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Hawking (1974): Black holes radiate through photon pair
creation in the vicinity of the event horizon.

To a distant observer, appears as a black body with
temperature:
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Derivation: quantize electromagnetic field in the space-time
background of a collapsing spherical star. Assume that the
electromagnetic field is initially in a vacuum state |0)

(.e., no photons present).
Find that photon pairs are spontaneously produced from the

vacuum in the vicinity of the event horizon.

Event horizon

Surface of collapsing star
[R. Schitzhold, Lect. Notes Phys. (2007])



But original derivation has problems: tracking the emitted
Hawking radiation back in time, we find that the radiation
wavelength gets infinitely blue-shifted as one approaches the
horizon.

In particular, the radiation wavelength gets smaller than the
Planck length, where our classical notion of space-time as a
continuum is expected to break down: the “trans-Planckian
problem”.

Lplanck = g ~ 1072° meters
C
Thus, either
* The Hawking thermal radiation prediction is invalid and we
need a full quantum gravity description to figure out what
happens.
Or
* The Hawking thermal radiation prediction is valid: the
radiation is insensitive to the short distance physics.



Can we test Hawking’s prediction for real black holes?

For, e.g., a solar mass:

hes

~ 107K
SW]CBGM@

THaWking —

Negligible compared to the cosmic microwave background.



Black Hole Analogues

Address validity of Hawking’s derivation using low energy,
laboratory analogues of a black hole event horizon where
the short distance physics is known [Unruh, PRL (1981)].

Event
Horizon

Slower Water

[P. Hoey, Science (2008)]



An acoustic (or sonic) horizon forms at the boundary where
the steady state fluid velocity exceeds the sound velocity.

“Hawking” approach: quantize the sound wave
fluctuations (phonons) about the background classical
fluid flow in the vicinity of the sonic horizon: get
Hawking radiation!

Fluid flow velocity
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“Trans-Planckian” problem: breakdown of continuum
fluid approximation at intermolecular distance scales.



*“Quantum gravity” approach: solve (in principle) Schrédinger’s
equation for the known microscopic, molecular Hamiltonian of
the fluid system. Does one obtain thermal Hawking radiation?

But, difficult to perform such a calculation. Alternatively, perform

experiment... Sound speed
/ Horizon size

—
Assume dv/dw‘horizon e C/Lhorizon
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Then ThHawking ~ 107K (SOOHT- s—l) (Lhm'm )

Nontrivial to maintain transonic flows at such small L’s without
turbulence developing.



Alternative approach to a moving medium:

What matters are the effective properties of the medium; not
necessary to physically move a medium to form an event
horizon.

E.g., use nonlinear optical fibre where effective index of
refraction depends on light intensity [Philbin et al., Science
(2008)]:

n =mng-+on, on x I(x,t)

[Recall, n = ¢/v,, c is the velocity of light in vacuum, v; is the
phase velocity of light in the medium]



“Fiber-Optical Analogue of the Event Horizon”
[Philbin et al., Science (2008)]:

Effective medium altering pump pulse (soliton)

—

“Trans-Planckian” physics: White hole horizon Black hole horlzon

probe light gets blue shifted  [5] |
as approaches horizon. § /
Leveling of dispersion curve

results in probe light slowing
down and falling behind the
pulse

Rest frame of pulse



An alternative effective medium proposal using a microwave
transmission line:
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It is demonstrated that the propagation of electromagnetic waves in an appropriately designed
waveguide is (for large wavelengths) analogous to that within a curved space-time—such as around a
black hole. As electromagnetic radiation (e.g., microwaves) can be controlled, amplified, and detected
(with present-day technology) much easier than sound, for example, we propose a setup for the
experimental verification of the Hawking effect. Apart from experimentally testing this striking pre-
diction, this would facilitate the investigation of the trans-Planckian problem.

Dielectric between capacitor plates controlled
by an external laser beam: sweep along the
cavity length

rjhawking ~ 10 — 100 mKk

But, have the problem of heating due to

FIG. 1. Circuit diagram and sketch of the waveguide. |aser




An alternative effective medium proposal using a
superconducting, microwave nonlinear transmission line;
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We propose the use of a superconducting transmission line formed from an array of direct-current
superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the
array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to

an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows
for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the

Hawking process.

ground plane

SQUID array

THawking ~ 10 — 100 mKk

External flux pulse

current pulse in paralleriig =
line \
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On Mar 27, 2020, at 10:56 AM, William D Oliver <wi18222@mit.edu> wrote:

| would suggest increasing the fabrication cost. A standard run for us is 150K (loaded). Or, we should add a student at MIT.

