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New SI
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INRiM - Divisions

Advanced materials 
metrology and life science

Applied metrology and 
engineering

Quantum metrology and 
nano technologies
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Quantum Electronics - NanoTech

Quantum Hall Array 
Resistance Standard

Quantized-charge transport 
DC current standard

Microwave photonics

RH = RK/i

with  RK = h/e2

and   i = 1, 2, 3, 4, …
I=nef

ν 1 GHz →20 GHz

λ=c/ν 300 cm →15 cm

E=h/ν 4 μeV→80 μeV

T=E/kB 50 mK→1K

1 um

Josephson
Voltage Standard

VJ = n KJ f    

with  KJ = h/2e

and   k = 1, 2, 3, 4, …
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Superconducting Quantum Electronics 4
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5

Quantum Circuit for Metrology laboratory
hosting a dilution refrigerator (T < 20 mK)

PiQuET Cleanroom facility

ManufacturingCharacterization

Modeling Chip design

Target application (Quantum 
Metrology and Sensing)

Fab constraints

Physical metrics

Our workflow
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1 cm1 cm

Quantum Ciruits for Metrology Lab.

Dilution Refrigerator
• Leiden CF-CS110
• (400 µW @ 100 mK, BT < 20 mK)
• Warm insertable probe for RF
• µMetal(RT) and CryoPhy(BT) shields
• Warm insertable probe for QHE
• 9T magnet option

Shielded and thermally stable room
• Control electronics (DC+RF)
• CW (PNA-X) and pulsed protocols (QCS)
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Superconducting Devices for Quantum Optics
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(with a metrological flavor)



SPDC and Metrology – Quantum Adv. 7

Ratio R between the signal-to-noise ratio in 
quantum imaging, and differential (dcl) and 
direct (cl) classical imaging. R is plotted as a
function of the degree of correlation
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SPDC and Metrology – Counting 8
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Superconducting Devices for Quantum Optics

Programmable Cluster State with Josephson Metamaterials - Superconducting Devices for Quantum Optics
ECT* - Trento 8 October 2025  Amplifiers in the Quantum Regime – E. ENRICO

(with a metrological flavor)

detectors

sources



Josephson Nonlinear Metamaterials 9

pump

signal signal

idler

depleted pump + pump harmonics

side bands
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Improvement of readout of weak 
microwave signals with a

quantum limited amplifier

Microwave Quantum Illumination to 
improve detection or sensing in noisy 

environments

Realization of absolute calibration 
technique of microwave

number resolved photon detectors

J-Metamaterials and Metrology 10
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Cluster States - Overview

• Qubit Cluster States: Highly entangled states 
on discrete-variable systems (two-level 
qubits)

• CV Cluster States: Analogous entangled 
states in continuous-variable systems (e.g., 
squeezed light modes)

• Both serve as universal resources for 
measurement-based quantum computation 
(MBQC)

• Built via entangling operations on graph-like 
structures (e.g., controlled-Z for qubits, 
beam splitters + squeezing for CV)

Jia, X., Zhai, C., Zhu, X. et al. Continuous-variable multipartite 
entanglement in an integrated microcomb. Nature 639, 329–

336 (2025). https://doi.org/10.1038/s41586-025-08602-1
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Cluster States - Applications

• MBQC: Perform quantum algorithms via 
local measurements on a pre-prepared 
entangled state

• Quantum Communication: Enable one-way 
quantum repeaters and teleportation 
networks (qubit & CV)

• Quantum Simulation: Emulate complex 
many-body systems and quantum dynamics

• Quantum Error Correction: Foundation for 
topological codes (qubit) and bosonic codes 
(CV)

• Quantum Sensing & Metrology: Exploit 
multipartite entanglement for enhanced 
sensitivity (especially in CV systems)

Warit Asavanant et al. ,Generation of time-domain-
multiplexed two-dimensional cluster state. Science 366,373-

376 (2019). DOI:10.1126/science.aay2645
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Cluster States – Advantages

• Decoupled Architecture: Prepare 
entanglement once, compute via 
measurements → simplifies control

• Parallelism: Many measurements can be 
performed simultaneously in spatial or 
temporal structures

• Scalability: CV cluster states can be 
generated in large scale (e.g., using optical 
frequency combs or time-domain 
multiplexing)

