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Nucleosynthesis of the heavy elements

● Fusion reactions between 
charged particles

● Neutron capture processes:

➔ s(low)-process

➔ i(ntermediate)-process

➔ r(apid)-process

Prantzos+ 15, EnAs
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Origin of the heavy elements
s(low) process
➔ Mild neutron density nn~107

➔ Asymptotic giant branch 
(AGB) and massive stars

i(ntermediate) process
➔ Intemerdiate neutron density 

nn~1015

➔ AGB, rapidly accreting white 
dwarfs, massive stars, etc.

r(apid) process
➔ High neutron density nn≳1021

➔ Supernovae and compact 
binary mergers
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● key reactions: 

(A, Z) + n ↔ (A + 1, Z) + γ

● r-process requires initial 
high nn and T

➔ high nn : τ(n,γ) << τβ-decay

● equilibrium freeze-out:

nn drops and β-decays 
take over

r-process: basic ideas
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● Astrophysical site

➔ Sets thermodynamic 
conditions

● Nuclear physics

➔ Shapes abundances 
distribution

Modeling r-process abundances
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Hotokezaka+19, IJMPD



Astrophysical sites for r-process nucleosynthesis

a) Compact binary mergers:

➔ Binary neutron-​star mergers (BNS)

➔ Neutron-​star–black-​hole mergers

b) Collapsar accretion discs

c) Fast outflows from magnetorotational 
supernovae Siegel 22, NatRP
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r-process: nuclear physics input

● r-process requires the 
knowledge of the properties 
of neutron-rich nuclei:

➔ Nuclear masses

➔ β-decay rates

➔ Neutron-capture rates

➔ Fission rates and yields

Credit: S. Giuliani
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● Masses and decay rates, radiative neutron capture rates and fission probabilities need to be 
estimated from nuclear models for almost all nuclei involved

● No reaction rates are known experimentally for unstable neutron-rich nuclei produced during 
the r-process

Impact of nuclear uncertainties for the r-process

Credit: S. Martinet

● Theoretical models are crucial 
to predict fundamental nuclear 
properties 

● All enter into the r-process 
reaction network as input
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● Estimating the sensitivity of the r-
process nucleosynthesis yields to the 
nuclear input requires considering 
uncertainties 

● Monte Carlo variations of nuclear 
properties

➔ Individual nuclear properties are varied 
throughout the nuclear chart using a 
probability distribution based on 
estimates of their theoretical 
uncertainties Nuclear masses

Impact of nuclear uncertainties for the r-process
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Mumpower+ 16, PrPNP



● Modifying reaction or decay rates in a 
given range, independently of the 
changes of other reactions

➔ Neglect correlations between 
uncertainties

➔ May overestimates impact

Mumpower+ 16, PrPNP

β-decay rates n-capture rates

Impact of nuclear uncertainties for the r-process
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● Nuclear models = systematic uncertainties

● Nuclear parameters = statistical uncertainties

● Computationally expensive to consider coherent parameter uncertainties

● Few studies present in literature (e.g., Sprouse+ 20, Martinet+25)

Impact of nuclear uncertainties for the r-process

Credit: S. Martinet
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● A sensitivity study gauges the 
astrophysical response of a change in 
nuclear physics input(s)

➔ It is useful in identifying individual 
nuclear data that should be the 
targets of new experimental 
campaigns

➔ Baseline simulation defying 
astrophysical conditions and inputs 
from nuclear models. 

➔ Simulations are then performed with 
this fixed input, but allowing a subset 
of the nuclear input data to vary 

Sensitivity studies for the r-process
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Mumpower+ 16, PrPNP



● All studies are for main r-process 
(A > 120) 

● Astrophysical trajectories not 
representative of latest 
simulations of possible 
astrophysical sites

● Probe global changes in the 
abundance distribution

● Local changes often ignored

Sensitivity studies for the r-process
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Mumpower+ 16, PrPNP



BNS merger 

Siegel 22, NatRP

Radice +20, ARNPS
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Merger channels and ejection mechanism

Cowan+ 21, RvMP
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r-process nucleosynthesis in BNS mergers

Ye ≈ np /(nn+np) is the dominant parameter in low entropy environments 

● Ye < 0.15: robust r-process, due to several fission cycles
● Ye  0.25: 2nd and 3rd ≲ r-process peaks, but no first
● Ye  0.25: up to 2nd ≳ r-process peak
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● SkyNet nuclear reaction network 
code (Lippuner+17)

● 5 parameterized trajectories 
representative of different ejecta 
from a BNS merger:

1)Dynamical ejecta (polar angle)

2)Dynamical ejecta (equatorial 
angle)

3)Spiral-wave wind ejecta

4)Neutrino-driven wind ejecta

5)Viscous-driven wind ejecta

A sensitivity study for the r-process in BNS mergers

Vescovi+ 22, FrASS
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Sensitivity to n-captures of the r-process in BNS mergers
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 🌟 AIMS

