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1. Emergence of hydrodynamic behavior in kinetic theory

Content of the talk

Relativistic heavy ion collisions, Bjorken flow

Based on work done in collaboration with Li Yan 


2. An analogy with collective phenomena in many body systems

"The tale of two sounds"


In both cases we shall be looking at the transition from a (non 
trivial) collisionless regime to a collision-dominated regime 
(hydrodynamics).



Fluid behavior emerges around  local equilibration

Fast relaxation of microscopic degrees of freedom via collisions. 
(Collisions have little impact on local conservation laws.)

What is hydrodynamics ?

'Traditional' view

'Modern' perspective

Effective theory for long wavelength modes



Thermalization

Two main issues

ii) isotropy of momentum distribution

i) relative populations of different momentum modes 

Main topic for the 
rest of this talk

In relativist collisions, isotropization involves competition between

Collisions Expansion
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I. INTRODUCTION.

We want to solve the equation

h
@⌧ � pz

⌧
@pz

i
f(p/T ) = �f(p, ⌧)� feq(p, ⌧)

⌧R
. (1)

This equation describes the competition between two e↵ects

• Expansion, which drives the momentum distribution to a flat distribution along the pz direction.

• Collisions, which drive the momentum distribution to a spherical distribution.

In this paper, we shall assume that ⌧R is either a constant, or that ⌘/s is a constant, in which case T ⌧R is a constant.
Recall that ✏ = ⇡

2
T

4
/30 in equilibrium, and this relation defines also T (⌧) also out-of equilibrium.

Simple kinetic equation

(Bjorken flow)

 1+1 dimensional expansion, in relaxation time approximation

collisionless expansion collisions

z



Special moments of the momentum distribution
(JPB, Li Yan , 2017, 18, 19, 21)
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II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.

A. The moments Ln

We define

Ln ⌘
Z

p
p
2
P2n(cos ✓)f(p), (2)

where P2n is a Legendre polynomial of order 2n, and cos ✓ = pz/p. Recall that

P0(z) = 1, P2(z) =
1

2
(3z2 � 1). (3)

For an expanding system with Bjorken geometry, odd order moments vanish as a consequence of the invariance
of the distribution function under parity (or under reflection with respect to the z = 0 plane, i.e. pz ! �pz and
✓ ! ⇡ � ✓).

Note the relations

L0 = ", L1 = PL � PT . (4)

The moments Ln of higher order are associated to finer structures of the momentum anisotropy of the distribution
function.

Note that the energy-momentum tensor in kinetic theory is given by

T
µ⌫ =

Z

p
f(p)pµp⌫ (5)

and it involves only L1 and L0 by construction.

B. The equations for the L-moments

We consider the equation for the L-moments,

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

(1� �n0)Ln

⌧R
, (6)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
' 7

4
+

5

64n2
� 5

128n3
+O

✓
1

n

◆4

(7)

bn =
(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
' n

2
+

1

4
� 7

32n
+

1

64n2
� 7

512n3
+O

✓
1

n

◆4

(8)

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
' �n

2
+

7

32n
� 3

32n2
+

27

512n3
+O

✓
1

n

◆4

(9)

entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)
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Special moments

• Coarse graining (loss of information)

• Focus on the angular degrees of freedom 

(Legendre polynomial)

The energy momentum tensor is described by first two moments

3

II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.

A. The moments Ln

We define

Ln ⌘
Z

p
p
2
P2n(cos ✓)f(p), (2)

where P2n is a Legendre polynomial of order 2n, and cos ✓ = pz/p. Recall that

P0(z) = 1, P2(z) =
1

2
(3z2 � 1). (3)

For an expanding system with Bjorken geometry, odd order moments vanish as a consequence of the invariance
of the distribution function under parity (or under reflection with respect to the z = 0 plane, i.e. pz ! �pz and
✓ ! ⇡ � ✓).

Note the relations

L0 = ", L1 = PL � PT . (4)

The moments Ln of higher order are associated to finer structures of the momentum anisotropy of the distribution
function.

Note that the energy-momentum tensor in kinetic theory is given by

T
µ⌫ =

Z

p
f(p)pµp⌫ (5)

and it involves only L1 and L0 by construction.

