Work supported by NSF-CSSI, DOE-NP and MSU

https://imagesofvenice.com

Neutron transfer reactions as an indirect approach to (n,γ)

Filomena Nunes
Michigan State University

Michigan State University occupies the ancestral, traditional, and contemporary Lands of the Anishinaabeg—Three Fires Confederacy of Ojibwe, Odawa, and Potawatomi peoples.

The University resides on Land ceded in the 1819 Treaty of Saginaw.

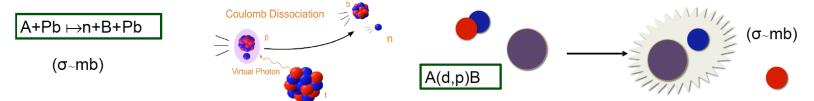
Outline

- → Bird's eye view of nuclear reactions
- Case study Cs isotopes

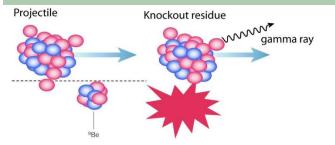
 - ♦ predictions
- ♦ Uncertainties
 - Bayesian optical model calibration
 - uncertainties in Hauser-Feshbach predictions
 - discussion of global approaches
- Opportunities for the future

Bird's eye view of nuclear reactions

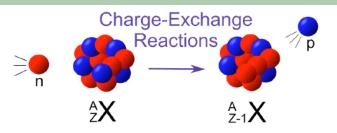
Probe of neutron capture: breakup and transfer



Probe of single-particle structure: knockout



Probe of electron capture: charge-exchange



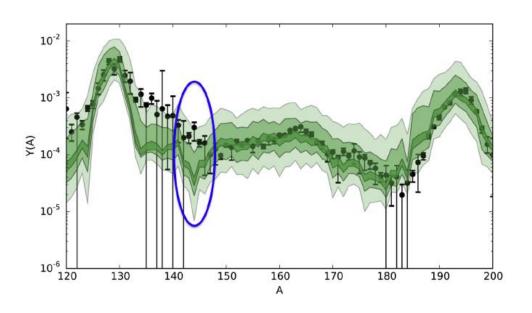
Reactions are the most diverse probes to extract astrophysics and structure information, especially for unstable isotopes...

But reaction theory is key for translation!

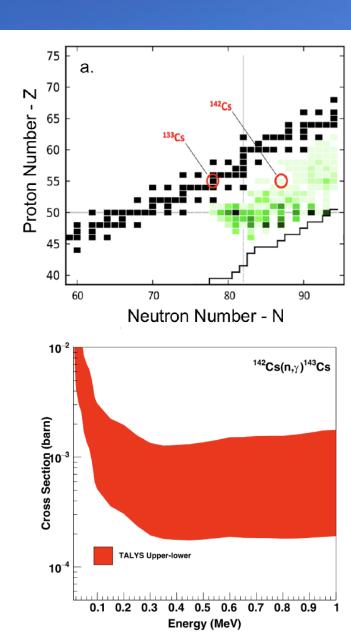
The 142 Cs(n, γ) case study

Constraining neutron capture rates for r-process nuclei in the A=140 region

Muecher, Spyrou, et al., Experiment approved for TRIUMF



Impact of uncertainties in (n,γ) rates on r-process abundances

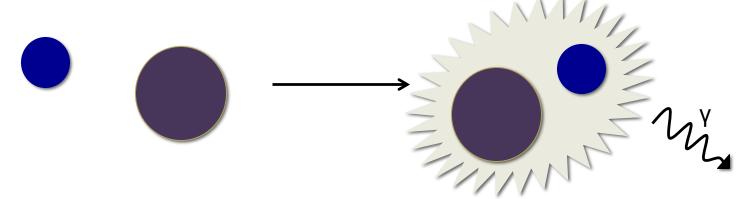


large uncertainties in cross sections for 142 Cs(n, γ)

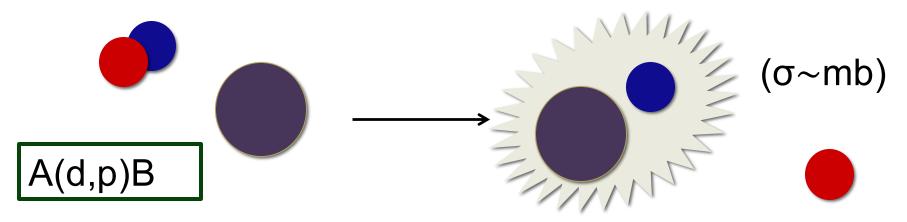
Liddick et al., Phys. Rev.Lett., 116:242502, 2016

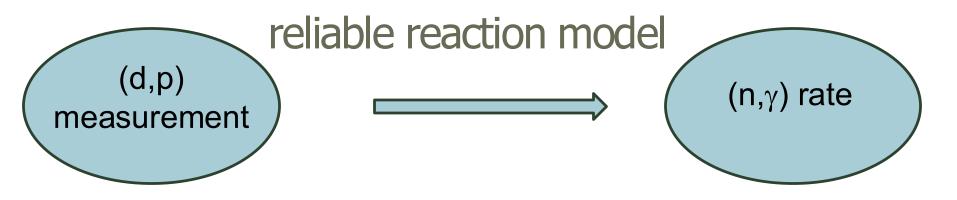
r-process: how do we measure neutron capture on unstable nuclei?

♦ (n,g) cross sections on unstable nuclei: Currently Impossible!



♦ (d,p) cross section offers an indirect measurement!





Compound nucleus $(d,p\gamma)$ is determined through:

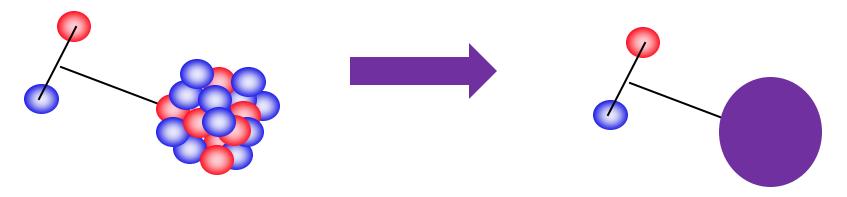
$$P_{\delta\!\chi}(E_{\mathit{ex}},\theta_p) = \sum_{J,\pi} F^{\mathrm{CN}}_{\delta}(E_{\mathit{ex}},J,\pi,\theta_p) G^{\mathrm{CN}}_{\chi}(E_{\mathit{ex}},J,\pi)$$

Entrance channel

compound decay

L-distributions in (d,p) are different from those in (n,γ) reaction theory provides essential input

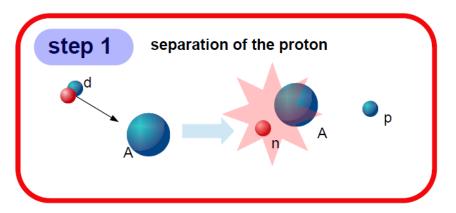
Reaction theory maps the many-body into a few-body problem



