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Inelastic Cooper Pair Tunneling in a Single Mode Environment

One Cooper pair gives  
photons when 

k
2eV = k ℏω

provided that the energy 2eV delivered by the source is
entirely converted into an integer number k of photons in
the resonator. These inelastic processes occur only at
particular bias values Vk such that

2eVk ¼ khνR; k ¼ 1; 2; 3;…: ð1Þ

The aim of this experimental work is to obtain these
k-photon bunches with a high brightness, to compare the
photon fluxes to theoretical predictions, and to obtain a
signature of the k granularity.

II. THEORY

The Hamiltonian of the circuit is the sum of the resonator
Hamiltonian ℏωRðâ†âþ 1=2Þ, with âð†Þ the photon annihi-
lation (creation) operator, and of the Josephson Hamiltonian
ĤJ ¼ −EJ cos ϕ̂J with ϕJ the superconducting phase differ-
ence across the JJ. The voltage source imposes a total phase
difference across the circuit increasing linearly with time t,
ϕV ¼ ωJt ¼ ϕ̂J þ ϕ̂R, with νJ ¼ ωJ=2π ¼ 2eV=h the
Josephson frequency, ϕ̂R ¼

ffiffiffi
α

p
ðâ† þ âÞ the phase across

the resonator, and α ¼ 4πZR=Rk. The time-dependent
Hamiltonian of the circuit is thus

Ĥ ¼ ℏωRâ†â − EJ cos½ωJt −
ffiffiffi
α

p
ðâ† þ âÞ&; ð2Þ

up to the resonator zero-point energy. Note that ϕJ is
conjugate to the number N of Cooper pairs transferred
through the JJ and ĤJ is the sum of the operators e'iϕ̂J that
increase or decrease N by one unit; as a consequence, ĤJ
couples Cooper pair transfer to photonic excitations in the
resonator [7,15]. TheHamiltonian (2) shows that the strength
of this coupling is given by α, which is the charge-radiation
coupling constant [4] of our one-mode circuit, and plays the
same role as the fine structure constant αQED in atomic
physics. This coupling results in inelastic Cooper pair
tunneling and in a dc current flowing through the circuit
in the vicinity of voltages Vk. At ωJ ¼ kωR þ δk, the
effective Hamiltonian obtained within the rotating-wave
approximation takes the form [34,35]

Ĥk ¼ −
EJe−α=2

2
αk=2½e−iδktðiâ†ÞkB̂k þ H:c:&; ð3Þ

where H:c: denotes Hermitian conjugation and

B̂k ¼
X∞

n¼0

n!
ðnþ kÞ!

LðkÞ
n ðαÞjnihnj ð4Þ

is a diagonal operator in the Fock state basis fjnig involving
the generalized Laguerre polynomials LðkÞ

n ðαÞ [35]. The
Cooper pair translation operators e'iϕ̂J have thus been
transformed into creation and annihilation operators âð†Þk

adding or removing bunches of k photons to or from the
resonator. Under a constant voltage, a steady-state situation is
reached, characterized by an average number of photons in
the resonator, the occupation number hni: Cooper pairs tunnel
across the JJ at a rate γk and produce photons in the resonator;
these photons leak at an average rate Γk ¼ kγk ¼ κhni in the

0 10 20 30 40 50
0

2

4

6

8

Em
itt

ed
 p

ow
er

 P
 (a

rb
. u

ni
t)

Bias voltage (µV)

(a)

(b)

(c)

FIG. 1. Principle of the experiment and first observation of
multiphoton emission up to k ¼ 5 (run 1). (a) A tunable Josephson
junction (JJ) with energy EJ (green cross) is connected in series
with a dc voltage source V and a microwave resonator (blue) of
frequency νR and characteristic impedance ZR. Current can flow
only at certain values Vk of V for which the energy 2eVk of a
Cooper pair transferred across the circuit is entirely transformed
into an integer number k of photons in the resonator. Is the field
leaking out of the resonator quantitatively understood and does it
display k-photon bunches? (b) Optical micrograph of the sample
showing a SQUID (magnetically tunable JJ,main picture and inset)
connected to a high inductance coil (resonator). The electrical
parameters are indicated and lead to a giant effective fine structure
constant α ∼ 1. The bias and measuring lines are schematized in
Fig. 4. (c) Emitted powermeasured as a function of the bias voltage
V for a Josephson energy EJ large enough to observe emission
peaks up to k ¼ 5. The black and red vertical dotted lines indicate
the offset voltage and the Vk values, respectively. Note that the
small peak visible below V6 is a spurious emission attributed to a
high-frequency mode of the circuit.
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tunneling, we also measure the current through the junction. However, we find that the
voltages corresponding to the maxima of emission and the maxima of current do not always
coincide. We attribute this e↵ect to the fact that photons are emitted in other modes and
that the current is not proportional only to the population in the n = 1 mode.

