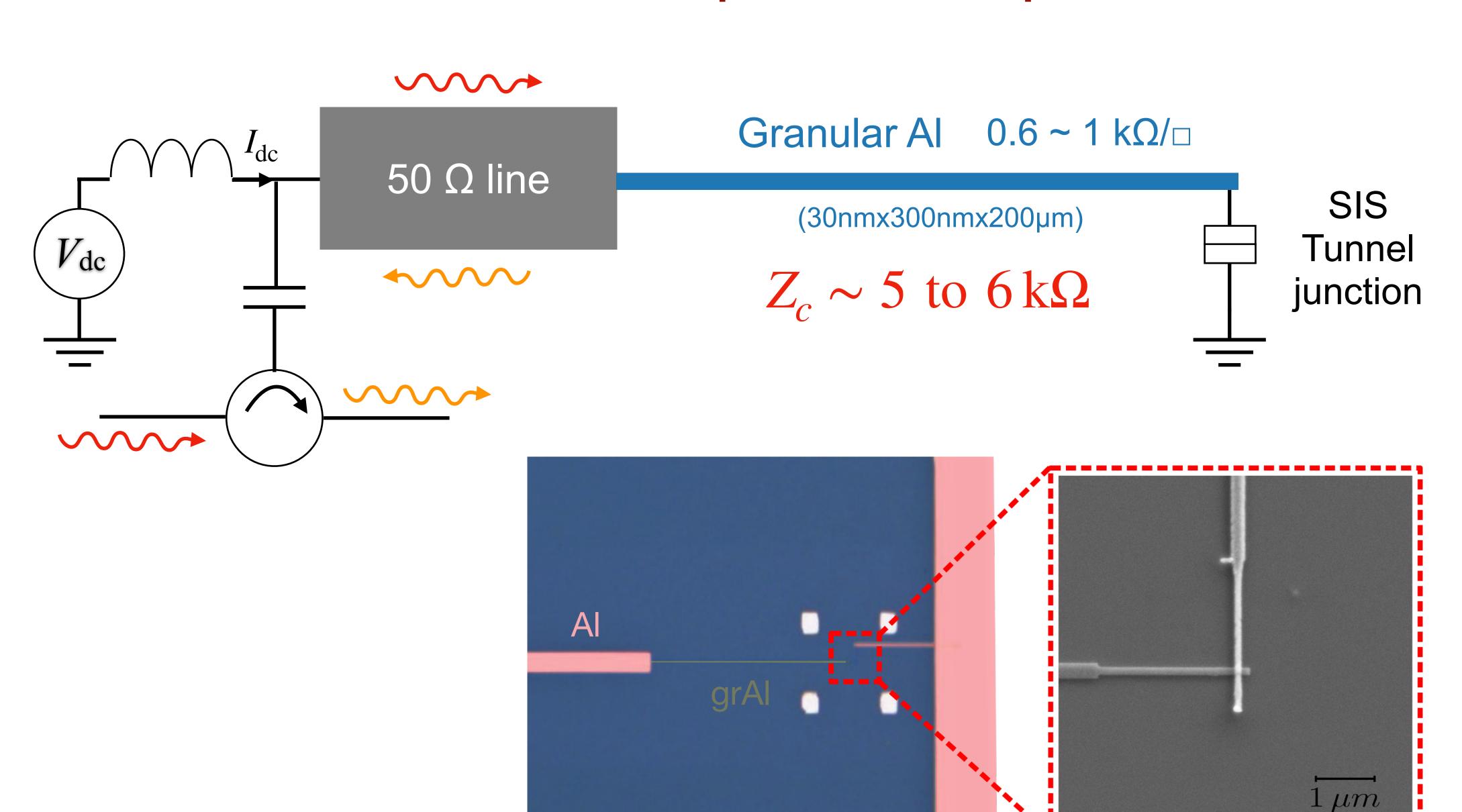
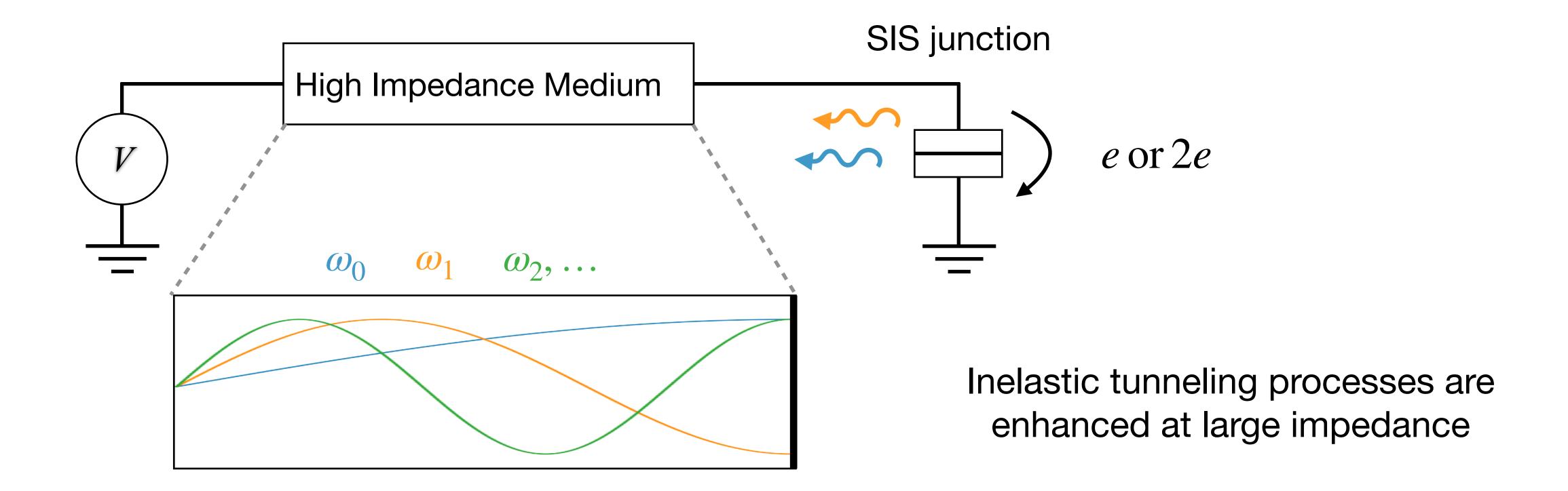
Simulating Quantum Impurity Models in High Impedance Circuits

Gianluca Aiello, Ognjen Stanisavljevic, Marco Aprili, Julien Gabelli, Julien Basset & Jérôme Estève