- ☐ isolating the important **degrees of freedom** in a reaction
- ☐ solve the **few-body dynamics** exactly
- ☐ effective nucleon-nucleus interactions (or nucleus-nucleus) usually referred to as **optical potentials**

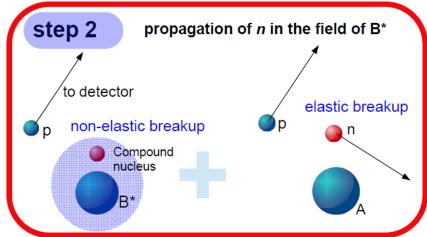
Theory for deuteron induced transfer: populating compound states in continuum

assume a two-step process



Source term generates flux from breakup

$$S = (\chi_p | (U_{Ap} - U_{Ad} + U_{An}) | \chi_d \phi_d \rangle$$



Neutron in the field of the target after breakup

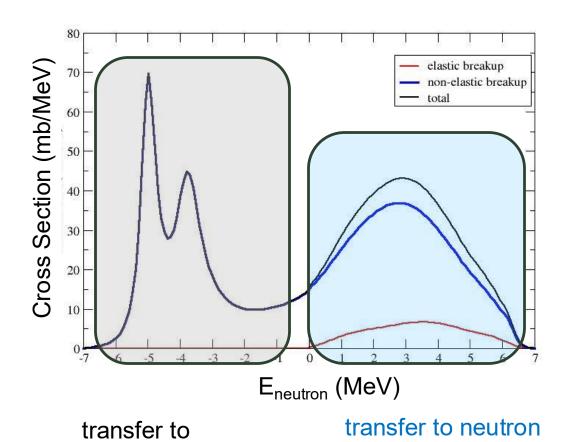
$$\Phi_n = G_B^{\text{opt}} S$$

Potel, Nunes, Thompson, PRC92 (2015) 034611

Predictions for ¹⁴²Cs(d,p) ¹⁴³Cs* at 12 MeV

unbound states

Comparing elastic and non-elastic breakup



bound states

Potel, greefeter code

Input Optical Potentials:

d-Cs: Lohr-Haeberly

N-Cs E<0: Re(KD)

p-Cs: KD

negligible

capture part

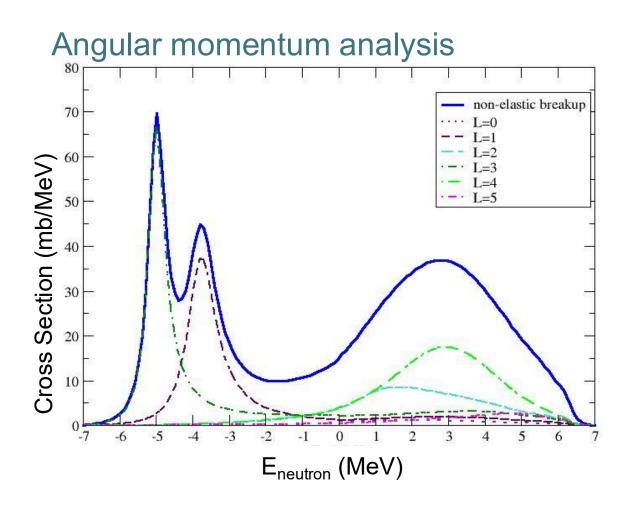
n-Cs E>0: KD

elastic breakup not

non-elastic breakup

corresponds to neutron

Predictions for ¹⁴²Cs(d,p) ¹⁴³Cs* at 12 MeV

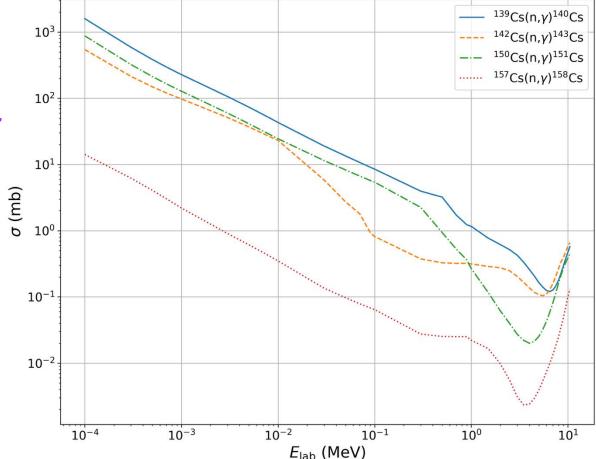


need L dependence to integrate the capture component with compound de-excitation

What do the $Cs(n,\gamma)$ cross sections look like?

no Cs(n, γ) data for A>137 A=157 is the predicted dripline!

Cs(n,γ) cross sections are large, well beyond A=137



Lifetimes: ¹³⁹Cs 9 min ¹⁴²Cs 1.7 s ¹⁵⁰Cs 81 ms

Samuel Sullivan, TALYS

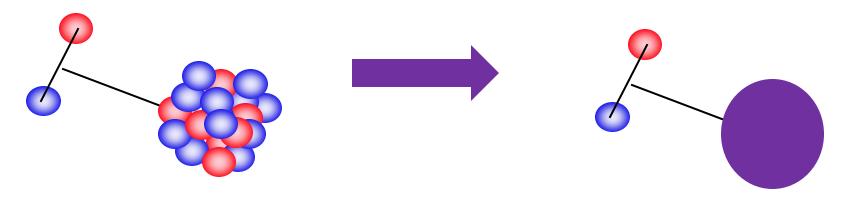
Outline

- ♦ Bird's eye view of nuclear reactions
- ♦ Case study Cs isotopes
 - ♦ astrophysical motivation
 - → reaction model for (d,p)
 - ♦ predictions

♦ Uncertainties

- Bayesian optical model calibration
- uncertainties in Hauser-Feshbach predictions
- discussion of global approaches
- ♦ Opportunities for the future

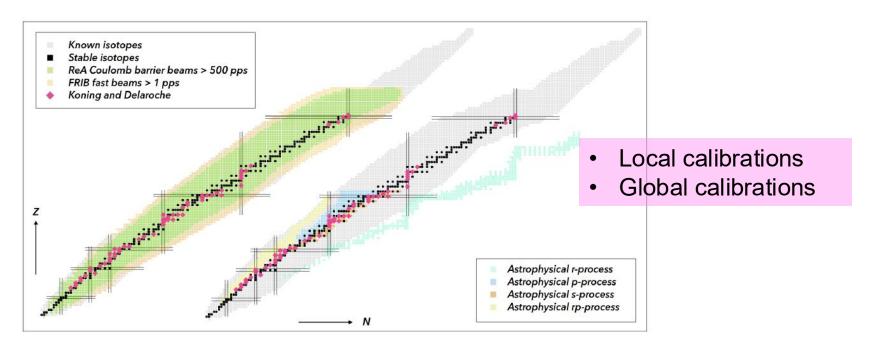
Reaction theory maps the many-body into a few-body problem