The microwave measurement shown in this section have been performed using the setup
presented in chapter 2.2, while the junction is biased using the setup B (2.2.3) that allow us
to measure the dc current. Unless stated otherwise, all the data have been measured at a
constant temperature of 10 mK

4.1.1 Josephson emission spectrum

We start by showing, in figure 4.1a, the emission spectrum |S|2 measured at di↵erent voltage
bias with a spectrum analyzer. We distinguish several emission peaks at frequencies be-
tween 2⇡ ⇥ 5.86 GHz and 2⇡ ⇥ 5.87 GHz1, with the highest signal recorded close to 160µV.
This voltage corresponds to a Josephson frequency !J = 2eV/~ ⇡ 2⇡ ⇥ 77 GHz that is
approximately 13!1. At low bias (fig. 4.1b), the first peak is measured at V ⇡ 20 µV
(!J ⇡ 2⇡ ⇥ 9.5 GHz) and it has a much smaller amplitude compared to the peaks measured
at larger voltages.
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Figure 4.1: (a) Normalized emission spectra measured at di↵erent voltages. (b) shows a zoom
in of panel (a) when V is close to zero.

In the voltage range between 50µV and 250 µV, where the signal to noise ratio is suf-
ficiently good, we fit the spectrum with a lorentzian function and extract the emission fre-
quency !em and linewidth em that we show in figure 4.2. We observe oscillations both in

1
This value slightly di↵ers from the one discussed in chapter 3 since the two measurements were performed

during di↵erent cool-downs.
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Inelastic Cooper Pair Tunneling in a Multimode Environment

6 GHz = 12.5 µV

2eV



V e or 2e

High Impedance Medium

ω0 ω1 ω2, …

Light Matter coupling constant 

λ2
m =

4Zc/RK

2m + 1

Strong coupling regime Zc = 5 to 6 kΩ ⇒ λm ∼ 1

Electronic Transport in a High Impedance Environment

Φ = Vt +
Φ0

2π ∑
m

λm(am + a†
m)



Electronic Transport in a High Impedance Environment

V e or 2e Φ = Vt +
Φ0

2π ∑
m

λm(am + a†
m)

High Impedance Medium

ω0 ω1 ω2, …
Light-Matter Coupling : 

q ·Φ = − e∑
kq

(c†
k ck − d†

qdq)∑
m

iωmλm(am − a†
m)

Tunneling : c†
k dq + hc c†

k
̂dqeieΦ̂/ℏ + hc = ̂c†

k
̂dqe

∑m iλm( ̂am+ ̂a†
m)+ieVt/ℏ + hc

Polaron

transform

e or 2e

Charge translation of the environment modes

Analogous to electron-phonon coupling (Holstein)



Electronic Transport in a High Impedance Environment

HT = ∑
kq

tkq ̂c†
k

̂dqe
∑m iλm( ̂am+ ̂a†

m)+ieVt/ℏ + hcVdc
ω0 ω1 ω2, …

H = HL
BCS + HR

BCS + HT + ∑
m

ℏωma†
mam

Inelastic Cooper pair tunneling at low energy :

H = ∑
m

ℏωma†
mam − EJ cos[∑

m

λ(CP)
m (a†

m + am) + 2eVt/ℏ]

Inelastic QP tunneling at high energy :