B. The equations for the L-moments

We consider the equation for the L-moments,

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

(1� �n0)Ln

⌧R
, (6)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
' 7

4
+

5

64n2
� 5

128n3
+O

✓
1

n

◆4

(7)

bn =
(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
' n

2
+

1

4
� 7

32n
+

1

64n2
� 7

512n3
+O

✓
1

n

◆4

(8)

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
' �n

2
+

7

32n
� 3

32n2
+

27

512n3
+O

✓
1

n

◆4

(9)

entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)

pz = p cos ✓

We are looking for an effective theory for these two moments 



Coupled equations for the moments

3

II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.

A. The moments Ln

We define

Ln ⌘
Z

p
p
2
P2n(cos ✓)f(p), (2)

where P2n is a Legendre polynomial of order 2n, and cos ✓ = pz/p. Recall that

P0(z) = 1, P2(z) =
1

2
(3z2 � 1). (3)

For an expanding system with Bjorken geometry, odd order moments vanish as a consequence of the invariance
of the distribution function under parity (or under reflection with respect to the z = 0 plane, i.e. pz ! �pz and
✓ ! ⇡ � ✓).

Note the relations

L0 = ", L1 = PL � PT . (4)

The moments Ln of higher order are associated to finer structures of the momentum anisotropy of the distribution
function.

Note that the energy-momentum tensor in kinetic theory is given by

T
µ⌫ =

Z

p
f(p)pµp⌫ (5)

and it involves only L1 and L0 by construction.

B. The equations for the L-moments

We consider the equation for the L-moments,

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

(1� �n0)Ln

⌧R
, (6)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
' 7

4
+

5

64n2
� 5

128n3
+O

✓
1

n

◆4

(7)

bn =
(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
' n

2
+

1

4
� 7

32n
+

1

64n2
� 7

512n3
+O

✓
1

n

◆4

(8)

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
' �n

2
+

7

32n
� 3

32n2
+

27

512n3
+O

✓
1

n

◆4

(9)

entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)

2

Ln’s contain little information on the radial shape of the
momentum distribution, preventing us for instance to re-
construct from them the full distribution. However, this
radial shape plays a marginal role in the isotropization of
the momentum distribution, which is our main concern
here. Note that all the Ln have the same dimension.

By using the recursion relations among the Legendre
polynomials, we can recast Eq. (1) into the following (in-
finite) set of coupled equations

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

Ln

⌧R
(n � 1)

@L0

@⌧
=� 1

⌧
[a0L0 + c0L1] , (3)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
, bn =

(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
,

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
, (4a)

entirely determined by the free streaming part of the ki-
netic equation. Note that the collision term does not
a↵ect directly the energy density, but only the moments
with n � 1. In fact, if one ignores the expansion, i.e., set
an = bn = cn = 0, the moments evolve according to

L0(⌧) = L0(0), Ln(⌧) = Ln(0) e
�⌧/⌧R . (5)

This solution illustrates the role of the collisions in eras-
ing the anisotropy of the momentum distribution as the
system approaches equilibrium. Of course, the expansion
prevents the system to ever reach this trivial equilibrium
fixed point: instead, the system goes into an hydrody-
namical regime, as we shall discuss later.

The system of Eqs. (3) lends itself to simple trunca-
tions. Thus by ignoring all moments of order higher
than n, one obtains a finite set of n + 1 equations that
can be easily solved. The accuracy of such a proce-
dure can be judged from Fig. 1, where the moments ob-
tained from various truncations are compared with those
of the numerical solution of Eq. (1) for an initial distri-
bution typical of a heavy ion collision: f(t0, pT , pz) =

f0⇥
⇣
Qs �

p
⇠2p2z + p2T

⌘
with f0 = 0.1, ⇠ = 1.5, corre-

sponding to an initial momentum anisotropy PL/PT ⇡
0.5, and ⌧0 = Q�1

s [12]. Already the lowest order trun-
cation at n = 1 captures the qualitative behaviour of
the full solution. Note that the approach to the ex-
act solution is alternating, which o↵ers an estimate of
the truncation error. The energy density approaches
smoothly the hydrodynamic regime as ⌧ >⇠ ⌧R, while
the non monotonous behaviour of the ratio L1/L0 re-
flects the competition between expansion and collisional
e↵ects that we now analyze in more detail, starting with
the free streaming regime.