● Identify key (n,γ) rates affecting the 
final r-process pattern

● Target rates accessible to future 
experiments

● Reduce number of simulations

 ⚙️METHOD

● Vary one (n,γ) rate → recompute abundances

● Compare with baseline simulation

● Scale each rate by ×100 / ÷100

● Include only nuclei with:

 Y ≥ 10⁻¹⁰

 T1/2 > 1 s

 Z ≥ 20 (lighter nuclei negligible, Perego+22)



● Neutron capture rates cannot 
influence the abundance distribution 
throughout most of the r-process → 
( , )-( , ) equilibrium𝑛 𝛾 𝛾 𝑛

● n-captures become important at the 
freeze-out, when β-decays take over 
and the r-process path moves toward 
stability

● Final pattern is affected by both an 
early-freeze-out photodissociation 
effect and a late-freeze-out neutron 
capture effect [Surman+09]

● Variations up to one order of 
magnitude in the overall abundance 
pattern

Sensitivity to n-captures: isotopic abundances 

Vescovi+ 22, FrASS
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● Sensitivity measures estimating the global chemical changes

Sensitivity to n-captures: isotopic abundances 

52Ca, 54Ti, 
54V, 57Cr

The nuclei having the greatest influence 
are those located in the vicinity of 
closed-shell nuclei

130,131Sn

197W

Vescovi+ 22, FrASS
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75Cu, 78Zn, 80Ga



● Sensitivity measure estimating the local 
isotopic abundance changes

Sensitivity to n-captures: isotopic abundances 

● 10 most sensitive isotopes, with the top three relative rates having the greatest 
impact in their production
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Sensitivity to n-captures: elemental abundances 

Vescovi+ 22, FrASS
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● Changes in neutron-capture rates 
have an impact on elemental 
abundances as well

● Milder variations in the overall 
abundance pattern



● Sensitivity measure estimating the local 
elemental abundance changes

Sensitivity to n-captures: elemental abundances 

● 10 most sensitive elements, with the top three relative rates having the greatest 
impact in their production
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Kilonova emission

● Radioactive decay of r-process elements in ejecta → Release of nuclear energy

● Diffusion and emission of photons at photosphere → Kilonova

● Uncertainties from different mass models, fission rates, and fission fragment distribution on the 
heating rate and kilonova emission have been investigated [Zhu+21, Barnes+21]

● What about individual neutron-capture rates?

Siegel 22, NatRP
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● Neutron-capture rates affects the 
heating rate ϵ(t)

● Larger variations for high-Ye ejecta 
cases

● Those produce a considerable 
amount of nuclei only in the limited 
range 50  A  90≲ ≲

● Few isotopes have half-lives of 10–
100 days may produce marked 
features in bolometric kilonova 
lightcurves [Wu+19]

Sensitivity to n-captures: radioactive heating rate

Vescovi+ 22, FrASS
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● Sensitivity measure to describe the variations in the nuclear heating rate ϵ(t)
● t = 0.1, 1, 10, 100 days

Sensitivity to n-captures: radioactive heating rate

A few reaction rates produce noticeable 
variations for high-Ye ejecta at relatively late 
times (t  10 days).≳

Vescovi+ 22, FrASS

26Key neutron capture rates for the r-process nucleosynthesisDiego Vescovi

88Se, 88Br
58,59Cr, 
58,59Mn



● Sensitivity measure to describe the variations in the nuclear heating rate ϵ(t) 
● t = 0.1, 1, 10, 100 days

Sensitivity to n-captures: radioactive heating rate

A few reaction rates produce noticeable 
variations for high-Ye ejecta at relatively late 
times (t  10 days).≳

Vescovi+ 22, FrASS
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89Sr (t1/2 = 50.56 days)

59Fe (t1/2 = 44.495 days)



MARTINI: a database for nuclear astrophysicists
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Visit → 
https://martini.oa
-abruzzo.inaf.it/



Tracing r-process nucleosynthesis in BNS mergers
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 🌟 AIMS

● Investigate impact of neutrino winds on the nucleosynthesis

● Produce publicly available database of r-process yields varying BNS mass ratio and EOS

 ⚙️METHOD

● Set of 8 BNS merger simulations with different masses, EOSs and mass ratios

● Neutrino treatment: M1 gray scheme [Radice+22]

● Extract tracer particles for ejecta and assign mass accordingly

● Compute nucleosynthesis with WinNet [Reichert+23]



Ejecta analysis: Ye and angular distribution
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Credit: E. Loffredo



Ejecta analysis: Ye and angular distribution
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Ye (tmerger) = 0.10

Ye (tfinal) = 0.06

Credit: E. Loffredo



Ejecta analysis: Ye and angular distribution
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Ye (tmerger) = 0.10

Ye (tfinal) = 0.50

Credit: E. Loffredo



Ejecta analysis: final abundance distribution
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● Dynamical ejecta 

→ Production of elements in 2nd and 
3rd peak

● Neutrino wind 

→ Production of lighter elements

● Iron group elements among the most 
abundant irrespective of the EOS

➔ Nuclear input physics?

➔ Asymmetric mass ratios?

Credit: E. Loffredo
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