- ☐ isolating the important degrees of freedom in a reaction
- ☐ solve the **few-body dynamics** exactly
- ☐ effective nucleon-nucleus interactions (or nucleus-nucleus) usually referred to as **optical potentials**

Optical potentials are pervasive in reaction models

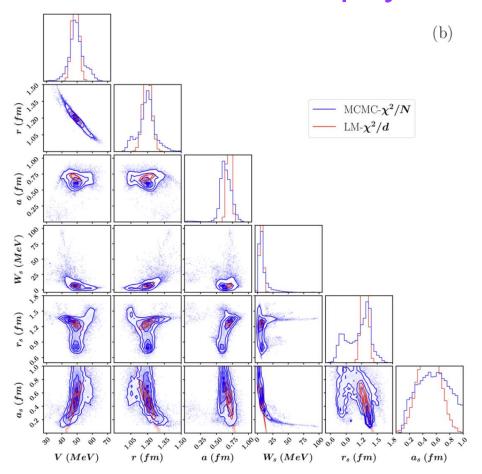
Inputs necessary for (n,γ) ; (p,γ) ; (p,n); (n,p); (d,p); (d,n); ... Inputs also for breakup, knockout and transfer on heavier probes



Reaction observables are very sensitive to details of the optical potential. For r-process, these are needed away from stability

Bayesian approach versus normal distributions?

When doing Uncertainty Quantification: statistical model + physics model + evidence

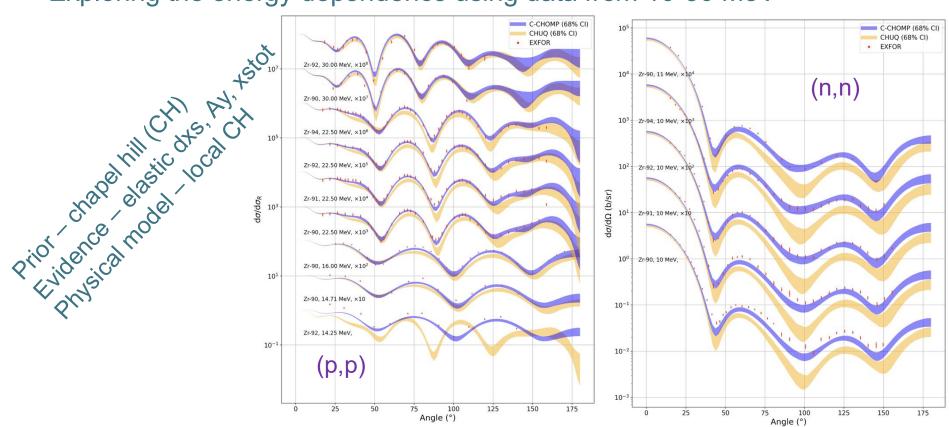


The more complex the model and the parameter space, the less likely that the normal distribution assumption is valid

Parameters are correlated UQ is not determined by varying them independently

Local calibrations of the optical potential

Bayesian Analysis of optical potential – isotopic chain approach ⁹⁰⁻⁹⁴Zr Exploring the energy dependence using data from 10-30 MeV

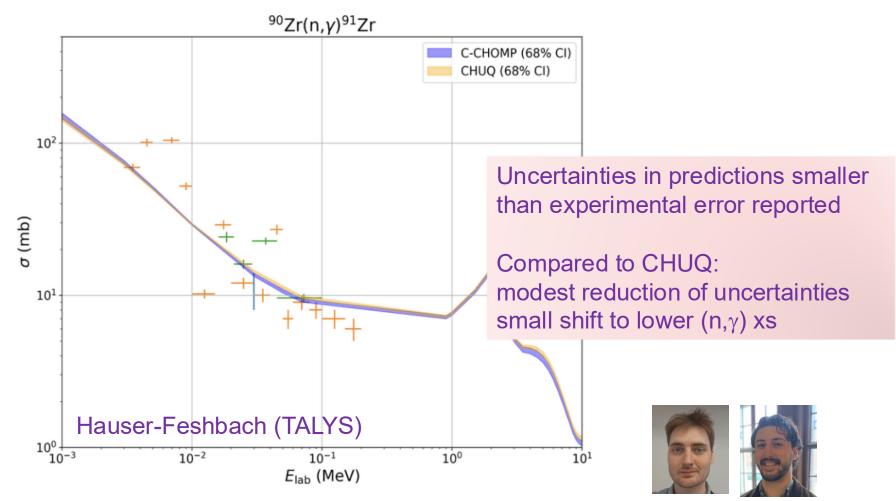


CHOMP potential has Lane form (appropriate isospin dependence) critical for extrapolating away from stability

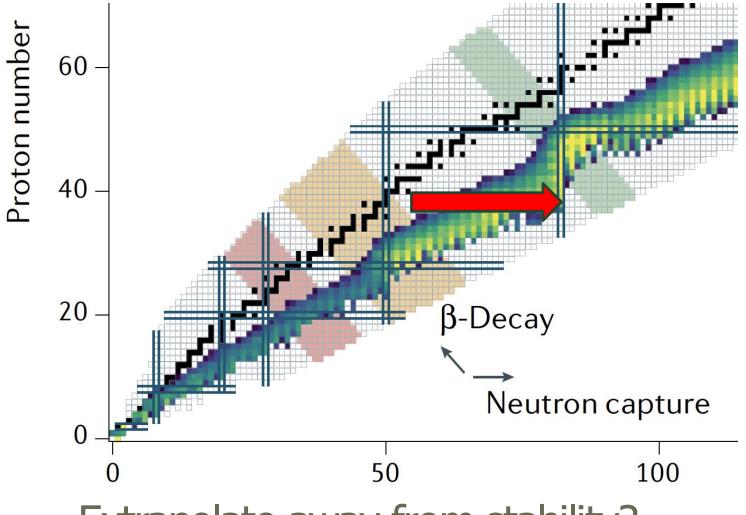
Sullivan, Beyer, Nunes, in preparation

Uncertainties in neutron capture for Zr

Bayesian Analysis of optical potential – isotopic chain approach 90-94Zr



Sullivan, Beyer, Nunes, in preparation



Extrapolate away from stability?