Is all experimental measurement being done at Dartmouth?

Will



Instead, use an existing superconducting, microwave
nonlinear transmission line device
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A traveling wave parametric amplifier (TWPA) using
superconducting nonlinear asymmetric elements (SNAILSs):
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FIG. 1. Schematic diagram of the traveling wave parametric am-

plifier (TWPA) transmission line with superconducting nonlinear - ‘
asymmetric inductive element (SNAIL) unit cells in series, alternat- . B ERERE mEL
ing with shunt capacitors C, in parallel (all assumed to be identical). ¥ s EI L ! 5

The quantities 7,, V,,, and ¢, represent the current, voltage, and phase n £ | § L -: i
difference of the nth SNAIL, respectively. Each SNAIL has a small - % N B f; il

JJ with Josephson energy oE; (o < [l) in one branch and two larger I E § % % § 'L
JJs (with Josephson energy E;) in the other, parallel branch, forming e : : ‘ A
a loop that is threaded by an external applied magnetic flux ®.y,. 1 ‘;

Used, e.g., as:
 Broadband microwave amplifiers close to the quantum limit
 Generators of broadband squeezed and entangled microwave states

[IM. Esposito et al., PRL (2022)]
[M. Perelshtein et al., PRApplied (2022)]



SNAIL-TWPA circuit equations in the continuum approximation:
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Dispersion SNAIL unit cell size Nonlinearity

— CJ/Cg vy = L{w() Wo — 1/\/CQL0

Can selectively tune
between 3-wave and 4-
wave mixing by varying
the external magnetic flux
bias

¢ext — 27T(I)ext/q)o
By = h/(2e

[Parameters from Esposito et al.,
PRL (2022)]






https://www.youtube.com/watch?v=mEXNj1UPjk0
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Strong classical backgroun{;ield pulse Weak “probe” signal

Tune external magnetic flux such that ¢4 = 0 ((33 7 O)

Apply reductive perturbation method [H. Leblond, J.Phys.B (2018)]:
o
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“Stretched” coordinates:
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Obtain the Korteweg-de Vries (KdV) equation to lowest order g
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Known to have soliton solutions [Kivshar and Malomed, RMP (1989)]:

Single soliton solution:

. 1 [c3A
d(x,t) = Asech” | — e (x — vst) c3 > 0(A4>0)
aV 12r

Velocity:  vs= vg(1l + c3A/0)

Half-width: w ~ 2a+/12r/ (c3A)



Verified by numerical solutions of original discrete space
equations, where soliton width w > a

0 20406080100




Wave equation of weak probe field 0y, expressed in
comoving frame of background soliton pulse n = * — vt

Phase coordinate across SNAIL unit cell
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Have analogue black-white hole
pair

[H. Katayama et al., PRR (2023)]



Other KdV-type soliton solutions for ¢4 # 0 (c3 = 0):

cy > 0:

¢(x,t) = Asech |

cqg < 0:
¢(z,t) = Atanh




If instead, introduce pump carrier wave w,, ~ few GHz with
suitable modulation pulse shape envelope, can have yet
another class of solitons (*“Nonlinear Schrédinger Eq.”):

cqg >0 (Cg — O) - analogous to nonlinear optical fiber solitons

: Iy _ 2
el A (v, | du : | ca Acw
¢ (t) = Asech 2 Wi dwi (na —wvgt) | cos || kp - 320, L) na — wpt

Fundamental “Bright” soliton
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Unigue advantage of SNAIL TWPAs: can tune nonlinearity via
magnetic flux) and select frequency range such as to
generate different types of soliton using the same device
[e.q., KAV, modified KdV-—, NLSE bright (dark)]

Which soliton type is most suitable for observing Hawking
radiation?

Note: NLSE solitons expected to parametrically generate
squeezed/entangled microwave photons

[M. Esposito et al., PRL (2022)]

[M. Perelshtein et al., PRApplied (2022)]
In progress...
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