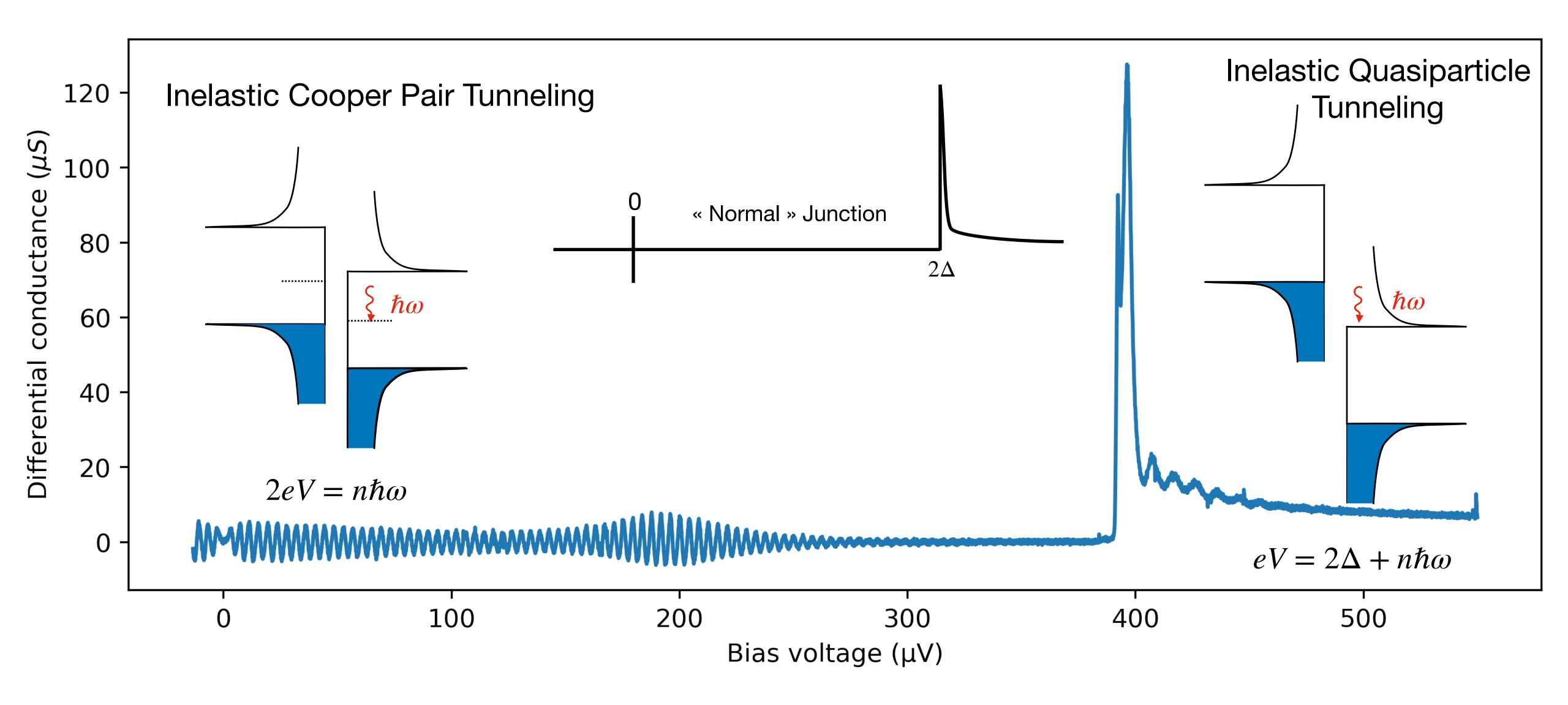
NS2 Group, Laboratoire de Physique des Solides, Orsay

