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Thermalization of QGP far from equilibrium

3

• Heavy-ion collisions: fast thermalization & hydrodynamization.       

• Challenges:

• Experiment: measurement only at freezeout in momentum space;

• Theory: legacy of non-hydrodynamic modes.
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QCD thermalisation
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High-energy limit αs≪1 of QCD 

Berges, Heller, AM, Venugopalan RMP (2021)

● Initial conditions: highly occupied gluons 5elds
● Intermediate times: quark and gluon quasi-particles 
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LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v4 and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v5 has
contributions from "5 and "2"3, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n
arctan

hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.

        Gale et al, 1301.5893
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for minimum bias and central d$ Au collisions, and for
p$ p collisions [6]. Only particles within j#j<0:7 are
included in the analysis. Ntrigger is the number of particles
within 4< pT!trig"< 6 GeV=c, referred to as trigger
particles. The distribution results from the correlation of
each trigger particle with all associated particles in the
same event having 2<pT < pT!trig", where " is the
tracking efficiency of the associated particles. The nor-
malization uncertainties are less than 5%.

The azimuthal distributions in d$ Au collisions in-
clude a nearside (!!% 0) peak similar to that seen in
p$ p and Au$ Au collisions [6] that is typical of jet
production, and a back-to-back (!!% $) peak similar to
that seen in p$ p and peripheral Au$ Au collisions [6]
that is typical of di-jet events. The azimuthal distributions
are characterized by a fit to the sum of nearside (first
term) and back-to-back (second term) Gaussian peaks
and a constant:
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Fit parameters are given in Table I. Their systematic
uncertainties are highly correlated between the data
sets, are less than 20% for %N , and are less than 10%
for all other parameters. The only large difference in the
azimuthal distributions in p$ p and d$ Au collisions is
the growth of the pedestal P. It increases with increasing
hNbini, but is not proportional to hNbini as might be ex-

pected for incoherent production. Both %N and %B exhibit
at most a small increase from p$ p to central d$ Au
collisions. A small growth in %B is expected to result
from initial-state multiple scattering [24,25]. The modest
reduction in the correlation strengths AN and AB from
p$ p to central d$ Au collisions is similar to that seen
previously for peripheral Au$ Au collisions [6].

Figure 4(b) shows the pedestal-subtracted azimuthal
distributions for p$ p and central d$ Au collisions.
The azimuthal distributions are shown also for central
Au$ Au collisions after subtraction of the elliptic flow
and pedestal contributions [6]. The nearside peak is simi-
lar in all three systems, while the back-to-back peak in
central Au$ Au shows a dramatic suppression relative to
p$ p and d$ Au.

The contrast between d$ Au and central Au$ Au
collisions in Figs. 3 and 4 indicates that the cause of the
strong high pT suppression observed previously is asso-
ciated with the medium produced in Au$ Au but not in
d$ Au collisions. The suppression of the inclusive hadron
yield at high pT in central Au$ Au collisions has been
discussed theoretically in various approaches (see [5] for
references). Measurements of central Au$ Au collisions
[5] are described both by pQCD calculations that incor-
porate shadowing, the Cronin effect, and partonic energy
loss in dense matter, and by a calculation extending the
saturation model to high momentum transfer. How-
ever, predictions of these models differ significantly for
d$ Au collisions. Because of the Cronin effect, pQCD
models predict that RAB!pT" > 1 within 2< pT <
6 GeV=c for minimum bias d$ Au collisions, with a
peak magnitude of 1.1–1.5 in the range 2:5< pT <
4 GeV=c [11]. The enhancement is expected to be larger
for central collisions [12]. The saturation model calcula-
tion in [7] predicts RAB!pT"< 1, with larger suppression
for more central events, achieving RAB!pT" % 0:75 for the
20% most-central collisions. In contrast, another satura-
tion model calculation [15] generates an enhancement in
RAB!pT", similar to the Cronin effect, for both d$ Au
and Au$ Au collisions. Figure 3 shows that RAB!pT" is
qualitatively different in d$ Au and central Au$ Au
collisions: in d$ Au, RAB!pT" significantly exceeds
unity. These results are consistent with expectations
from pQCD calculations but not the saturation model in
[7]. Scattering of the hadronic fragments of jets also may
contribute to the suppression of the inclusive yield [5,26].