The free streaming fixed point. The free stream-
ing regime is described by Eq. (3) where one ignores
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FIG. 1. Comparison of the L-moment equations obtained
from various truncation of Eqs. (3) (lines), with those of the
numerical solution of the kinetic equation (1) (symbols).

the collision term. It is not hard to see that the result-
ing equation possesses a stable solution at large time, in
which all moments decay as 1/⌧ and are proportional to
each other: Ln(⌧) = AnL0(⌧), where the dimensionless
constants An characterize the moments of a distribution
that is flat in the pz direction [12]

An = P2n(0) = (�1)n
(2n� 1)!!

(2n)!!
. (6)

Note that A1 = �1/2, corresponding to a vanishing lon-
gitudinal pressure. As for the factor 1/⌧ it reflects the
conservation of the energy in the increasing comoving
volume (⌧"(⌧) = cste). Defining

gn(⌧) = ⌧@⌧ lnLn, (7)

we get from Eq. (3)

gn(⌧) = �an � bn
Ln�1

Ln
� cn

Ln+1

Ln
� (1� �n0)

⌧

⌧R
. (8)

The solution above corresponds to a fixed point for the
gn’s. Dropping the last term, and using the expression
(6) for the ratio of moments, one indeed verifies easily
that for all n, gn(⌧) = �1. If the initial ratios of moments
are chosen according to Eq. (6), the gn’s remain constant
in time (all equal to �1), whereas for arbitrary initial
conditions, they will reach the fixed point at late time.
Note that the fixed point obtained from a truncation at
a finite order di↵ers slightly from �1: for instance, in
the simplest truncation at n < 2, g0 = g1 = �0.92937
instead of -1, and A1 ⇡ �0.6 instead of �0.5.

The hydrodynamic fixed point. We know from
our previous study [12] that, at late times, Ln(⌧) admits
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(collisionless expansion) (collisions)

 The coefficients                are pure numbers  (                  )an, bn, cn c0 = 2/3

}ℒn>1

Effective theory (a0, c0, b1, a1, τR))

Renormalization 

ℒ0

ℒ1

EASYHARD



Effective theory = Two-moment truncation
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•  Contains second order viscous hydrodynamics à la ''Israel-Stewart''

•  Amenable to analytic solution, very rich mathematical structure 

g0(⌧) =
⌧

L0

@L0

@⌧
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PL � PT

"
= � 1

c0
(a0 + g0)

!
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 The coupled equations can be transformed into a single non linear ODE for:



Fixed point analysis


hydrodynamic fixed point

two free streaming fixed points

g0 + a0 = 0, g0 = �4/3
<latexit sha1_base64="S14cl3ujjO0PtKOTY844YdykKyU="></latexit>

w ⌘ ⌧/⌧R
<latexit sha1_base64="b0v5w4/M8JRrKk36XzIJ3NOpw3I="></latexit>

w
dg0

dw
= �(g0,w)
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w ⌧ 1 (⌧ ⌧ ⌧R)
<latexit sha1_base64="wx/1cJOxDE2AcHWx0m2AynPr7vE="></latexit>

w � 1 (⌧ � ⌧R)
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The 'attractor solution' is the particular solution that starts from the stable 
collisionless fixed point at time  and evolves "slowly" (adiabaticity) to the 
hydrodynamic fixed point at late time. 

τ = 0

All solutions converge, soon or later depending on the initial conditions, 
towards the attractor, hence to hydrodynamics at late time (in most cases). 

β(g0) = 0

β(g0, w) = − g2
0 − (a0 + a1+w) g0 − a1a0 + c0b1 − a0w + [c0c1

ℒ2

ℒ0 ]



Collisionless

fixed point

Hydro fixed point 

(Universal!)

g0 ⇡ �0.93
<latexit sha1_base64="xZ7uxLS5qvMcGGuF5qVAHNo8vuQ="></latexit>

g0 = �
4
3
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(w ⌘ ⌧/⌧R)
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The transition region occurs when the collision rate is 
comparable to the expansion rate … as expected ! 