Sample & Setup

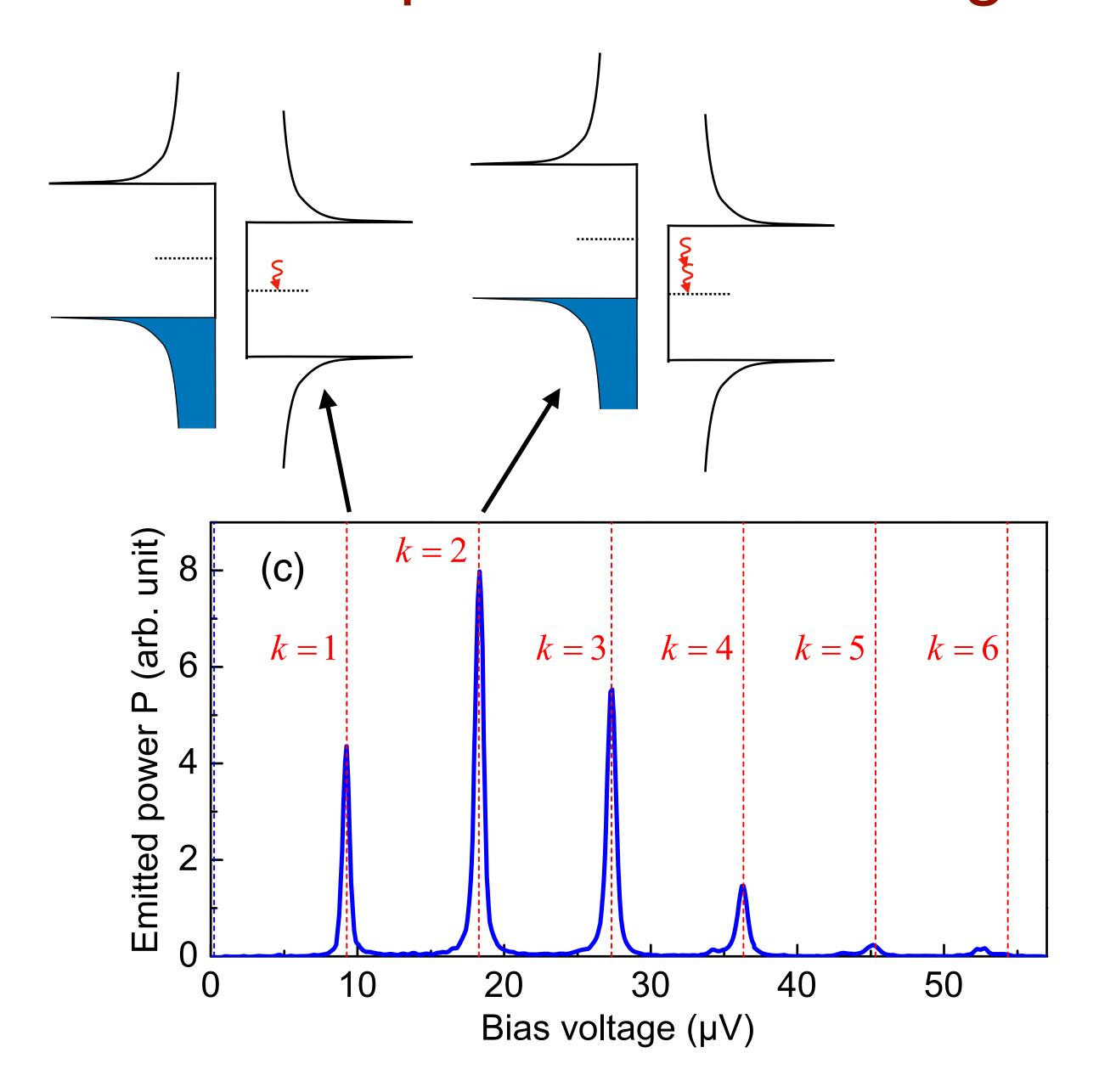




Junction Conductance



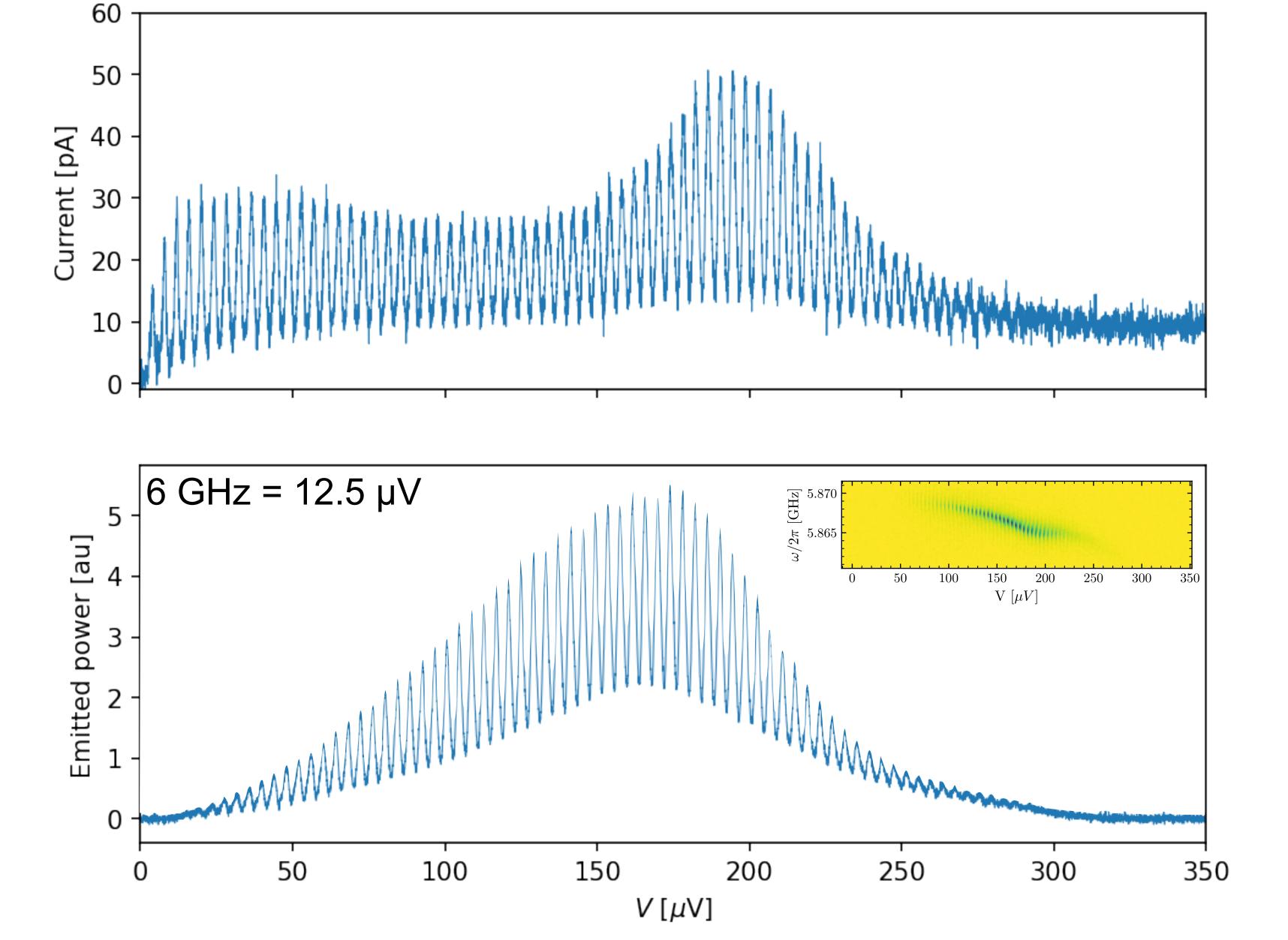
Inelastic Cooper Pair Tunneling in a Single Mode Environment

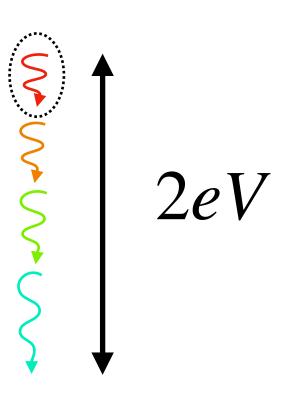


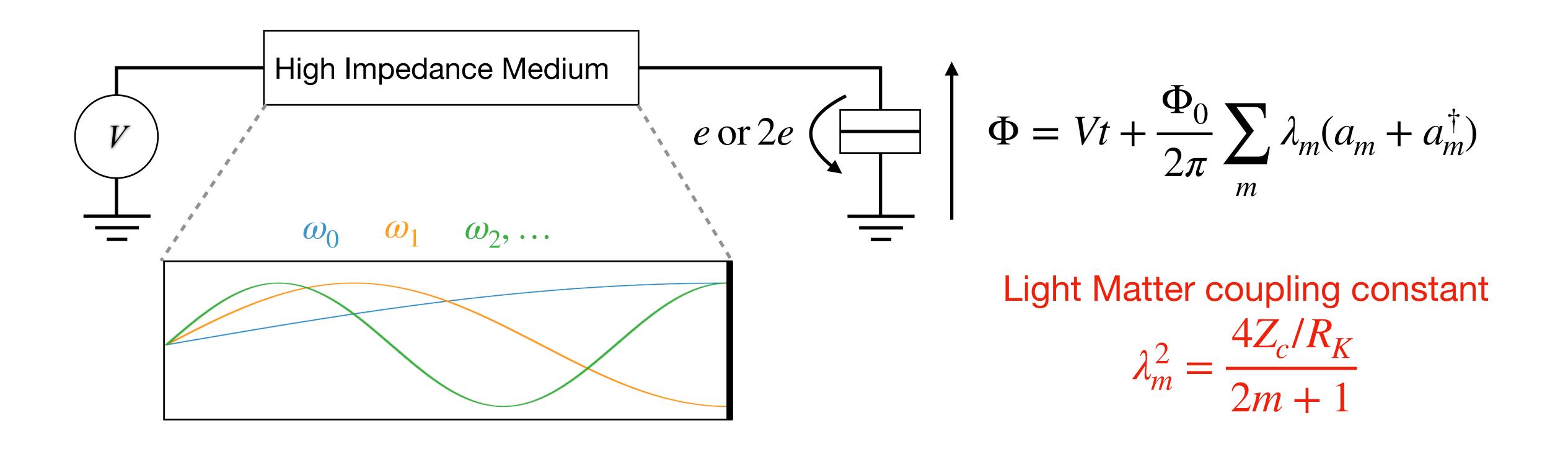
One Cooper pair gives k photons when $2eV=k\hbar\omega$

Hofheinz et al. PRL **106**, 217005 (2011) Rolland et al. PRL **122**, 186804 (2019) Ménard et al. PRX **12**, 021006 (2022)

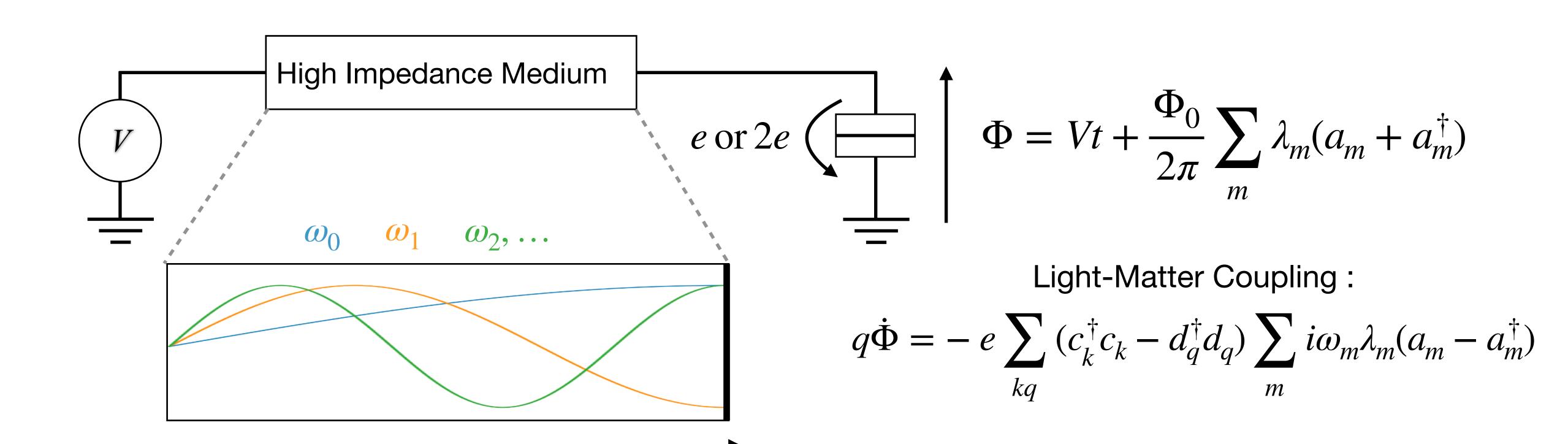
Inelastic Cooper Pair Tunneling in a Multimode Environment



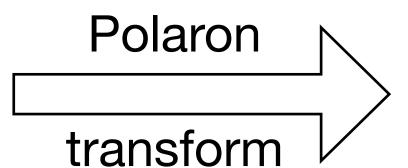




 $Z_c = 5$ to $6 \, \mathrm{k}\Omega \Rightarrow$ Strong coupling regime $\lambda_m \sim 1$