TABLE I. Fit parameters from Eq. (3). Errors are statistical
only.

p$ p min. bias d$ Au min. bias d$ Au central

AN 0:081( 0:005 0:073( 0:003 0:067( 0:004
%N 0:18( 0:01 0:20( 0:01 0:22( 0:02
AB 0:119( 0:007 0:097( 0:004 0:098( 0:007
%B 0:45( 0:03 0:48( 0:02 0:51( 0:03
P 0:008( 0:001 0:039( 0:001 0:052( 0:002
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FIG. 4 (color online). (a) Efficiency corrected two-particle
azimuthal distributions for minimum bias and central d$ Au
collisions, and for p$ p collisions [6]. Curves are fits using
Eq. (3), with parameters given in Table I. (b) Comparison of
two-particle azimuthal distributions for central d$ Au colli-
sions to those seen in p$ p and central Au$ Au collisions [6].
The respective pedestals have been subtracted.
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Fit parameters are given in Table I. Their systematic
uncertainties are highly correlated between the data
sets, are less than 20% for %N , and are less than 10%
for all other parameters. The only large difference in the
azimuthal distributions in p$ p and d$ Au collisions is
the growth of the pedestal P. It increases with increasing
hNbini, but is not proportional to hNbini as might be ex-

pected for incoherent production. Both %N and %B exhibit
at most a small increase from p$ p to central d$ Au
collisions. A small growth in %B is expected to result
from initial-state multiple scattering [24,25]. The modest
reduction in the correlation strengths AN and AB from
p$ p to central d$ Au collisions is similar to that seen
previously for peripheral Au$ Au collisions [6].

Figure 4(b) shows the pedestal-subtracted azimuthal
distributions for p$ p and central d$ Au collisions.
The azimuthal distributions are shown also for central
Au$ Au collisions after subtraction of the elliptic flow
and pedestal contributions [6]. The nearside peak is simi-
lar in all three systems, while the back-to-back peak in
central Au$ Au shows a dramatic suppression relative to
p$ p and d$ Au.

The contrast between d$ Au and central Au$ Au
collisions in Figs. 3 and 4 indicates that the cause of the
strong high pT suppression observed previously is asso-
ciated with the medium produced in Au$ Au but not in
d$ Au collisions. The suppression of the inclusive hadron
yield at high pT in central Au$ Au collisions has been
discussed theoretically in various approaches (see [5] for
references). Measurements of central Au$ Au collisions
[5] are described both by pQCD calculations that incor-
porate shadowing, the Cronin effect, and partonic energy
loss in dense matter, and by a calculation extending the
saturation model to high momentum transfer. How-
ever, predictions of these models differ significantly for
d$ Au collisions. Because of the Cronin effect, pQCD
models predict that RAB!pT" > 1 within 2< pT <
6 GeV=c for minimum bias d$ Au collisions, with a
peak magnitude of 1.1–1.5 in the range 2:5< pT <
4 GeV=c [11]. The enhancement is expected to be larger
for central collisions [12]. The saturation model calcula-
tion in [7] predicts RAB!pT"< 1, with larger suppression
for more central events, achieving RAB!pT" % 0:75 for the
20% most-central collisions. In contrast, another satura-
tion model calculation [15] generates an enhancement in
RAB!pT", similar to the Cronin effect, for both d$ Au
and Au$ Au collisions. Figure 3 shows that RAB!pT" is
qualitatively different in d$ Au and central Au$ Au
collisions: in d$ Au, RAB!pT" significantly exceeds
unity. These results are consistent with expectations
from pQCD calculations but not the saturation model in
[7]. Scattering of the hadronic fragments of jets also may
contribute to the suppression of the inclusive yield [5,26].