East Lansing Model (ELM) Global Lane-consistent optical potential including (p,n)

Incorporated into the optical potential by Lane⁴

$$U(r) = U_0(r) + 4\frac{\boldsymbol{\tau} \cdot \mathbf{T}}{A}U_1(r)$$

$$= U_0(r) + \underbrace{4\frac{\tau_3 T_3}{A}U_1(r)}_{(N-Z)/A \text{ dependence in elastic scattering}} + \underbrace{4\frac{\tau_+ T_- + \tau_- T_+}{2A}U_1(r)}_{(p, n) \text{ to isobaric analog}}$$

- ullet Previous Bayesian analysis of global optical potential 5 : scattering on stable isotopes poorly constrains U_1
- ullet hence, large uncertainties for $(p,n)^6$ and for reactions on highly asymmetric isotopes 7

Goal: construct a Lane-consistent, uncertainty-quantified global optical potential including $(p, n)_{IAS}$ as a constraint

Bayesian Calibration of ELM

Evidence: data curation

- balance model fidelity: for now, even-even 0⁺ isotopes only
- 40 ≤ A ≤ 208
- $10 \text{ MeV} < E_{\text{lab}} < 200 \text{ MeV}$
- $d\sigma/d\Omega$ and A_y from elastic (p,p), (n,n)
- $d\sigma/d\Omega$ with clean $\Delta J^\pi=0^+$ from $(p,n)_{IAS}$
- over 100 EXFOR entries

github.com/beykyle/exfor_tools

Physical model:

form inspired by Chapel Hill but separate geometries for isoscalar and isovector

Statistical model: likelihood

$$\ln p(\mathcal{D}|\alpha, \mathcal{M}) = -\frac{1}{2} \left(\Delta^{\top} \cdot \Sigma \cdot \Delta + \ln \left((2\pi)^{k} |\Sigma| \right) \right)$$
$$\Delta_{i}(\alpha) = y_{\mathcal{M}}(x_{i}, \alpha) - y_{i}$$
$$\Sigma_{ij}(\alpha) = \delta_{ij} \left(\sigma_{exp,i}^{2} + \sigma_{UFU,i}^{2} \right)$$

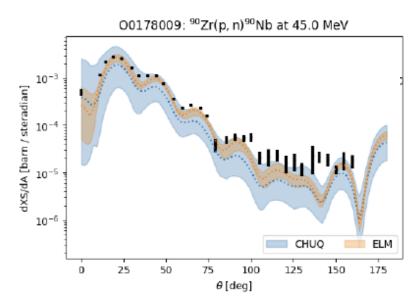
- ullet Σ approximated as diagonal
- unaccounted-for-uncertainty is a free parameter

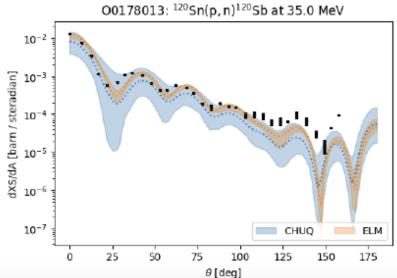
$$\sigma_{UFU,i} \equiv \frac{1}{2} \epsilon(y_{\mathcal{M}}(x_i, \alpha) + y_i)$$

no re-scaling of covariance or likelihood!

github.com/beykyle/rxmc

ELM results: credible intervals for stable isotopes





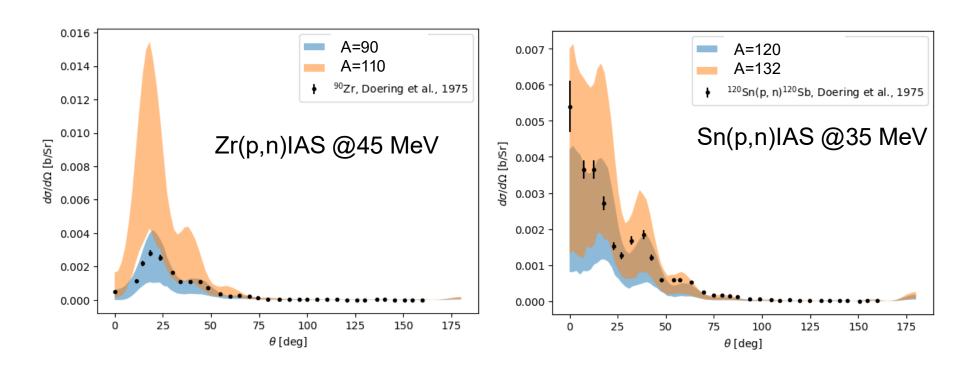
Inner 90% credible intervals of ELM and CHUQ^a

- Good simultaneous description of elastic and $(p,n)_{IAS}$
- isovector potential extends ~ 0.9 fm further than isoscalar, with little A-dependence
- isovector diffuseness stiffer(smaller) than isoscalar
- consistent with interpretation in Danielewicz^b

^aPruitt et al. 2023, *Physical Review C* 107(1), p. 014602 ^bDanielewicz et al. 2017, *Nuclear Physics A* 958, pp. 147–186

Beyer, Nunes, in preparation

ELM: extrapolation to neutron-rich isotopes



Cross section uncertainties dominated by model uncertainties:

grows as (N-Z)/A

East Lansing Model:

- need to validate for rare isotopes and connect with EOS
- improvements: dispersion relation to connect bound states and continuum states
- integrate with existing codes like TALYS so it becomes widely available

ELM-UQ propagation to (n,g) and to (d,p) away from stability

Impact in r-process nucleosynthesis?

Future Opportunities

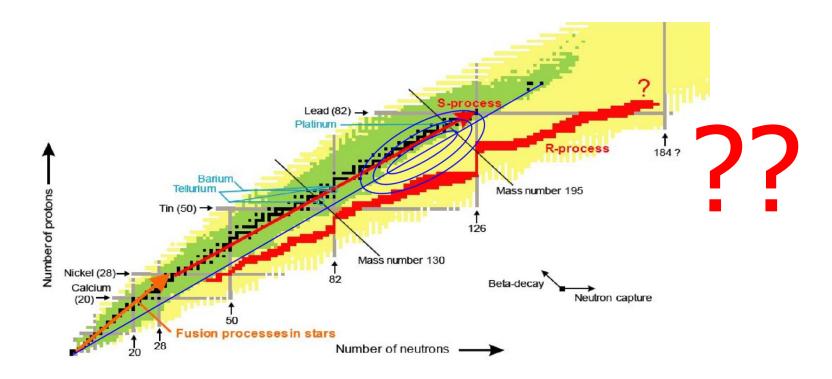
Hauser Feshbach is the working horse:

- couplings between channels introduce corrections (direct versus resonant versus compound)
- Often assumption of Gaussian Orthogonal Ensemble (very different from Nuclear Shell Model)
 Testing these assumptions

Impact for neutron capture?

Future opportunities

Heavy nuclei away from stability are important for r-process How can we measure (n,γ) on these superheavy rare isotopes? How to produce them in the laboratory?



The few-body reactions group at FRIB

Filomena Nunes

Chloë Hebborn

Kyle Beyer

Patrick McGlynn

Ibrahim Abdurrahman

Cate Beckman

Manuel Catacora Rios

Andy Smith

Daniel Shiu

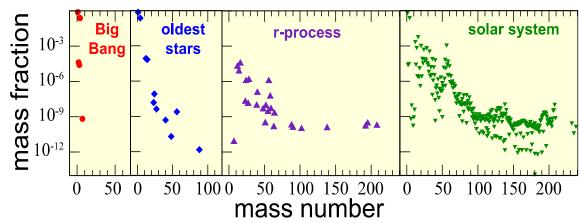
Pablo Giuliani

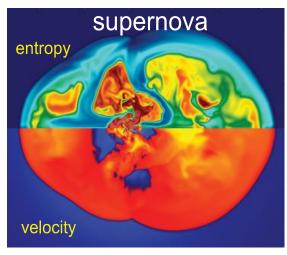
Grigor Sargsyan

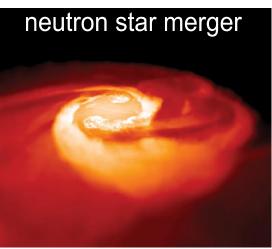
Zetian Ma

backup

Bird's eye view of nuclear reactions







Nuclear reactions got us from the lightest elements all the way to the wide range of elements found in our solar system!

