Stages of relaxation of an isolated Bose gas

Martin Gazo (mg816@cam.ac.uk)

Attractors and thermalization in nuclear collisions and cold quantum gases

ECT* – 26 Sept 2025

Zoran Hadzibabic group

Current members

Zoran Hadzibabic

Christoph Eigen

Seb Morris Simon Fisher

Martin Gažo

Konstantinos Konstantinou

Gevorg Martirosyan

Yansheng Zhang

Feiyang Wang

Nick Maslov

Yi Jiang

Paul Wong

Jiří Etrych

Andrey Karailiev

Our experiments: a Box in a Box

Box initial condition:

Box trap:

Formation of BEC: Universal dynamics near NTFP

Dynamic self-similar scaling (IR and UV separately):

$$n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0\right]$$

J. Berges et al., PRL. 101, 041603 (2008).

Overview of the talk

Previously: (Zoran's talk)

Part 1: Topological defects

Part 3: Breakdown of classical-field theory

Part 2: Inverse WWT

Part 4: UV transport

Part 1: Two probes

 χ

Momentum distribution,

$$n_k = \langle \psi_k^\dagger \psi_k \rangle$$

 \rightarrow Vortex-line length density, \mathcal{L}

How does it look in practice?

Vortex density:
$$\mathcal{L} \sim t^{-1}$$

$$t^*$$
also enters: $t \to t - t^*$

Plot:
$$1/\mathcal{L} \sim (t - t^*)$$

(In Equilibrium: $\mathcal{L} \rightarrow 0$)

 ℓ^2 : $1/\mathcal{L}$:

	<i>t</i> *(ms)	t _v *(ms)
•	290	310
•	90	90
•	30	30

Same offsets t* → Vortex coarsening?

Part 2: Inverse weak-wave turbulence

all data, classical-field units:

To reach the speed limit:

$$\ell \gtrsim 15 \, \xi \sim 1/\sqrt{na}$$

What happens if $\ell < \xi$?

Towards the perturbative limit

Speed limit

$$\frac{1}{k_p^2} \propto \ell^2 \propto D(t - t^*)$$

Towards the perturbative limit

Part 3: Breakdown of classical field theory

Low energy Bose gas: 2 lengthscales $n^{-1/3}$, a

Classical field theory: na enters only together \rightarrow single lengthscale ξ

Prepare states with the same na, but vary relative ratio between n, a

$$(N_k/N = 4\pi k^2 n_k/N)$$

Part 3: Breakdown of classical field theory

Low energy Bose gas: 2 lengthscales $n^{-1/3}$, a

Classical field theory: na enters only together \rightarrow single lengthscale ξ

Prepare states with the same na, but vary relative ratio between n, a

 $(N_k/N = 4\pi k^2 n_k/N)$

time

Part 3: Breakdown of classical field theory

Low energy Bose gas: 2 lengthscales $n^{-1/3}$, a

 $(N_k/N = 4\pi k^2 n_k/N)$

Classical field theory: na enters only together \rightarrow single lengthscale ξ

Prepare states with the same na, but vary relative ratio between n, a

90.0 ms 225.0 ms 0.0 ms1200.0 ms 360.0 ms preliminary preliminary preliminary preliminary preliminary $N_k/N(\mu m)$ 0.5 $\lim_{N/N} 0.4$ N_{κ}/N (mm) $N_k/N (\mu m)$ $N_k/N(\mu m)$ 2.5 0.02.5 $k(\mu \text{m}^{-1})$ $k(\mu \text{m}^{-1})$ $k(\mu \text{m}^{-1})$ $k(\mu m^{-1})$ $k(\mu \text{m}^{-1})$

time

Dashed lines:

thermodynamics

Part 4: UV dynamics (in 2D)

t*different from IR

No k at which $n_k \propto (t - t^*)^{\alpha}$

Energy spectrum $\varepsilon_k \propto k^3 n_k$:

$$\beta = -1/6$$

$$\alpha = -2/3$$

Agrees with WWT:

$$k_{\varepsilon} \sim (t - t^*)^{1/6}$$

Different energies

different slopes (clock speeds)

Gazo et. al. 2025

UV Dynamic Scaling

o i2 27(1)

100

t (ms)

THE CONDENSATE

Thank you for you attention!

Martin Gazo mg816@cam.ac.uk