TABLE I. Fit parameters from Eq. (3). Errors are statistical
only.
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FIG. 4 (color online). (a) Efficiency corrected two-particle
azimuthal distributions for minimum bias and central d$ Au
collisions, and for p$ p collisions [6]. Curves are fits using
Eq. (3), with parameters given in Table I. (b) Comparison of
two-particle azimuthal distributions for central d$ Au colli-
sions to those seen in p$ p and central Au$ Au collisions [6].
The respective pedestals have been subtracted.
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Attractors

4

• Attractors serve as a bridge connecting the far-from-equilibrium regime to 
the near-equilibrium regime.      
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QCD thermalisation

2

High-energy limit αs≪1 of QCD 

Berges, Heller, AM, Venugopalan RMP (2021)

● Initial conditions: highly occupied gluons 5elds
● Intermediate times: quark and gluon quasi-particles 

• The motivation of this talk: understand the role of attractors in interpreting the data 
from heavy-ion collision experiments.  

?
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FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength ⌧T for conformal Bjorken
flow in three di↵erent microscopic theories. Note that for Boltzmann and AdS/CFT, the numerical solutions shown are low
dimensional projections from an infinite dimensional space of initial conditions. See text for details.

such that the ambiguity in the Borel transform of the
transseries part with m = m0 is exactly canceled by
⌦m0+1(⌧T ) for the part with m = m0 + 1. This pro-
gram has successfully been performed for rBRSSS in
Ref. [15, 34]. The final result for the Borel trans-
form of ⌧@⌧ ln ✏ can be written in the form ⌧@⌧ ln ✏ =
(⌧@⌧ ln ✏)att + (⌧@⌧ ln ✏)non�hydro, consisting of a non-
analytic “attractor” solution defined for arbitrary ⌧T
to which the non-hydrodynamic part decays to on a
timescale ⌧T ' z�1

0 .

Note that obtaining non-analytic solutions from diver-
gent perturbative series’ has recently generated consider-
able interest under the name of “resurgence” [15, 16, 34].

Finding Hydrodynamic Attractors Identifying
the hydrodynamic attractor solution from the Borel re-
summation program of the hydrodynamic gradient series
is possible, but somewhat tedious. Fortunately, it is pos-
sible to obtain the same attractor solution more directly
from the equations of motion via the analogue of a slow-
roll approximation, cf. Refs. [15, 35] (see Supplemental
Material for details). In Fig. 1, results from solving the
rBRSSS equations of motions for a range of initial con-
ditions (“numerical”) are as shown together with zeroth,
first and second order hydrodynamic gradient series re-
sults from Eq. (2). It can be observed that the numerical
solutions converge to the hydrodynamic results for mod-
erate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor

solution even before matching the gradient series results.
This attractor solution is nothing else but the result of
the Borel transformation of the divergent transseries as
reported in Ref. [15].
Hydrodynamic Attractor in Kinetic Theory It

is tempting to look for hydrodynamic attractors in other
microscopic theories, such as kinetic theory in the relax-
ation time approximation. This theory is defined by a
single particle distribution function f(t,x,p) obeying

pµ@µf � ��
µ⌫p

µp⌫
@

@p�
f = �f � f eq

⌧⇡
, (3)

where here ��
µ⌫ are the Christo↵el symbols associated

with the Bjorken flow geometry and the equilibrium dis-
tribution function may be taken to be f eq = ep

µuµ/T .
Here uµ is again the time-like eigenvector of hTµ⌫i =R d3p

(2⇡)3
pµp⌫

p f(x, p) and T is the non-equilibrium tempera-

ture defined from the time-like eigenvalue of hTµ⌫i, which

for a single massless Boltzmann particle is T =
⇣

⇡2✏
6

⌘1/4
.

Note that for a conformal system one can again write
⌧⇡ = C⇡T�1 with C⇡ a constant. Solving Eq. (3) nu-
merically, representative results for ⌧@⌧ ln ✏ are shown in
Fig. 1 (note that ⌧@⌧ ln ✏  �1 because the e↵ective lon-
gitudinal pressure PL = ✏ (1 + ⌧@⌧ ln ✏) in kinetic theory
can never be negative for f > 0).
One observes the same basic structure as in rBRSSS,

indicating the presence of a hydrodynamic attractor at

Florkowski et al, 1707.02282, Romatschke, 1712.05815

equilibration-driven

dissipative attractor:


lost of initial information 
at later time

geometry-driven 

slow-roll attractor:


onset of hydrodynamization 

at early time

Hydrodynamic attractor offers a reliable description of the non-equilibrium fluid dynamics (via 
resummation) as long as the contribution from all non-hydrodynamic modes can be neglected.