Extra slides: ELM physical model

$$U(r, E, A, Z) = U_0(r, E, A) \pm \frac{N - Z}{N + Z} U_1(r, E, A) + V_C$$

$$U_0(r, E, A) = V_0(E) f((r - R_0(A))/a_0) + iW_0(E) f((r - R_w(A))/a_w) - 4ia_w W_{s,0}(E) \frac{d}{dr} f((r - R_w(A))/a_w) + 2 (\sigma \cdot \ell) V_{so} \frac{1}{r} \frac{d}{dr} f((r - R_{so}(A))/a_{so})$$

$$U_1(r, E, A) = V_1(E) f((r - R_1(A))/a_1) - 4ia_w W_{s,1}(E) \frac{d}{dr} f((r - R_w(A))/a_w)$$

$$f(x) = \frac{1}{1 + \exp(x)}$$

$$R_i(A) = r_{i,0} + r_{i,A} A^{1/3}$$

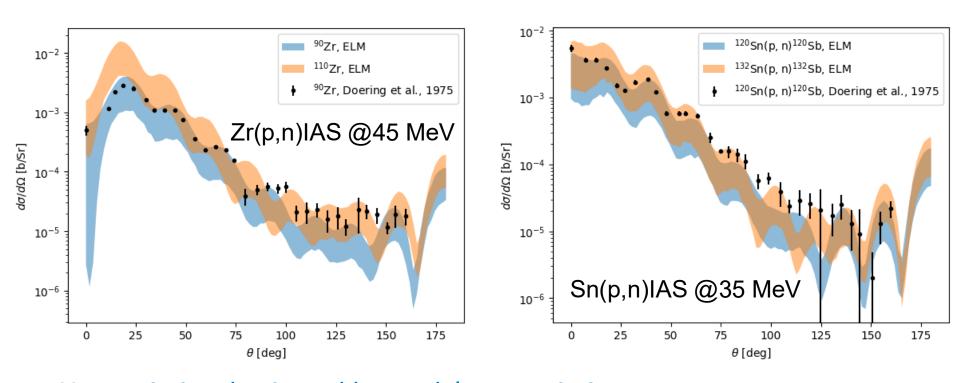
$$E_C = 6Z \alpha \hbar c / 5R_C$$

$$V_{0(1)}(E) = V_{0(1)} - \alpha (E - E_C)$$

$$W(E) = W / \left(1 + \exp\left(\frac{\eta_W - (E - E_C)}{\lambda_W}\right)\right)$$

$$W_{s,0(1)}(E) = W_{s,0(1)} / \left(1 + \exp\left(\frac{(E - E_C) - \eta_s}{\lambda_s}\right)\right)$$

ELM: extrapolation to neutron-rich isotopes



Uncertainties dominated by model uncertainties defined as percent of cross section: grows as (N-Z)/A

Beyer, Nunes, in preparation

The Optical Potential is an essential ingredient in reaction theory



It's the projection of the many-body scattering problem on the ground state: $P\Psi(\vec{r}, \vec{r}_1, \dots, \vec{r}_A) = \phi_0(\vec{r})\Phi_0(\vec{r}_1, \dots, \vec{r}_A)$

End up with a single-channel scattering equation with potential:

$$V_{\text{opt}} = \mathcal{V}_{00} + \sum_{j,k \neq 0} \mathcal{V}_{0j} \frac{1}{E - H_{jk} + i\eta} \mathcal{V}_{k0}$$

$$U_{opt} = V(R) + iW(R)$$

Thomas Bayes (1701-1761)

Bayesian statistics

Bayes'Theorem

$$P(\mathcal{H}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathcal{H})P(\mathcal{H})}{P(\mathcal{D})}$$

Posterior probability that the model/parameters are correct for seeing the bata ?

Likelihood $\mathbb P$ how $\mathbb P$ well the $\mathbb P$ how $\mathbb P$ describe the $\mathbb P$ has a $p(D|H)=e^{-\chi^2/2}$

Evidence Imarginal Indistribution In formation In the Indistribution Indistribution In the Indistribution Indistribut

nuclear theory

Optical Potential

nuclear experiment statistics

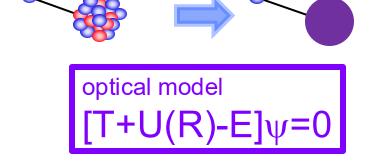
Amy Lovell (LANL)

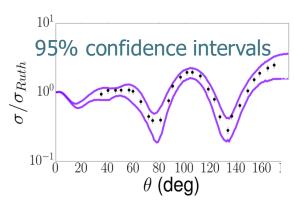
How to quantify uncertainties in reaction theory?

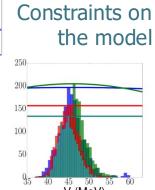
We develop a hypothesis (model) with a set of parameters (priors)

We confront it with reality (data) typically elastic scattering angular distributions (likelihood)

Use Bayes' Theorem +
Markov Chain Monte Carlo
with Metropolis to sample
parameter space







Setting up the UQ part

Priors p(H): Gaussians with mean at the BG global parameters and wide width

Data (D): real data or mock data generated from KD global parameters with 10% error

Likelihood p(D,H): assumption that data points are independent and errors are normally distributed

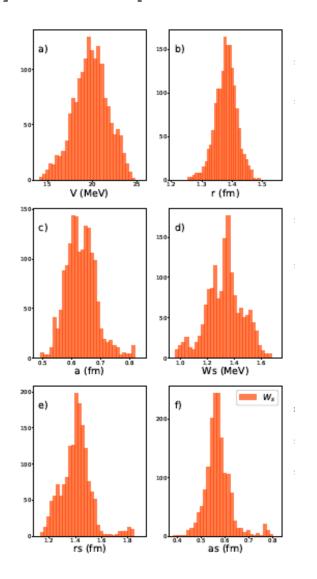
$$p(\mathbf{D}|\theta, f, \{\sigma_i^2\}) \propto \exp\left(\frac{-1}{2n} \sum_{i=1}^n \frac{\left(y_i - f(x_i, \theta)\right)^2}{\sigma_i^2}\right)$$
 θ : parameters σ : independent errors

x: angles

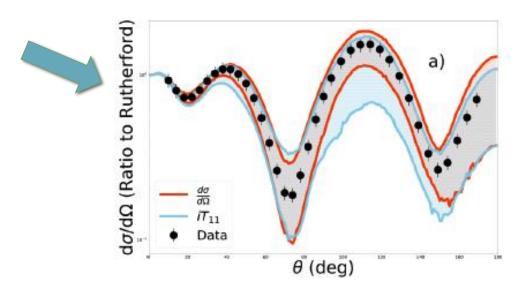
y: experimental cross section

f: model prediction for cross section

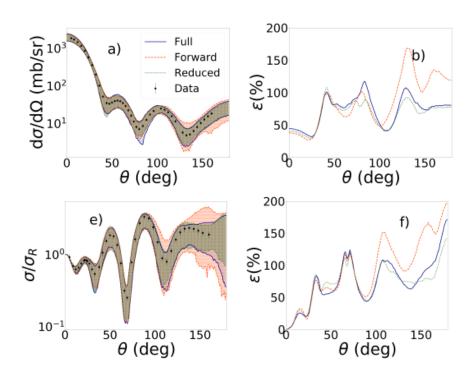
Bayesian: parameter posterior distributions



Create 95% confidence intervals for observable



What angular information needed?