Tunneling : $c_k^{\dagger}d_q^{}+\mathrm{hc}$

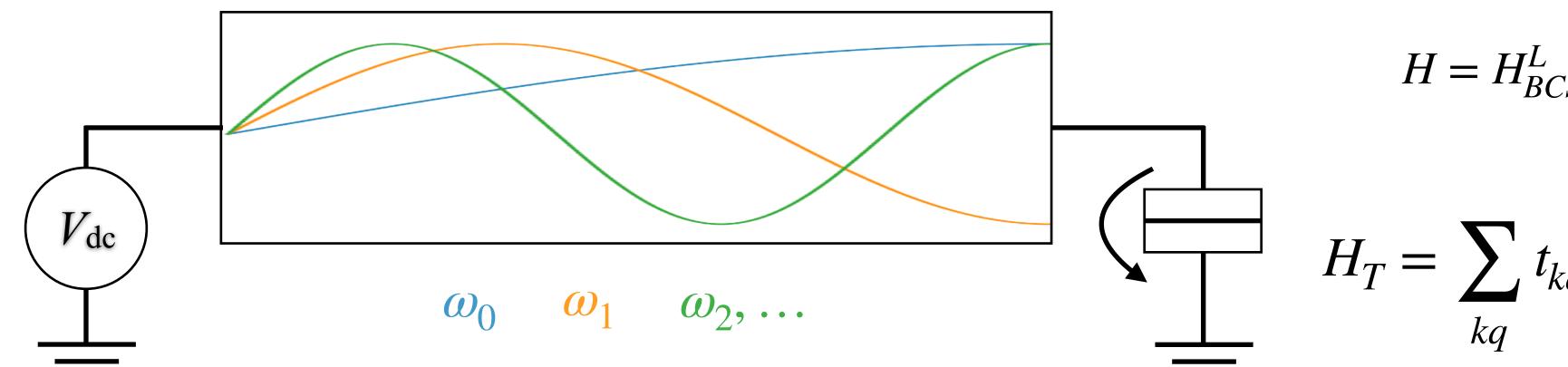


e or 2e

$$c_k^{\dagger} \hat{d}_q e^{ie\hat{\Phi}/\hbar} + hc = \hat{c}_k^{\dagger} \hat{d}_q e^{\sum_m i\lambda_m (\hat{a}_m + \hat{a}_m^{\dagger}) + ieVt/\hbar} + hc$$

Analogous to electron-phonon coupling (Holstein)

Charge translation of the environment modes



$$H = H_{BCS}^{L} + H_{BCS}^{R} + H_{T} + \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m}$$

$$H_T = \sum_{kq} t_{kq} \hat{c}_k^{\dagger} \hat{d}_q e^{\sum_m i\lambda_m (\hat{a}_m + \hat{a}_m^{\dagger}) + ieVt/\hbar} + \text{hc}$$

Inelastic Cooper pair tunneling at low energy:

$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} - E_{J} \cos \left[\sum_{m} \lambda_{m}^{(\text{CP})} (a_{m}^{\dagger} + a_{m}) + 2eVt/\hbar \right]$$

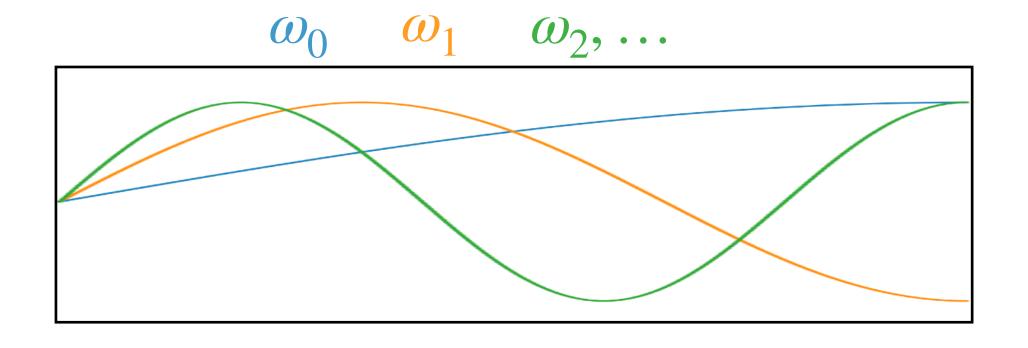
$$\lambda^{(\text{CP})} = 2\lambda$$

Inelastic QP tunneling at high energy:

$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} + \sum_{k} \epsilon_{k} c_{k}^{\dagger} c_{k} + \sum_{q} \epsilon_{q} d_{q}^{\dagger} d_{q}$$

$$+ \sum_{kq} t_{kq} \hat{c}_{k}^{\dagger} \hat{d}_{q} e^{\sum_{m} i \lambda_{m} (\hat{a}_{m} + \hat{a}_{m}^{\dagger}) + i eVt/\hbar} + \text{hc}$$

Perturbation Theory For Inelastic CP Tunneling



Ideal quarter wavelength configuration:

$$\omega_m = (2m+1)\omega_0$$
 $\lambda_m^2 = \frac{\lambda^2}{2m+1}$ $\Lambda^2 = \sum_m \frac{\lambda^2}{2m+1}$

Inelastic current:

Phase correlation function:

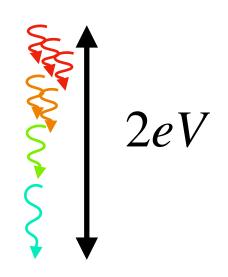
$$\langle e^{i\hat{\phi}(t_1)}e^{-i\hat{\phi}(t_2)}\rangle \approx e^{-\Lambda^2} \sum_{n} \frac{n^{\lambda^2/2-1}}{\Gamma(\lambda^2/2)} e^{in\omega_0(t_2-t_1)}$$

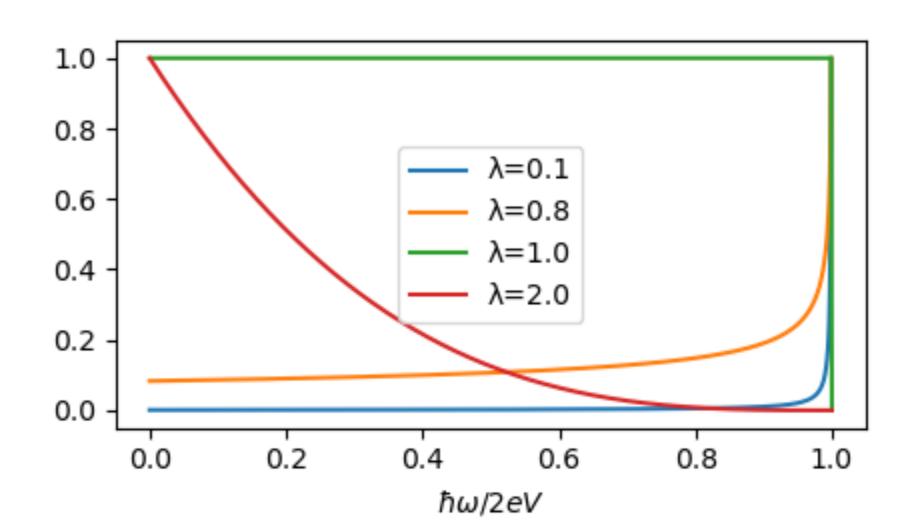
 $I \propto (2eV)^{2\lambda^2 - 1}$

Spectral density of emitted photon:

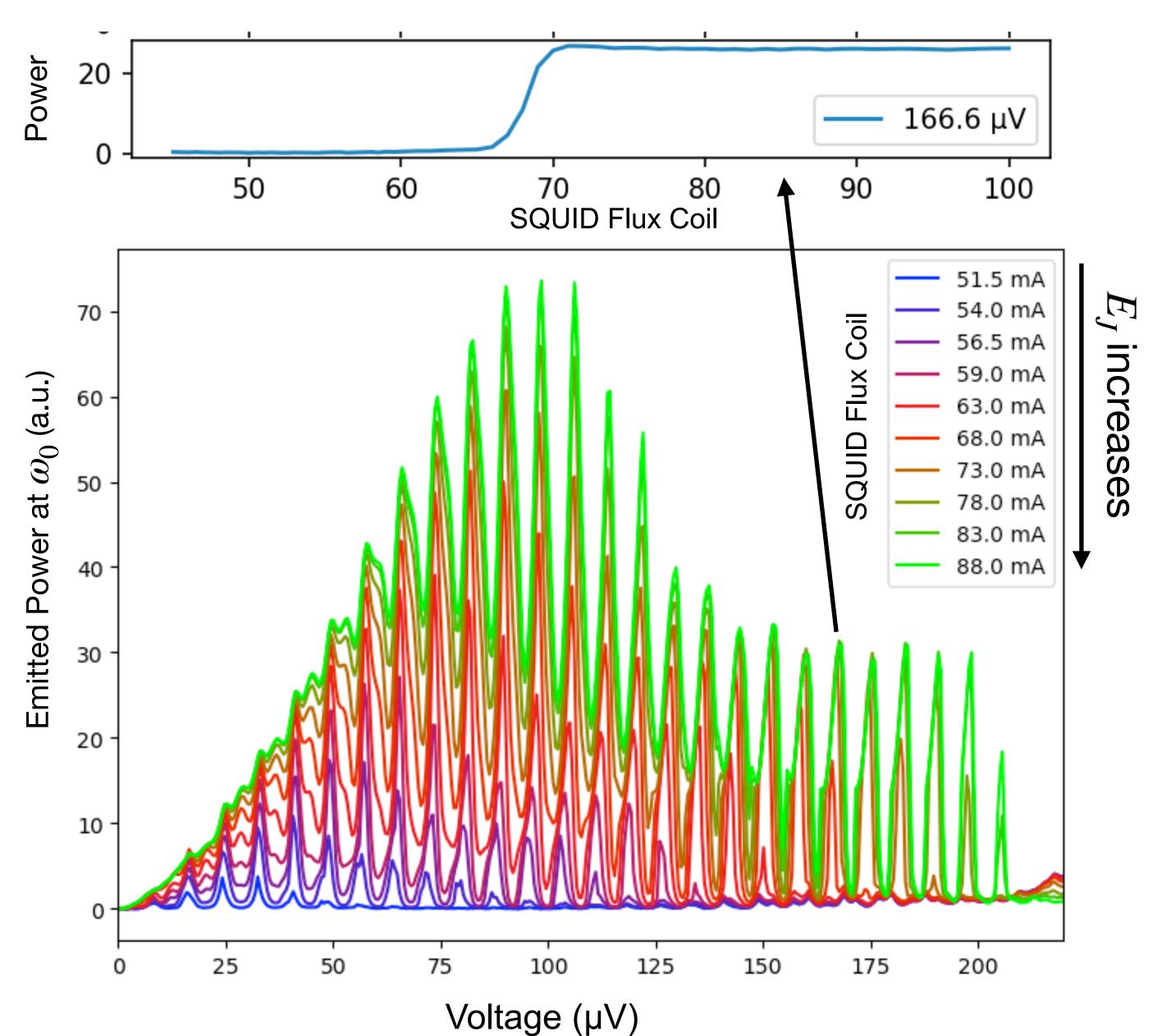
$$\rho(\omega) \propto (2eV - \hbar\omega)^{\lambda^2 - 1} \theta(2eV - \hbar\omega)$$

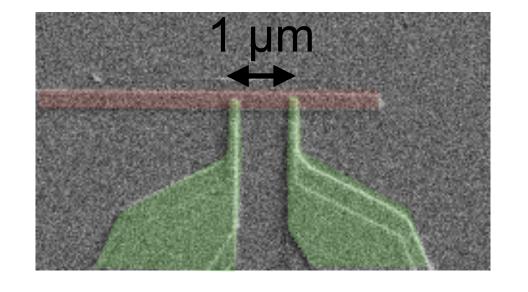
First order in ${\cal E}_J$ aka ${\cal P}(E)$ theory

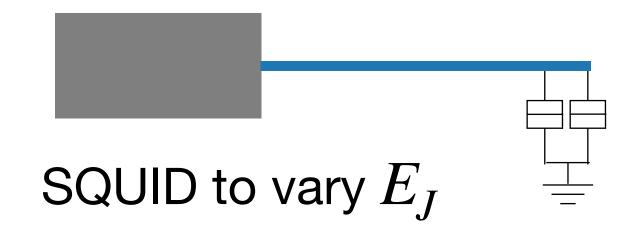




Emission at low and high E_{J}







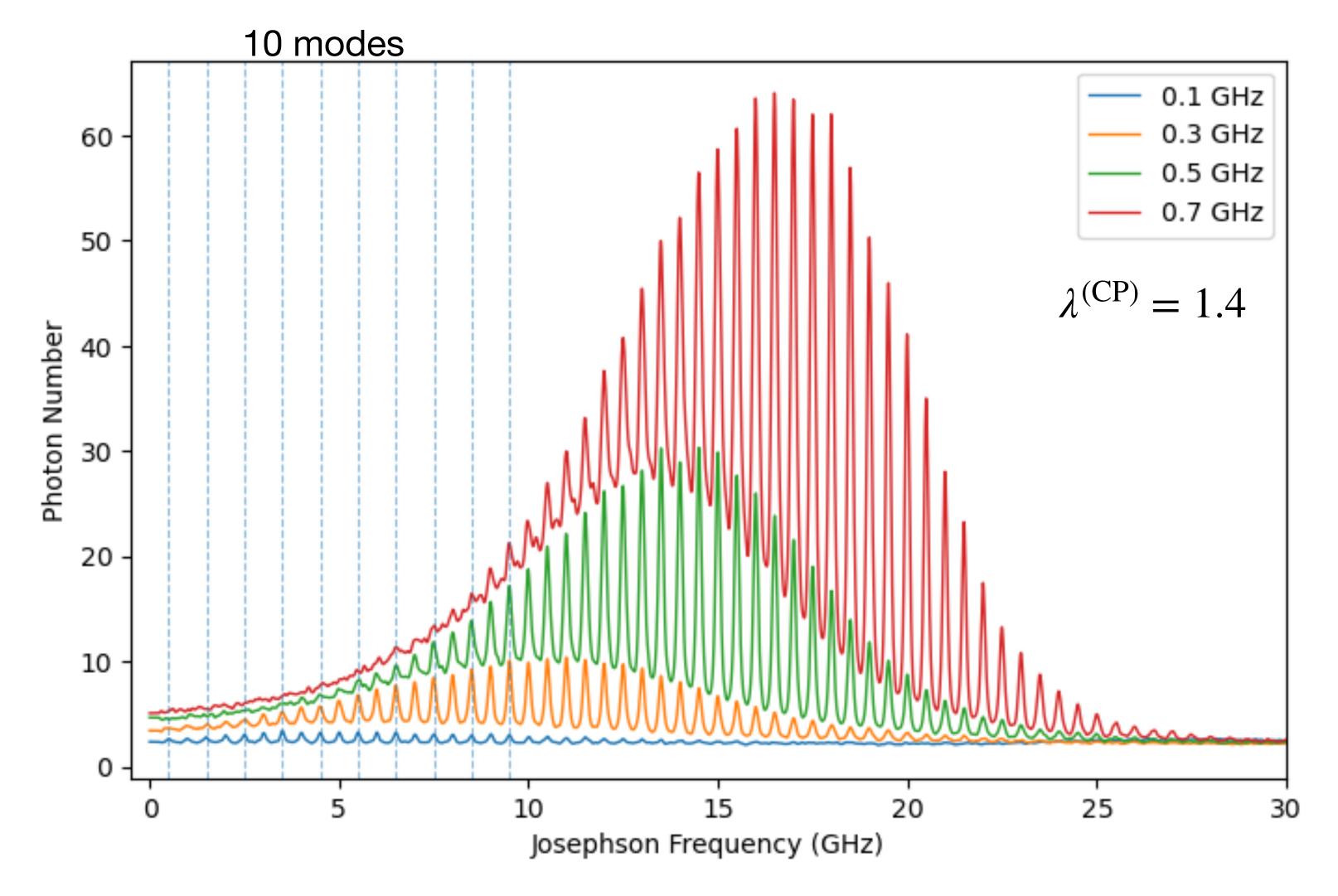
Broad emission is a non-linear effect at high E_J/κ