2

�L1/⌧R in Eq. (1b) suggests the possible presence of ex-
ponential terms in the solution, in addition to the power
laws originating from the expansion. Such exponential
contributions would spoil the hydrodynamic gradient ex-
pansion, which, in the present context, is an expansion in
inverse powers of ⌧ . However, these contributions can-
cel thanks to the relation L1/⌧R ' �b1L0/⌧ valid at
late time [13]. This relation, in fact, happens to be the
leading order constitutive equation relating the viscous
pressure to the viscosity, with ⌘ = (b1/2)"⌧R being the
standard value of the viscosity. We shall return to these
exponential contributions later in this letter.

The connection between Eqs. (1) and hydrodynamics
is tight. Eq. (1a) translates the conservation of the en-
ergy momentum tensor, @µTµ⌫ = 0, for Bjorken flow. An
equation similar to Eq. (1b) was introduced by Israel and
Stewart [17] to overcome limitations of the Navier Stokes
equation in the relativistic context. In fact, as discussed
in [18, 19], if one adjusts properly the coe�cients a1,
b1 and the relaxation time ⌧R (a0 and c0 are fixed by
energy-momentum conservation, as just mentioned), all
the known formulations of second order hydrodynamics
(e.g. [20, 21]) can be mapped, in the context of Bjorken
flows, into Eqs. (1), and share therefore the same math-
ematical structure. Indeed, the authors of Ref. [7] (see
also [22]), using some version of Israel-Stewart hydrody-
namics, obtained a solution that is a particular case of
that presented here.

The use of a time dependent relaxation time ⌧R(⌧) al-
lows us to capture the qualitative features of more real-
istic calculations. The solution presented in this letter
holds for a time dependence of the form ⌧R ⇠ ⌧

1��,
with � constant2 [23]. Commonly used are a constant
⌧R (� = 1), or ⌧R ⇠ T

�1 with T the e↵ective tem-
perature (� ⇡ 2/3). Note that as long as � > 0, the
expansion rate decreases faster than the collision rate,
and the system is driven to hydrodynamics at late time.
When � < 0, the expansion eventually overcomes the
collisions and the system evolves towards the free stream-
ing regime. The limiting case � = 0 mimics the system
of hard sphere scatterings recently studied in [24], and
is also close to more realistic QCD kinetics with 2-to-2
scatterings [25]. In this case, collisional e↵ects perfectly
balance those of the expansion, resulting in a stationary
state that di↵ers from hydrodynamics. More sophisti-
cated time dependence have also been considered [26]. A
detailed description of these physical situations and the
corresponding solutions as a function of � will be pre-
sented in a forthcoming publication [19]. In this letter
we focus on the solution for � > 0.

To proceed, it is convenient to measure the time in

2
Fixing the units requires an additional time scale ⌧1, which can

be chosen as the time at which the expansion rate equals the

collision rate, that is ⌧1 = ⌧R(⌧1).
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FIG. 1. (Color online) Plot of g(w) obtained from Eq. (5)
for various initial conditions set up at the initial value w0 =
0.01. The solid line represents the attractor joining the free
streaming fixed point g+ at small w to the hydrodynamic fixed
point g = �4/3 at large w.

units of the instantaneous relaxation time and define the
dimensionless variable w ⌘ ⌧/⌧R(⌧) ⇠ ⌧

�
, which plays

here the role of an inverse Knudsen number. We also
define

g(w) ⌘ ⌧

L0

@L0

@⌧
= �1� PL

✏
. (2)

This quantity g(w) may be viewed as the exponent of the
power laws obeyed by the energy density at early or late
times. It is also a measure of the pressure asymmetry. In
particular, the second relation, which follows easily from
Eq. (1), shows that in the free streaming regime where
PL = 0, g = �1, while in the hydrodynamical regime
where PL = "/3, g = �4/3. In terms of g(w), Eqs. (1)
become a first order nonlinear ODE,

�
dg

d lnw
+ g

2 + (a0 + a1 + w) g+ a1a0 � c0b1 + a0w = 0 .

(3)
In the absence of collisions, this non linear equation
has two fixed points, that we refer to as unstable (g�)
and stable (g+) free streaming fixed points, whose val-
ues coincide with the eigenvalues of the linear system
(1). Numerically, g+ = �0.929, g� = �2.213 3. This
fixed point structure continues to play a role when col-
lisions are switched on [18]: The unstable fixed point
moves to large negative values, while the stable fixed
point g+ evolves adiabatically4 [27] to the hydrodynamic
fixed point, g⇤ = �4/3. The location of this “pseudo
fixed point” as w runs from 0 to 1 corresponds (ap-
proximately) to what has been dubbed “attractor” [5].