• Hardware Efficiency: Measurement-based 
protocols reduce gate complexity and 
hardware overhead

• Noise Robustness: Topological and fault-
tolerant constructions possible for both 
qubit and CV implementations

Wang, Z., Li, K., Wang, Y. et al. Large-scale cluster quantum 
microcombs. Light Sci Appl 14, 164 (2025). 

https://doi.org/10.1038/s41377-025-01812-2
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14Cluster States – Optics Regime

Jia, X., Zhai, C., Zhu, X. et al. Continuous-variable multipartite entanglement in an integrated 
microcomb. Nature 639, 329–336 (2025). https://doi.org/10.1038/s41586-025-08602-1
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Cluster States – Microwave Regime

Sandbo Chang, C. W., Simoen, M., Aumentado, J., et.al. (2018). 
Generating Multimode Entangled Microwaves with a Superconducting 

Parametric Cavity. Physical Review Applied, 10(4). 
https://doi.org/10.1103/PhysRevApplied.10.044019

Petrovnin, K. V., Perelshtein, M. R., Korkalainen, T., Vesterinen, V., Lilja, I., 
Paraoanu, G. S., & Hakonen, P. J. (2023). Generation and Structuring of 

Multipartite Entanglement in a Josephson Parametric System. Advanced 
Quantum Technologies, 6(1). https://doi.org/10.1002/qute.202200031
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Programmable Microwave CS

(a) Multiple pump tones from an AWG 
drive the JTWPA[1] into a three-wave 
mixing regime, generating CV cluster 
states in the frequency domain.

(b) Experimental setup: broadband mode 
synthesis, cryogenic routing, and
multiplexed heterodyne detection with 
noise rejection via reference state 
protocol.

[1] VTT /Arctic TWPA from 
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Cryogenic setup and Plank spectroscopy 17
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Single pump setup validation 18
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Gaussianity Validation

• Standard normality tests, namely the 
Shapiro–Wilk and Anderson–Darling tests.

• Moment analysis up to fourth order, including 
skewness, excess kurtosis, and fourth-order 
cumulants. 

19
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Covariance Matrix Reconstruction

Measure output quadratures with pump OFF 
→ reference vacuum state.

Measure with pump ON 
→ signal (CS) + TWPA-added noise.

Comparing the two
→ reconstruction of the output covariance 
matrix, isolating the TWPA's effect 
(amplification, squeezing, added noise).
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Het. Det. with Unknown Phase Offsets

• LOs are phase-locked to the JTWPA pumps.
• Unknown phase shifts arise from setup 

components, cable dispersion, and group 
delays.

• These cause effective quadrature rotation 
across frequency.

• Covariance matrix affected.

21
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Assumptions & Squeezing Optimization

• Covariance matrix optimized via local phase-
space rotations 𝑅𝑗(𝜃𝑗).

• Pumps phase-locked, frequencies close 
⇒ stable relative phase drift.

• Symmetric (almost flat) squeezing 
⇒ no need for local squeezing or shear.

• Restriction to orthogonal symplectic transforms 
preserves entanglement structure.

→ Goal: reorient squeezing axes to maximize 
observed two-mode correlations.

22
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Squeezing Optimization Procedure 23

PRE

POST

• Optimization aims to maximize pj−xl

correlations over the set of LO phases θ.
• Define the average covariance function:

• The optimal phase set θopt maximizes this 
correlation measure.

• This identifies the global quadrature basis 
where the reconstructed covariance matrix 
Γθ best matches an ideal cluster state.

Linear Cyclic Star Fully-connected
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Squeezing Optimization Procedure 24

PRE

POST

• Captures and compensates unknown 
pump-induced phase shifts

• Ensures physically consistent phase 
alignment across modes—key for coherent 
protocols (e.g. cluster states, error 
correction)

Linear Cyclic Star Fully-connected
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Squeezing Optimization Procedure 25

• Captures and compensates unknown 
pump-induced phase shifts

• Ensures physically consistent phase 
alignment across modes—key for coherent 
protocols (e.g. cluster states, error 
correction)

• The optimal global quadrature basis reveals 
maximal two-mode squeezing and graph 
structure