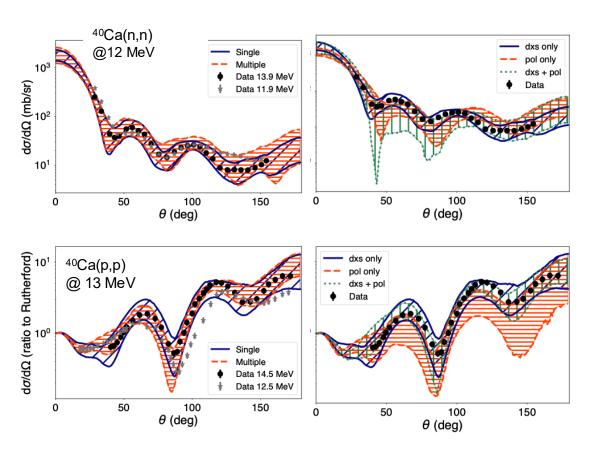


⁴⁸Ca(n,n)⁴⁸Ca at 12 MeV

⁴⁸Ca(p,p)⁴⁸Ca at 21 MeV

Single energy versus multiple energy sets? Polarization versus differential cross sections?

95% confidence intervals



King, Lovell, Neufcourt, Nunes PRL (2019) Catacora-Rios et al. PRC 100, 064615 (2019) Lovell, Nunes, Catacora-Rios, King, JPG (2020) Catacora-Rios et al. PRC 104, 064611 (2021)

What prior to use?

Priors encapsulate our prior knowledge (e.g. a previous global parameterization)

Use gaussian distributions on parameters How wide should these be?

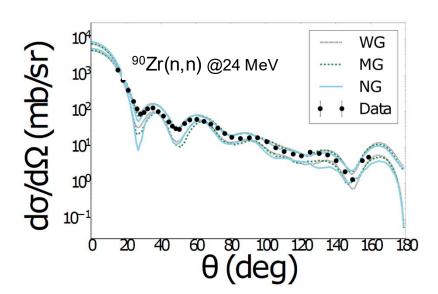
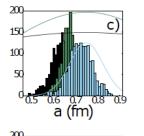


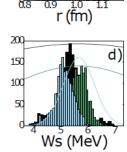
FIG. 2: (Color online) Comparison of the posterior distributions (histograms) resulting from various prior distributions (corresponding solid lines) for a wide Gaussian (WG), medium Gaussian (MG), and narrow Gaussian (NG) as defined in Table II for 90 Zr(n,n) 90 Zr at 24.0 MeV.



⁴⁰ (MeV)

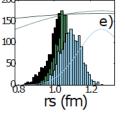
200

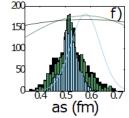
100

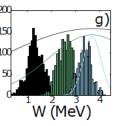


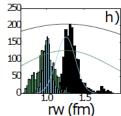
200

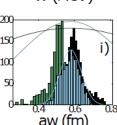
100

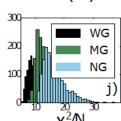












Which likelihood?

Complications:

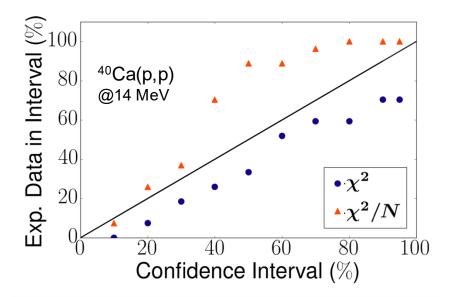
data correlations systematic errors on data underestimated

model correlations

model uncertainties

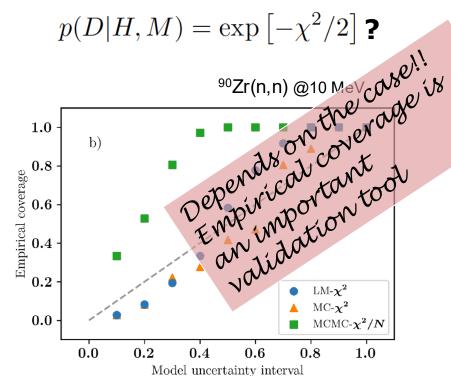
How to combine sets of angular distributions?

$$p(D|H,M) = \exp[-\chi^2/(2N)]$$
?



$$\chi^2 = \sum_{i=1}^{N} \frac{[\sigma_{\exp}(\theta_i) - \sigma_{\text{th}}(\theta_i, x)]^2}{[\Delta \sigma_{\exp}(\theta_i)]^2}$$

$$p(D|H,M) = \exp[-\chi^2/2]$$
 ?

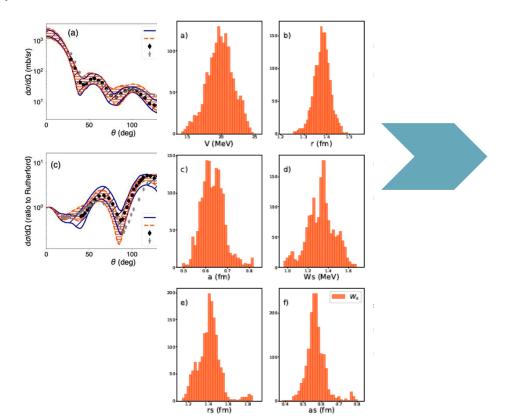


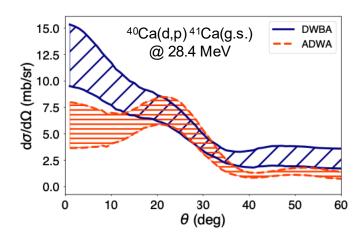
Pruitt, Lovell, Hebborn, Nunes, PRC under review (2024)

King et al., PRL 2019

Propagating uncertainties to transfer

OP constrained with elastic scattering to obtain posterior distributions for parameters