mailto:xinan@ugent.be


From NS to MIS equations
• We consider a toy model for QCD, i.e., MIS-like theory, that extend the applicability 

of conventional NS hydrodynamics.
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QCD thermalisation

2

High-energy limit αs≪1 of QCD 

Berges, Heller, AM, Venugopalan RMP (2021)

● Initial conditions: highly occupied gluons 5elds
● Intermediate times: quark and gluon quasi-particles 

MIS

NS

5xinan@ugent.be

non-hydro pole

hydro pole

−i/τR

−iγk2

ω
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The simplest MIS-like equations
• The simplest scenario: Bjorken fluids that is

6

τ∂τΨ(τ) = − M(τ)Ψ(τ) + V M(τ) = ( 1/3 −T(τ)/18
τA(τ)/Cτ 2A(τ)/9 ) V = ( 0

8Cη/Cτ)
• The EOM for the dynamic system :Ψ = (T(τ), A(τ)) Blaizot et al, 2106.10508

 (time) dependence only, transversely homogeneousτ

 (temperature) measures the energy scale 


 (anisotropy) measures the thermalization

T

A

1) 0+1D boost-invariant:

2) conformal:

where

NB: Quantum gases: ∇ ⋅ u = 1/τ ∼ ·a/a Fujii et al, 2404.12921, Heller et al, 2507.02838

Heller et al, 1503.07514
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Asymptotic solutions
• Early-time attractor solutions:

7

T(τ) ∼ μ(μτ)− 1 − α
3 (1 + …)

: integration constant parametrizing attractorμ

• Later-time asymptotic solutions

T(τ) ∼ Λ(Λτ)− 1
3 (1 + …)

+ C∞ e− 3
2Cτ

(Λτ)2/3
(Λτ)− 2

3 (1−α2)(1 + …)

A(τ) ∼ 8Cη(Λτ)− 2
3 (1 + …)

+ f(C∞)e− 3
2Cτ

(Λτ)2/3
(Λτ)− 1

3 +α2(1 + …)

: integration constantΛ, C∞

hydrodynamic attractor 

+ transseries (non-hydrodynamic) modes

slow-roll attractor 

α = Cη/Cτ Aniceto et al, 2401.06750
XA and Spalinski, 2312.17237

A(τ) ∼ 6α(1 + …)

0.0 0.5 1.0 1.5 2.0

-1

0

1

2

3
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5

Figure 4: Some solutions of Eq. (38) (blue lines) plotted together with the attractor (red line);
the dashed magenta line represents second order viscous hydrodynamics.

of the hydrodynamic attractor expected near equilibrium into the early-time, nonequilibrium

region.

It is physically important that solutions initialised o↵ the attractor approach it rapidly while

the pressure anisotropy is high and the system is still far from equilibrium. This fact leads to a

potential explanation of the early thermalisation puzzle, as we will argue in the following. Note

also that solutions which start out below the attractor are initially driven away from equilibrium

toward the attractor. As discussed further below, this is a consequence of the strong longitudinal

expansion.

The emerging picture is that for a given range of initial conditions, apart from an initial

transient, the function A(w) quickly approaches a universal attractor A?(w) which is determined

by the microscopic theory under consideration. We assume that the physically interesting range

of initial conditions is in the basin of attraction of this unique attractor. This suggests that

it should be a good approximation to replace the form of the pressure anisotropy A(w), as it

appears in Eq. (37), by the attractor A?(w):

T (w) ⇡ �A?(w,w0)T (w0) . (41)

25

Heller et al, 1503.07514
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Early-time attractor in phase space
• Trajectories in phase space rapidly approach the early-time attractor surface. 

8
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Limitation of the simplest model
• 0+1D Bjorken model: too simple to be true.

10

Multiplicity of hadrons


Photon/dilepton spectrum


…

Collective flow


Jet


…

It assumes infinitely large and homogeneous transverse plane. 


It has only two initial conditions.


It predicts very few observables.

• 2+1D full hydrodynamics: too difficult to handle.