No broad emission in the perturbative limit

Finite Size Effects 😔

Truncated Wigner Approximation

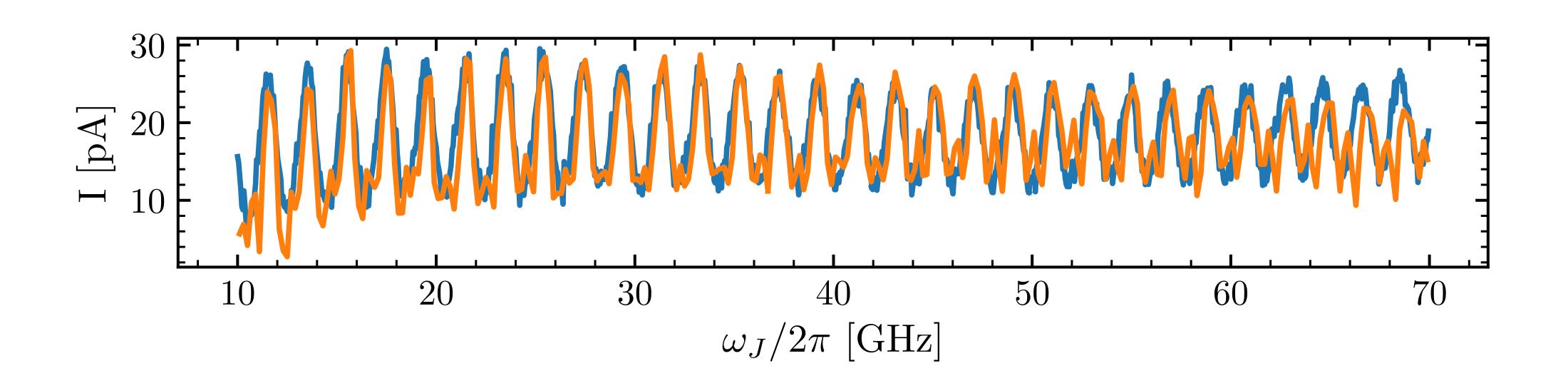
$$W(x_1, ..., y_1 - \lambda_1, ..., y_M - \lambda_M) - W(x_1, ..., y_1 + \lambda_1, ..., y_M + \lambda_M) \approx -\sum_{m} 2\lambda_m \frac{\partial W}{\partial y_m}$$



Qualitative agreement: Critical E_I/κ threshold

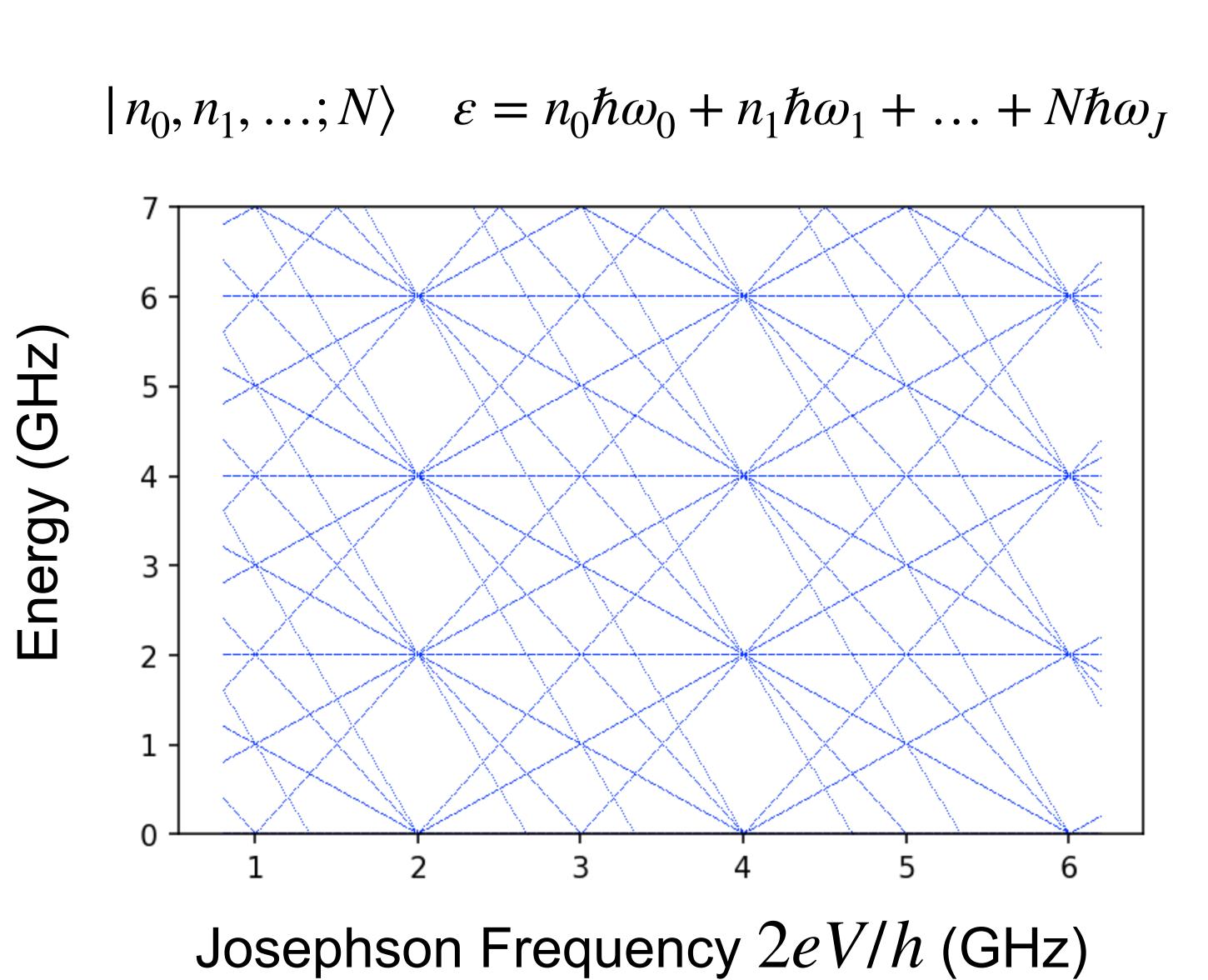
Truncated Wigner Approximation

$$W(x_1, ..., y_1 - \lambda_1, ..., y_M - \lambda_M) - W(x_1, ..., y_1 + \lambda_1, ..., y_M + \lambda_M) \approx -\sum_{m} 2\lambda_m \frac{\partial W}{\partial y_m}$$