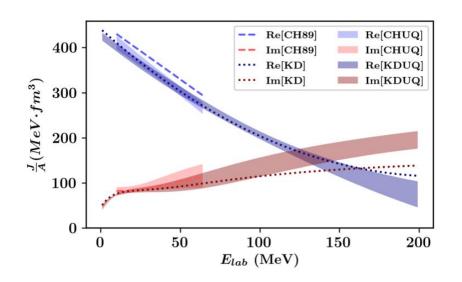


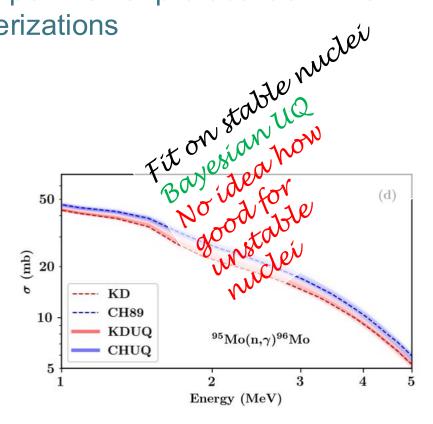


Propagate to other reaction observables

Uncertainty quantified **global** optical potential (CHUQ and KDUQ)

Bayesian analysis using the same experimental protocol as in the original CH89 and KD2003 parameterizations

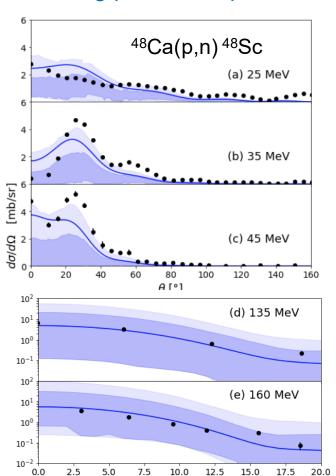




Pruitt et al., Phys. Rev. C 107, 014602 (2023)

OP uncertainties in charge exchange to IAS

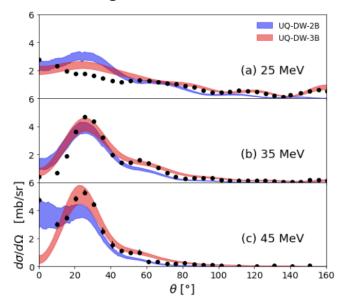
- DWBA formalism
- Using parameter posterior from KDUQ



 θ [°]

Dark shade (68% ci) Light shade (95% ci)

Comparing two-body and three-body models for charge exchange

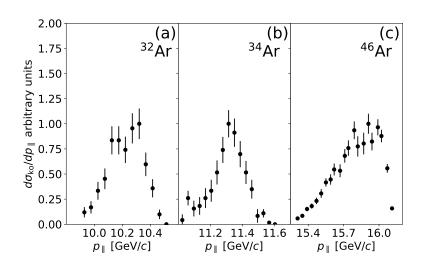


Smith, Hebborn, Nunes, Zegers, PRC accepted (2024)

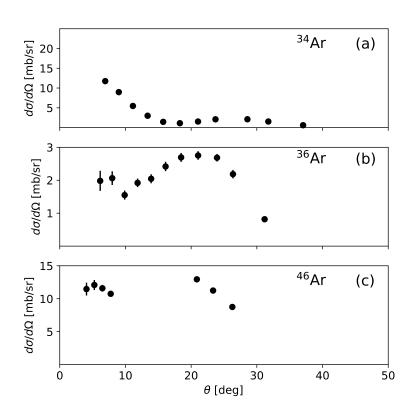
Propagating uncertainties to knockout

- Eikonal model
- Using parameter posterior from KDUQ

^{32,34,46}Ar on ⁹Be @ ~70 MeV A



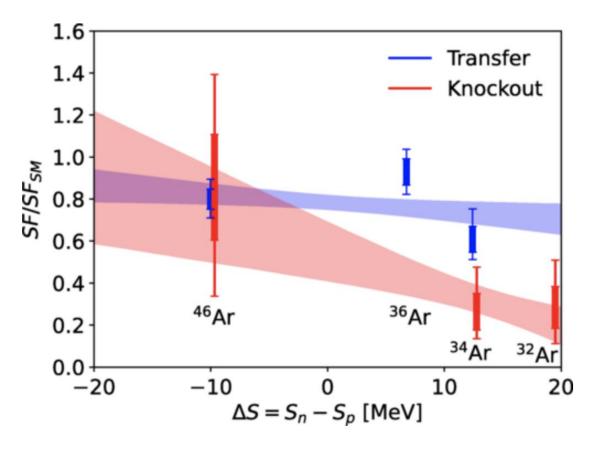
compare with a consistent ADWA study of transfer ^{34,26,46}Ar(p,d)



dark (light) shade: 68% (95%) credible intervals

Comparing knockout and transfer: linear fit

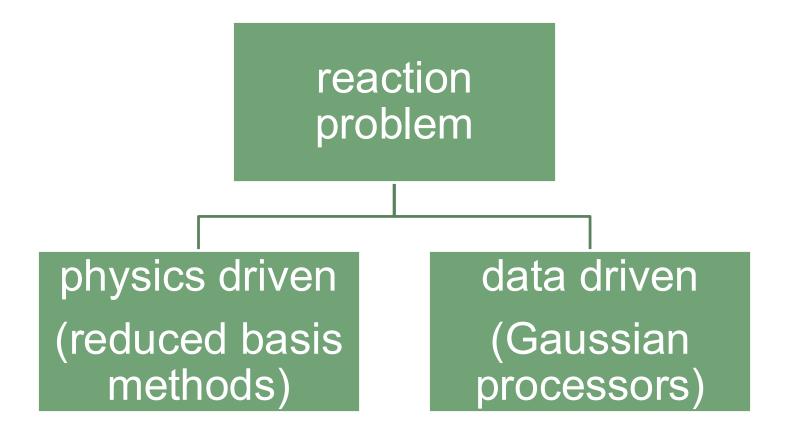
$$\mathcal{R}(\Delta S) = a\Delta S + b$$



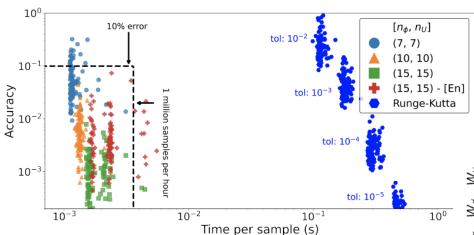
68% (95%) credible intervals

Emulators for nuclear reactions

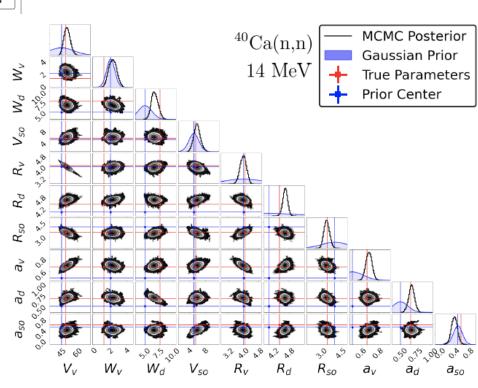
An emulator is a fast and efficient replacement for a complex physics model



Physics Driven Emulator ROSE: Reduced Order Scattering Emulator

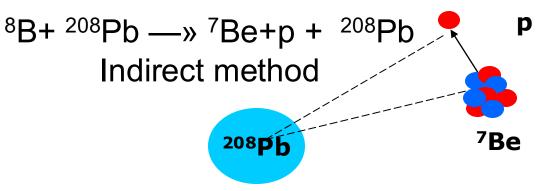


New software ROSE is 3 orders of magnitude faster than standard finite differences integration methods



Data driven emulator Breakup cross sections needed for astrophysics

Example: ⁷Be(p,γ)⁸B reaction relevant for solar fusion



Working horse for modeling these reactions:

Continuum Discretized Coupled Channel (CDCC)

Large scale (large memory requirements)

Long runs (many hours to days)

Impossible to do Bayesian analysis directly with CDCC!