3
The fact that g+ is not exactly �1 is an e↵ect of the two moment

truncation [18].
4
When � ! 0 in Eq. (3) an approximation akin to the adiabatic

approximation becomes accurate, and remains so for � . 1.

The transition from free streaming to hydrodynamics

Early and late times are controlled by the free streaming and the hydrodynamic 
fixed points, respectively
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Time dependent relaxation time

�
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controls the "speed" of the transition

"non thermal fixed point" (?)
(very slow evolution 

towards the hydro fixed 
point: the expansion 
nearly balances the 

effect of the collisions)

Rapid Jump from 
one fixed point to 

the other
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dg0

d⌧
+ g2

0 +

 
a0 + a1 +

⌧

⌧R

!
g0 + a1a0 � c0b1 +

a0⌧

⌧R
= 0
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Renormalizing a1 cures unphysical features of two-moment truncation

(and other Israel-Stewart calculations)

a1 = a0 = 4/3
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a1 = 38/21
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a1 = 31/15
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= τ/τR

After proper renormalisation 

the effective theory matches  
the solution of the kinetic 
equation nearly exactly. 

Changing  does not 
"improve" 

hydrodynamics, it 
simply corrects the 
collisionless regime


a1



Two moments

IS hydro

NS hydro

Two moments: a1=31/15

Approximation: Eq. (4.4)
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⇡

" + P
' b1

2
Kn

1 + 2b1Kn
<latexit sha1_base64="Ru9SWL60ixAy4fmmNYfy3wvGKyM="></latexit>

Time dependent relaxation time  (⌧R ⇠ ⌧)
<latexit sha1_base64="qP0K2XlBj/r9PI1VJFGq7ets62E="></latexit>

Constant cross sections

a1 = a0 = 4/3
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a1 = 38/21
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Exact

(black dots)

Changing a1 (a 'second order transport coefficient') does not "improve" 
hydrodynamics, but rather improves the location of the collisionless fixed point

 
⌘ =

b1

2
"⌧R

!
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context as the attractor solution in [3]. A good approximation of this solution can be
obtained as the location of the zero of the function �(g0, w) as a function of w, that is, as
the function g0(w) implicitly defined via the equation �(g0(w), w) = 0. This approximation,
and its validity, are thoroughly discussed in [6], and its quality can be gauged from the plots
in Fig. 2 corresponding to the massless case, and the simple truncation where L2 = 0. These
attractor solutions are obtained by solving Eq. (4.4) with initial value at w0 = 10�3 equal
to g0 ⇡ �0.92 (which is the value of the stable free-streaming fixed point for L2 = 0). The
small deviation between the exact and approximate solutions occurs when �(g0) = w

dg0
dw is

significant, i.e., in the transition region that connects the free streaming fixed point and the
hydrodynamic fixed point.

Treatment of L2: The equation (4.4) for g0(w) is an exact equation. However, it
cannot be solved unless we know L2, which in principle would require solving an infinite set
of equations for the higher Ln moments. However, as discussed in [3, 4, 6], we anticipate that
the e↵ect of these higher moments can be well accounted for by a simple renormalization of
the coe�cients of the two-moment truncation. This is what we consider now.

Let us start by noticing that while we do not know L2 in general, we know its value in
the vicinity of the free-streaming fixed points (whose locations are known exactly, namely
g0 = �1,�2). To study the vicinity of the stable fixed point (which eventually turns into
the hydrodynamic fixed point under the e↵ects of collisions), we can then use the exact value
of L2 near the stable fixed point, L2 = A2L0 [4]. This has the e↵ect of putting the stable
fixed point at the right place, i.e., at g0 = �1 (thereby eliminating the unphysical feature of
a possible negative longitudinal pressure). An alternative, and more accurate, treatment of
the term L2 consists in noticing that [6]

�c0c1
L2

L0
= �c1c0

A2

A1

L1

L0
= c1

A2

A1
(g0 + a0), (4.8)

where Eq. (4.3) has been used, and to observe that we can absorb the term c1
A2
A1

into a
redefinition of a1,

a1 7! a
0
1 = a1 + c1

A2

A1
=

31

15
. (4.9)

In the massless case, this second strategy is the preferred one as it does not a↵ect the
behavior of the solution near the hydrodynamic fixed point. Recall that in the massless case,
L2/L0 ⇠ 1/⌧ 2 and L2 which entails that L2 does not contribute to the first order transport
coe�cient. In the first strategy, the constant contribution c0c1A2, e↵ectively corrects the
viscosity, that is, it modifies the approach to the hydrodynamic fixed point, which want to
avoid.