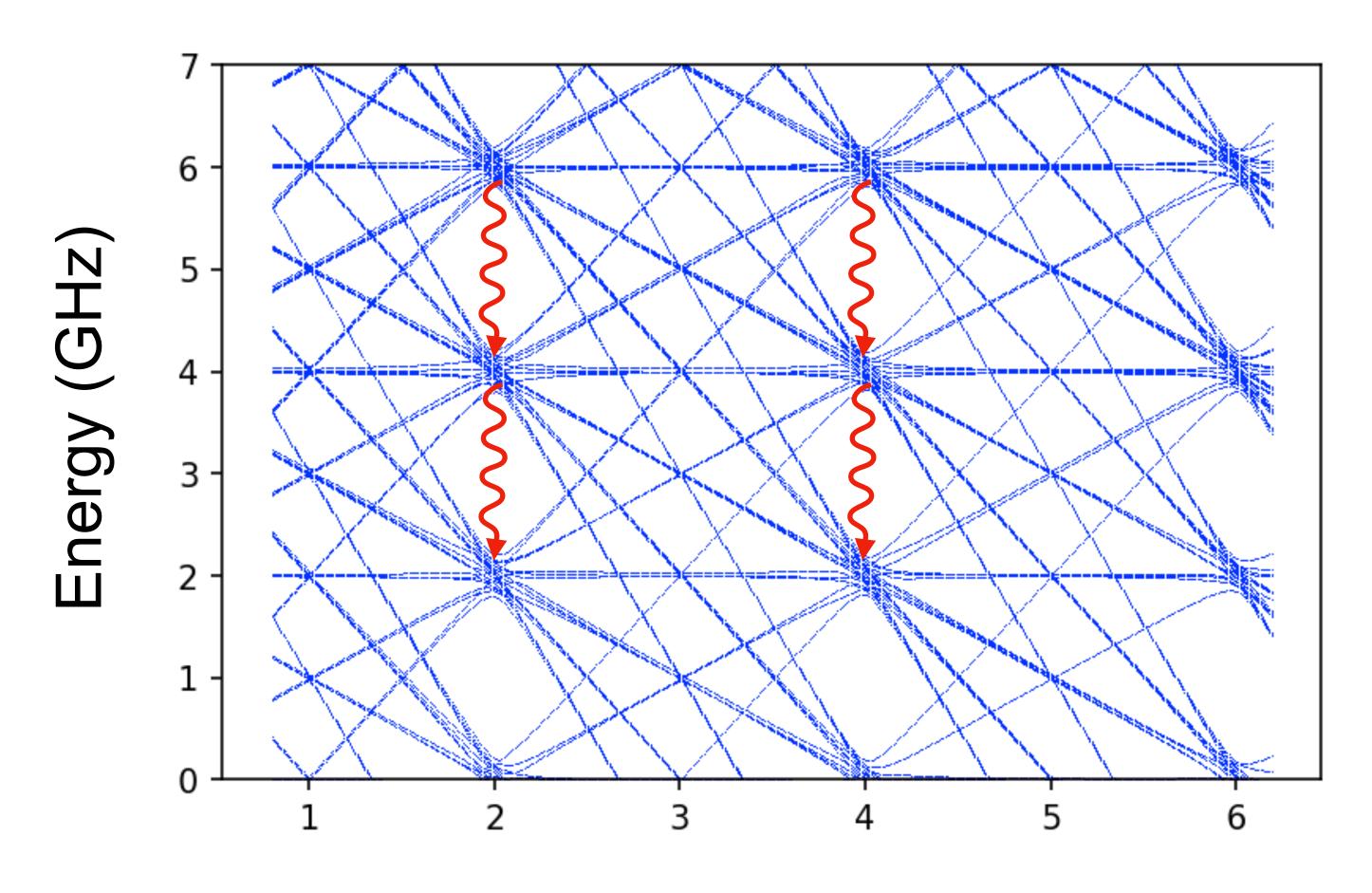
Quantitative agreement by tweaking mode parameters

Dressed State Picture



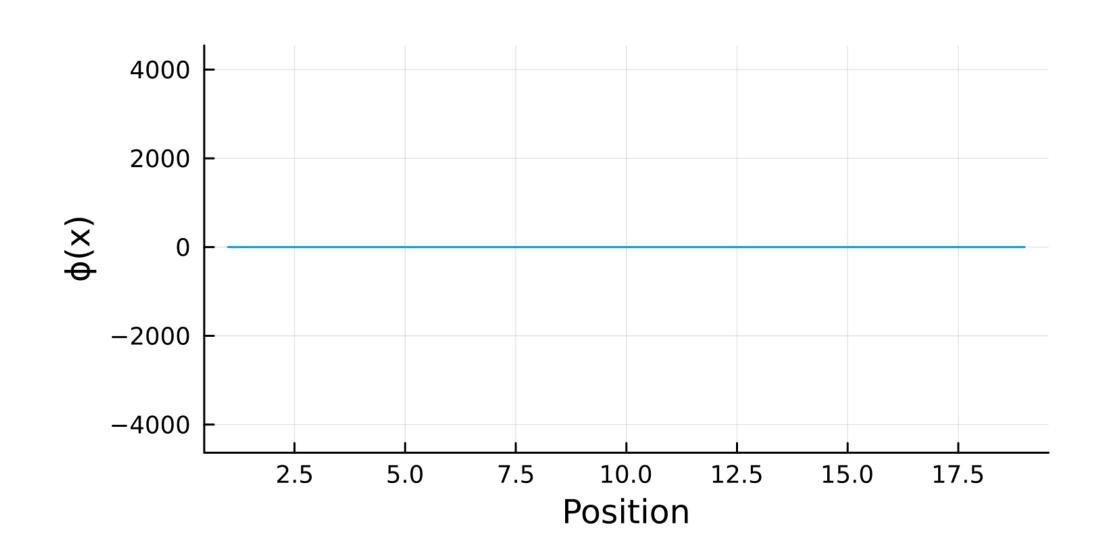
Dressed State Picture

Fluorescence at the fundamental frequency

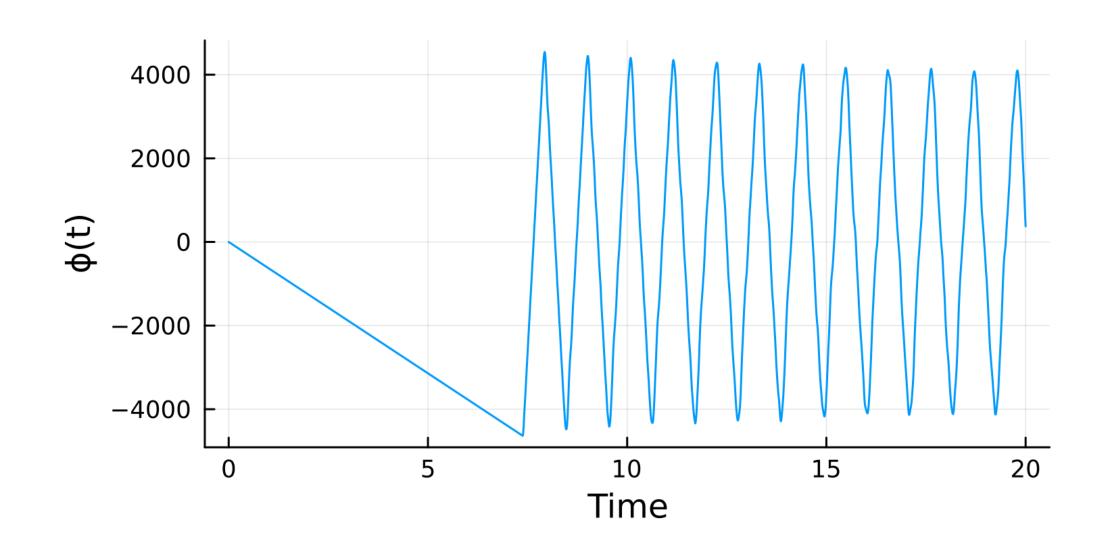


Josephson Frequency 2eV/h (GHz)

Classical « Lasing » Trajectories at Large E_{J}



Above threshold



Free propagation + Interaction at the boundary:

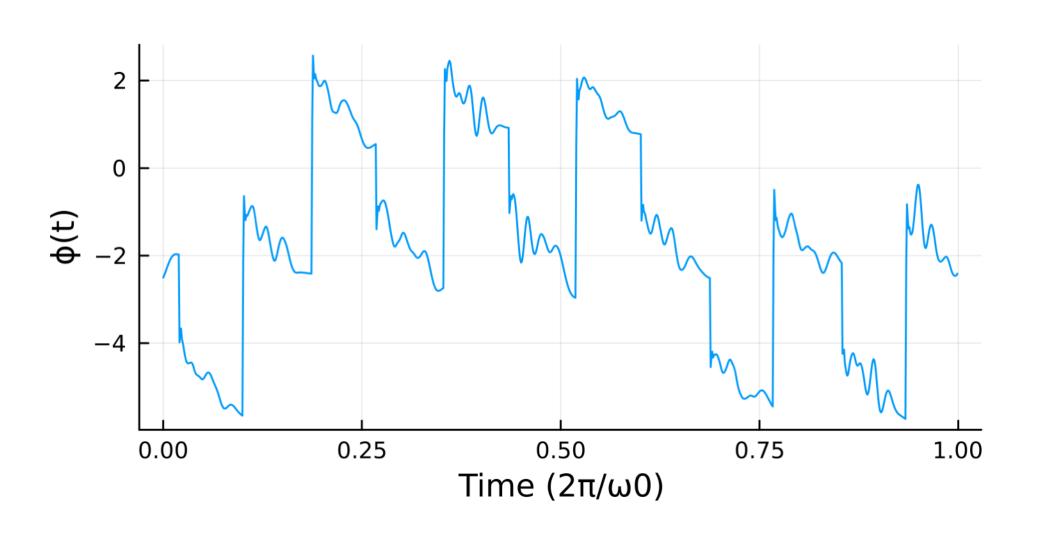
$$\Phi(t) = \Phi(t - T)e^{-\kappa T} + \chi \int_{t-T}^{t} K(t - t') \sin\left[2eVt'/\hbar + \Phi(t')\right] dt'$$

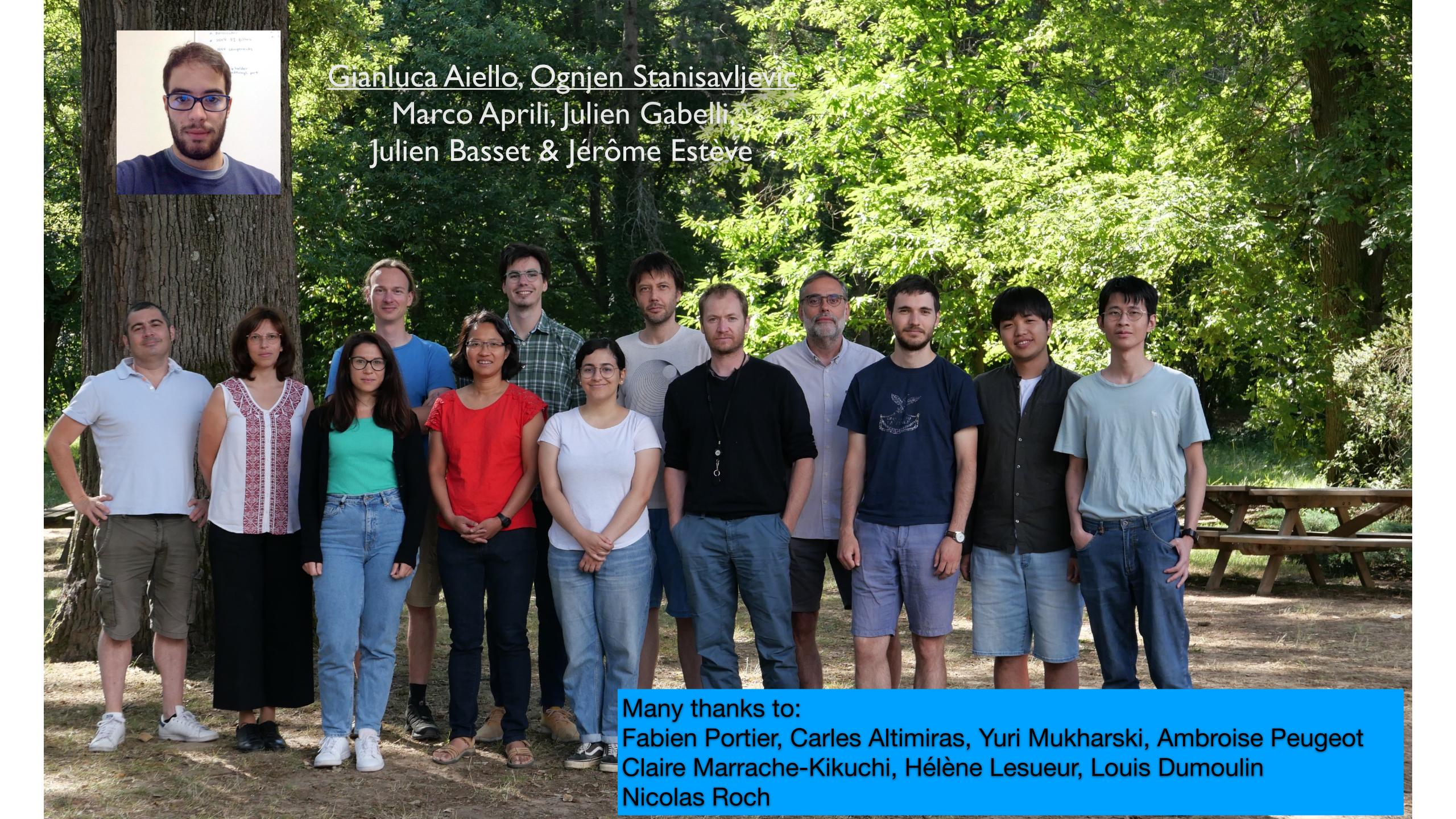
$$K(t) = \sum_{m} \lambda_m^2 \sin(\omega_m t) e^{-\kappa t}$$
 Simon et al. Cassidy et al.

Simon et al. PRL **121** 027004 (2018)

Cassidy et al. Science **355** 939 (2017)

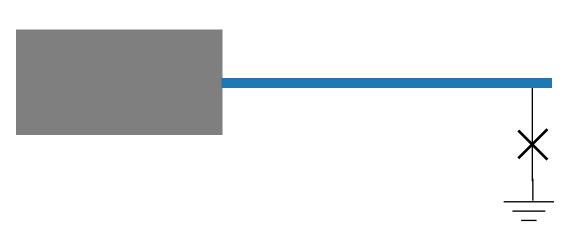
Classical trajectory : π phase jumps followed by time linear/or constant evolution





Conclusion & Perspectives

Josephson side



Multimode & multi photon open system Hard to get an ohmic bath...

Nice concepts like refermionization are lost.

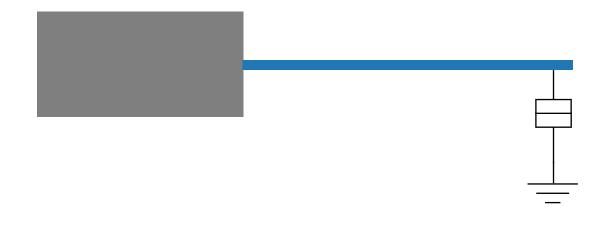
Energies are comparable to the gap?

$$\mathcal{L} = \frac{\hbar R_Q}{4\pi Z} \int_0^{\ell} \frac{1}{v} (\partial_t \phi)^2 - v(\partial_x \Phi)^2 dx + E_J \cos\left[\phi(\ell) + \omega_J t\right]$$

$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} - E_{J} \cos \left[\sum_{m} \lambda_{m}^{(CP)} (a_{m}^{\dagger} + a_{m}) + 2eVt/\hbar \right]$$

See also work by the Manucharyan group & Grenoble. See Denis Basko later this week

QP side



Electronic degree of freedom is a « true » bath

$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} + \sum_{k} \epsilon_{k} c_{k}^{\dagger} c_{k} + \sum_{q} \epsilon_{q} d_{q}^{\dagger} d_{q} - g \sum_{kq} (c_{k}^{\dagger} c_{k} - d_{q}^{\dagger} d_{q}) \sum_{m} i \omega_{m} \lambda_{m} (a_{m} - a_{m}^{\dagger})$$

« Sharp » DOS → Non Markovian effects ?

Test bench for HEOM, DNRG ...

Collaboration with Vasilii Vadimov (Aalto)