Programmable Cluster State with Josephson Metamaterials - Superconducting Devices for Quantum Optics
ECT* - Trento 8 October 2025  Amplifiers in the Quantum Regime – E. ENRICO



Squeezing Optimization Procedure 26

• Captures and compensates unknown 
pump-induced phase shifts

• Ensures physically consistent phase 
alignment across modes—key for coherent 
protocols (e.g. cluster states, error 
correction)

• The optimal global quadrature basis reveals 
maximal two-mode squeezing and graph 
structure

Is there a trivial way to compare with the theory?
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• The reconstructed covariance matrix Γ is 
compared to its theoretical model 𝜎

• The Frobenius distance quantifies the 
similarity between the two

Comparison with Theory 27

THEORY

MEASUREMENT

Linear Cyclic Star Fully-connected
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Role of Ancillary Modes: e.g. Linear CS 28

THEORY

MEASUREMENT

• Principal modes: 1−4 connected linearly 
via TMS links

(1,2),(2,3),(3,4)

• Ancillary modes: 5−10, connected to the 
principal chain via TMS links: 

(1,5), (1,6), (2,7), (3,8), (4,9), (4,10).

Linear

Bogoliubov matrices

Generalized input-output relations

Covariance matrix within symplectic formalism

Programmable Cluster State with Josephson Metamaterials - Superconducting Devices for Quantum Optics
ECT* - Trento 8 October 2025  Amplifiers in the Quantum Regime – E. ENRICO



Role of Ancillary Modes: e.g. Linear CS 29

THEORY

MEASUREMENT

• Principal modes: 1−4 connected linearly 
via TMS links

(1,2),(2,3),(3,4)

• Ancillary modes: 5−10, connected to the 
principal chain via TMS links: 

(1,5), (1,6), (2,7), (3,8), (4,9), (4,10).

Linear
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Principal Ancillary



• To verify multipartite entanglement and 
validate the cluster graph, we use nullifier 
operators based on the adjacency matrix.

Validation via Nullifier Measurements 30

Nullifier covariance matrix

Diagonal elements
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• To verify multipartite entanglement and 
validate the cluster graph, we use nullifier 
operators based on the adjacency matrix.

• In an ideal cluster state, nullifiers vanish; in 
practice, finite squeezing leads to small but 
nonzero variances.

Validation via Nullifier Measurements 31

Nullifier covariance matrix

Diagonal elements

Eg. 3-modes Cyclic cluster state 
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• To verify multipartite entanglement and 
validate the cluster graph, we use nullifier 
operators based on the adjacency matrix.

• In an ideal cluster state, nullifiers vanish; in 
practice, finite squeezing leads to small but 
nonzero variances.

• A state is identified as a cluster state if all 
nullifier variances are below the shot noise 
level (vacuum limit).

Validation via Nullifier Measurements 32
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Squeezing-Gain trade-off 33

Kow, C., Podolskiy, V., & Kamal, A. (2024). Self phase-matched broadband amplification with 
a left-handed Josephson transmission line. http://arxiv.org/abs/2201.04660
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Squeezing-Gain trade-off 34

Kow, C., Podolskiy, V., & Kamal, A. (2024). Self phase-matched broadband amplification with 
a left-handed Josephson transmission line. http://arxiv.org/abs/2201.04660

Recall on the squeezing 
parameter
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Squeezing-Gain trade-off 35

Kow, C., Podolskiy, V., & Kamal, A. (2024). Self phase-matched broadband amplification with 
a left-handed Josephson transmission line. http://arxiv.org/abs/2201.04660

Pump harmonics (and relative sidebands) dilute entanglement over multiple modes and increase complexity
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Conclusions and Perspectives

• We demonstrate a reconfigurable, scalable platform for 
generating continuous-variable cluster states using 
programmable pump engineering in a superconducting 
Josephson Travelling Wave Parametric Amplifier.

• Our method leverages the frequency domain to create large 
entangled graphs with minimal hardware overhead.

• Graph structure and entanglement are validated via nullifier 
measurements and covariance-based reconstruction.

• This approach bridges optical CV techniques and microwave 
superconducting hardware, enabling hardware-efficient 
measurement-based quantum computation.

• Future integration with LH-TWPAs and feedback could enable 
quantum algorithm execution.

36
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Thanks for your attention!
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