Predictions: Angular distributions and energy distributions of fragments

Emulators for breakup cross sections

⁷Be(p,γ)⁸B reaction relevant for solar fusion

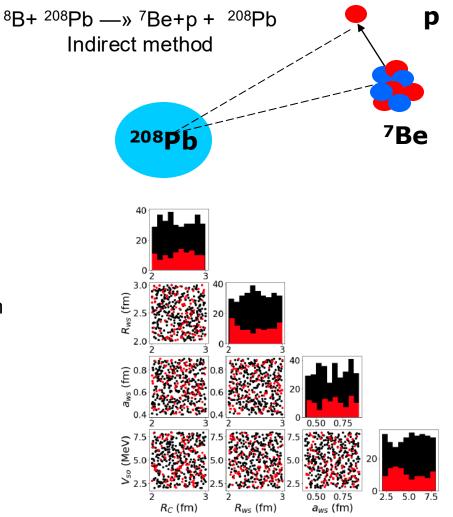
Continuum Discretized Coupled Channel Gaussian-processors emulator for breakup: Angular distribution and energy distribution

uncertainty from ⁷Be+p interaction

mock data generated for set of interactions from G. Goldstein et al., Phys. Rev. C 76, 024608 (2007)

TABLE I: Model parameters and their ranges.

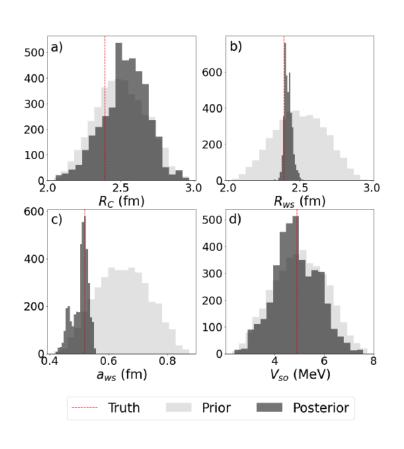
Parameter	Label	Range $[\underline{\rho_i}, \overline{\rho_i}]$
R_C	$ ho_1$	[2, 3] (fm) [2, 3] (fm) [0.4, 0.9] (fm)
R_{ws}	$ ho_2$	[2, 3] (fm)
a_{ws}	$ ho_3$	[0.4, 0.9] (fm)
V_{so}	$ ho_4$	[2, 8] (MeV)

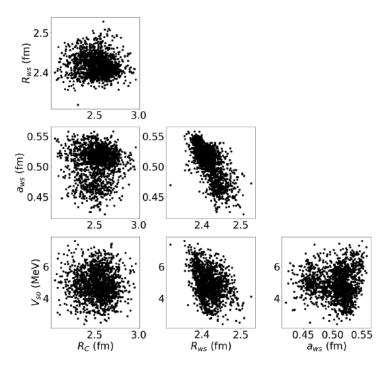


Training

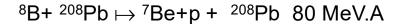
Emulators for breakup cross sections

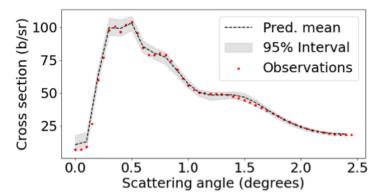
Posterior distributions and correlation plots



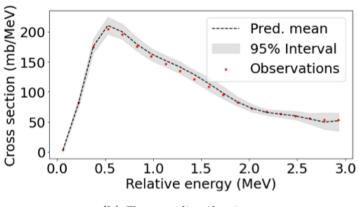


Emulators for breakup cross sections





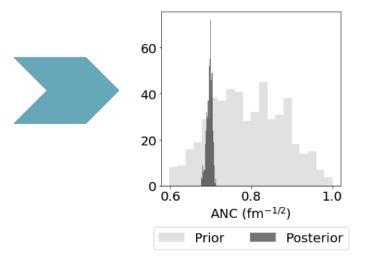
(a) Angular distribution.



(b) Energy distribution.

Continuum Discretized Coupled Channel Gaussian-processors emulator for breakup: Angular distribution and energy distribution

uncertainty from ⁷Be+p interaction



Excellent constraint on S₁₇

Opportunities for the future

- Optical potential validated for rare isotopes:
 - full UQ, global; ab-initio priors; extension to heavy-ions
- Bayesian analysis for complex reactions models:

fast and accurate emulators

Uncertainty
quantification:
How to combine wide
array of data?

Choice of likelihood

Model comparison: which model is the optimum model and should we combine them?

Model mixing

Data comparison:
which data contains
maximum
information?

Experimental design

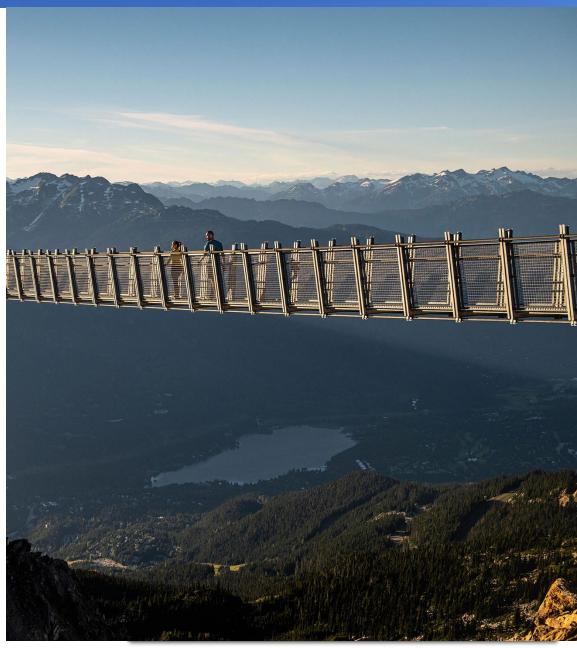
Collaborators:

Bayesian Analysis: Amy Lovell (LANL) Chloe Hebborn (MSU) Garrett King (WashU) Manuel Catacora-Rios (MSU) Cole Pruitt (LLNL)

Charge Exchange: Terri Poxon-Pearson (NNSA) Gregory Potel (LLNL) Andy Smith (MSU) Chloe Hebborn Remco Zegers

Knockout: Chloe Hebborn Amy Lovell

Emulators: BAND collaboration



Work supported by NSF and DOE

Landscape of global optical potentials