H = ∑
m

ℏωma†
mam + ∑

k

ϵkc†
k ck + ∑

q

ϵqd†
qdq

+∑
kq

tkq ̂c†
k

̂dqe
∑m iλm( ̂am+ ̂a†

m)+ieVt/ℏ + hcλ(CP) = 2λ



Perturbation Theory For Inelastic CP Tunneling

Phase correlation function: 

⟨ei ̂ϕ(t1)e−i ̂ϕ(t2)⟩ ≈ e−Λ2

∑
n

nλ2/2−1

Γ(λ2/2)
einω0(t2−t1)

Spectral density of emitted photon: 
 ρ(ω) ∝ (2eV − ℏω)λ2−1 θ(2eV − ℏω)

Large  : emission everywhere !λ 2eV

ωm = (2m + 1)ω0 λ2
m =

λ2

2m + 1

ω0 ω1 ω2, …
Ideal quarter wavelength configuration:

Inelastic current: 
I ∝ (2eV)2λ2−1

Λ2 = ∑
m

λ2

2m + 1

First order in   aka  theoryEJ P(E)



No broad emission in the 
perturbative limit

Broad emission is a non-linear 
effect at high EJ /κ

Finite Size Effects 😔 

Emission at low and high EJ
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Truncated Wigner Approximation

10 modes

λ(CP) = 1.4

W(x1, …, y1 − λ1, …, yM − λM) − W(x1, …, y1 + λ1, …, yM + λM) ≈ − ∑
m

2λm
∂W
∂ym

Qualitative agreement: 
Critical  thresholdEJ /κ



Truncated Wigner Approximation

W(x1, …, y1 − λ1, …, yM − λM) − W(x1, …, y1 + λ1, …, yM + λM) ≈ − ∑
m

2λm
∂W
∂ym

Quantitative agreement by tweaking mode parameters

of the photo-assisted current as the one done in 3.4.6. The result of the simulations obtained
using these parameters is shown in figure 4.14.
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Figure 4.14: Simulated supercurrent compared with experimental data. The simulation is
performed by replacing !1 with !em and by increasing the damping rate of the modes.

In this case there is a good agreement between data and simulations, especially when
V < 80 µV, as shown in 4.14b. At larger voltages the two curves do not coincide and the
amplitude of the simulated current decreases. At high voltages, the presence of higher order
modes (n > 6) that we neglected so far may be important. Also, as discussed in 4.2.2 this
discrepancy may come from the fact that the classical stochastic approach is not valid at low
temperature, especially at large bias (see figure 4.11).
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Dressed State Picture
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|n0, n1, …; N⟩ ε = n0ℏω0 + n1ℏω1 + … + NℏωJ



Dressed State Picture
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Fluorescence at the fundamental frequency



Classical « Lasing » Trajectories at Large EJ

Classical trajectory :  phase jumps followed 
by time linear/or constant evolution

π

Φ(t) = Φ(t − T )e−κT + χ∫
t

t−T
K(t − t′￼)sin[2eVt′￼/ℏ + Φ(t′￼)] dt′￼

K(t) = ∑
m

λ2
m sin(ωmt) e−κt Simon et al. PRL 121 027004 (2018)

Cassidy et al. Science 355 939 (2017)

Free propagation + Interaction at the boundary :

Above threshold
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Conclusion & Perspectives

ℒ =
ℏRQ

4πZ ∫
ℓ

0

1
v

(∂tϕ)2 − v(∂xΦ)2 dx + EJ cos [ϕ(ℓ) + ωJt]

H = ∑
m

ℏωma†
mam − EJ cos[∑

m

λ(CP)
m (a†

m + am) + 2eVt/ℏ]Multimode & multi photon open system 
Hard to get an ohmic bath…

See also work by the Manucharyan group & Grenoble. 
See Denis Basko later this week 

Nice concepts like refermionization are lost.

Josephson side

Energies are comparable to the gap ?

QP side
Electronic degree of freedom is a « true » bath

H = ∑
m

ℏωma†
mam + ∑

k

ϵkc†
k ck + ∑

q

ϵqd†
qdq − g∑

kq

(c†
k ck − d†

qdq)∑
m

iωmλm(am − a†
m)

« Sharp » DOS → Non Markovian effects ?
Test bench for HEOM, DNRG … Collaboration with Vasilii Vadimov (Aalto)