In order to study how this adjustment of L2 modifies the attractor solution, we plot in
Fig. 3 the approximate solutions obtained by solving the equation �(g0(w), w) = 0, with and
without the adjustments of L2, and compare both choices just discussed. To avoid the precise
determination of the last contribution in Eq. (4.4) we use the approximate equation of state
P/" = c

2
s and treat c2s as a constant. As anticipated the free streaming fixed point is now well

reproduced, while the hydrodynamic fixed point is not modified. The two adjustments of
L2 yields very similar results. They di↵er only, slightly, in the transition region between free
streaming and hydrodynamics, that takes place when ⌧ ⇠ ⌧R, i.e. when the expansion rate
is comparable to the collision rate. The speed of sound also presents a transition region from
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L2/L0 ⇠ 1/⌧ 2 and L2 which entails that L2 does not contribute to the first order transport
coe�cient. In the first strategy, the constant contribution c0c1A2, e↵ectively corrects the
viscosity, that is, it modifies the approach to the hydrodynamic fixed point, which want to
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Renormalization of a1

free 
streaming 

(exact) 



'A tale of two sounds'
Title from "Collective states in Nuclei, a Tale of Two Sounds, B.K. Jennings and A.D. Jackson, Phys. Rept. 4 (1980)141.

Collective modes in neutral Fermi liquids 

δnp = δ(εp − μ) vF up

Long vavelength excitations are localized at the Fermi surface

Fermi velocity

Distortion of the Fermi surface

Landau kinetic equation (no collisions but interaction between quasiparticles)

up

kF

vF =
ℏkF

m*

(q ⋅ vp − ω)u(p̂) + q ⋅ vp ∑
p′￼

fpp′￼
δ(εp′￼

− μ) u(p̂′￼) = 0

The dynamics is dominated by the angular degrees of freedom

('Average’ over , as done for the , is automatic)|p | ℒn



λ ≡
ω

qvF

Expand in Legendre polynomials: all values of  are coupled.ℓ

Simple solution for constant interaction   F( ̂p ⋅ ̂p′￼) ↦ F0

u( ̂p) = C
cos θ

λ − cos θ
λ
2

ln
λ + 1
λ − 1

− 1 =
1
F0

(cos θ − λ)u( ̂p) +
cos θ
8π ∫ dΩ′￼F( ̂p ⋅ ̂p′￼) u( ̂p′￼) = 0

(Note the analogy with the  moments)ℒn

Landau kinetic equation

When , there exists an undamped collective mode with : 
the zero sound. 

F0 > 0 λ > 1
When , and  :  single particle excitation. F0 = 0, λ = 1 ω = qvF

When  , F0 ≫ 1 λ ∼
F0

3

cos θ = q̂ ⋅ p̂



The distorsion of the Fermi surface is then simply u( ̂p) = A + B cos θ

ω = qvF
1 + F0

3

When  the two sounds have analogous dispersion relations… 

but zero sound is NOT "hydrodynamics out of equilibrium" 

F0 ≫ 1

Transition from the collisionless zero sound to the 
(collision-dominated) first sound

Collisions suppress all moments except the lowest ones (associated with 
conservation laws). Same as for the  moments. ℒn

The collective mode is the first sound



Conclusions

Kinetic Bjorken flow can be analysed in terms of a restricted set of moments of 
the distribution function, leading to an effective theory that contains in particular 
second order hydrodynamics à la Israel-Steward. 


The generic flow exhibits two regimes: a collisionless regime (driven by the 
expansion), and a collision-dominated regime (hydrodynamics).


The transition between the two regimes occurs where it is supposed to occur, 
namely when the collision rate is comparable to the expansion rate. 


The collisionless regime is non trivial. Its underlying simple fixed point structure 
allows us to justifies the two-moment truncation. A simple renormalisation brings 
the effective theory in nearly perfect agreement with the exact solution of the 
kinetic equation. 


