribution for the polynomial model. Insert the prior for the 
truncation term, such that

describes the posterior probability distribution using our polynomial model.
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Now, since we defined

then upon performing the Gaussian integral, the full posterior will have the width

What is to say our original assumption was needed?

We can sample the original posterior before the assumption.
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Sampling…
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a0

We use the python module 
“emcee” (an affine-invariant 
MCMC Ensemble sampler).

Use the prior’s parameter,     , 
of 5.

(For analysis, stop at k = 4)

a1

a2

a3

a4



Results of Emcee

Central value (dark blue line) and the total uncertainty (blue 1σ band).

Let’s deconstruct this.
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Figure 2: Posterior Probability Distribution 

for the full model.



Calculating Truncation Uncertainty (Model Discrepancy) and Parametric Uncertainty
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After obtaining the samples, we construct the parametric uncertainty by setting the 
truncation term’s parameter to 0 and with those samples compute the sum

(for each sample!). Then, calculate the mean and standard deviation of                 over the 
samples. The effect of higher-order coefficients will be indirectly included since those 
higher-order coefficients were considered during sampling process.

The truncation uncertainty is then, in a more general case to as we defined before,

where the average is taken over the samples.



Parametric Uncertainty vs. Truncation Uncertainty
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Figure 3: Posterior Probability Distribution 
for the Truncation model (green) and the 

Parametric model (red).

Figure 2: Posterior Probability Distribution 
for the full model.



Parametric Uncertainty vs. Truncation Uncertainty
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Figure 3: Posterior Probability Distribution 
for the Truncation model (green) and the 

Parametric model (red).

Figure 4: Truncation error divided by the full 
uncertainty (green) and the Parametric 

uncertainty divided by the full uncertainty (red).



Correlation of Uncertainties
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Figure 5: Correlation coefficient for the 
domain.

The correlation coefficient can be calculated 
as,



If we assume the data has no influence on the truncated portion, i.e. they are 
independent, then

However, considering correlations,
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Quadrature vs. Considering Correlation
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Figure 6: Posterior probability distribution 
considering correlation (blue) and 
considering no correlation (green)

Figure 5: Correlation coefficient for the 
domain.



Conclusions
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Model discrepancy or parameter uncertainty alone cannot give an accurate 
picture of the full uncertainty of a model prediction, as considering only one 
can lead to overestimation of the full model uncertainty, assuming 
appropriate correlations.

In the case of the toy model shown here, the deviation from data that a 
particular set of these parameters produces is anti-correlated with the 
truncation error.

Compute the joint posterior of the model parameters  and the discrepancy 
term,  i.e.                                                                    ,  and the truncation uncertainty 
will be properly accounted for.



Appendix A: 1σ to 3σ Correlation Bands
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Figure A1: Posterior probability distribution 
considering correlation in truncation error 

(blue) and considering no correlation (green) 
quoting the 1σ band.

Figure A2: Posterior probability distribution 
considering correlation in truncation error 

(blue) and considering no correlation (green) 
quoting the 2σ band.

Figure A3: Posterior probability distribution 
considering correlation in truncation error 

(blue) and considering no correlation (green) 
quoting the 3σ band.



20

Figure B2: Posterior probability distribution 
considering correlation in truncation error 
(blue) and considering independence in 

correlation (green), with the true function 
(red)

Appendix B: Ratio Comparison with Correlation Plot

Figure B1: Correlation coefficient for the 
domain.
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Figure C2: Posterior probability distribution 
considering correlation in truncation error 
(blue) and considering independence in 

correlation (green), with the true function 
(red)

Figure C1: Posterior probability distribution 
considering correlation in truncation error 

(blue) and considering no correlation (green)

Appendix C: Ratio Comparison with Correlation/Quadrature
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Figure D2: Posterior probability distribution 
considering correlation in truncation error 
(blue) and considering independence in 

correlation (green), with the true function 
(red)

Figure D1: Posterior probability distribution 
considering correlation in truncation error 

(blue) and considering no correlation (green)

Appendix D: True Function With Figure 5