Idea: 0+1D attractor background   +   2+1D perturbations

cf Denicol’s talk
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Linear perturbations
• Linearization the full system around attractor background:

11

• The EOM for the dynamic system:

ϕ = (δT, δθ, δω, δπ11, δπ22, δπ12)(τ, x)

   fluid divergence δθ ≡ ∂iδui

∂τ ϕi (τ, k) = Mij(τ, k) ϕj (τ, k)

6 independent fields:

∂νTμν = ∂ν(Tμν
attractor + δTμν) = 0 ⟶ {

∂νT
μν
attractor = 0,

∂νδTμν = 0.

shear stress tensor δπij

i = 1,2

vorticity δω ≡ ϵij∂iδuj

For NS limit, cf Floerchinger et al, 1108.5535
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Asymptotic solutions at late time
• When , solutions perturbed around attractor are transseries:τ → ∞, k ≠ 0

12

: 6  integration constantsC1(k), …, C6(k) Nk

δT(k) ∼ Ci(k) e−Si τbi +… τβi (1 + …)

δω(k) ∼ Ci(k) e−Si τbi +… τβi (1 + …)

i = 1,2,3,4

i = 5,6

 and  are determined dependentlyδ ̂θ δ ̂πij

• Attractor is asymptotically stable ( ) against transverse perturbations.Re Si > 0

Hydrodynamic attractor exists in 2+1D.


Non-hydrodynamic (non-perturbative) behavior is important at later time.
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Zero wavenumber modes
• When ,  modes need to be considered separately:τ → ∞ k = 0

13

δT ∼ C3 (1 + …) + C4 e− 3
2Cτ

τ2/3
τ− 2

3 (1−α2)(1 + …)

δui ∼ Ci τ1/3(1 + …) i = 1,2

reproduces the background transseries

mild growth due to momentum conservation

δπ12 ∼ C6 e− 3
2Cτ

τ2/3
τ

2
3 α2(1 + …)

Observables are extracted from a finite set of asymptotic data .Cn(k)

# of data: 6 × Nk

δπ11 − δπ22 ∼ C5 e− 3
2Cτ

τ2/3
τ

2
3 α2(1 + …)
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Matching to numerics
• The analytic solutions (solid curves) fit the numerics (discrete points) even at  fm.τ = 3

14
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Transverse tomography
• Transverse information is encoded in a finite set of Fourier modes via FFT.

15

Evolution of temperature (energy density) in transverse spaces
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Cooper-Frye freezeout
• Cooper-Frye formula

17

Cooper and Frye, 1974

E
dN
dp3

= ∫Σ
f(x, p) pμdΣμ

dΣμ

pμ

particle

 in momentum space

fluids 

in position space

f(x, p) = f(Tμν(x), p) = eu⋅p/T(1 + 𝒪(p))
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Collectivity: analytic results
• Cooper-Frye freezeout

18

dN(p⊥, ϕ)
p⊥dp⊥dϕdy

=
m⊥τΣ
(2π)3

2K1(m̂⊥) +
1
12 [ ̂p2

⊥K1(m̂⊥) − 2m̂⊥K2(m̂⊥)] A

F0

+ perturbations

pressure anisotropy

• Collective expansion

dN(p⊥, ϕ)
p⊥dp⊥dϕdy

= v0(p⊥)(1 +
∞

∑
n=1

2vn(p⊥)cos(nϕ))
v0( ̂p⊥) ∼

m⊥τfΣ
(2π)3 (F0+ perturbations) v1( ̂p⊥), v2( ̂p⊥) ∼

perturbations
4F0+ perturbations

For NS limit w/o perturbations, cf Teaney, 2003
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Collectivity: numerical results
• Numerical results qualitatively agree with experiments.

19
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Jet-medium interaction
• The total energy of jet and fluid system is conserved:

21

∂νTμν = ∂ν ( Tμν
attractor + δTμν + Tμν

jet ) = 0

{
∂νT

μν
attractor = 0,

∂νδTμν = − ∂νT
μν
jet = Jμ .

• Attractor provides a background for the jet-medium interactions:

Jet in Trento’s Adige River
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Boost-invariant jet
• A knife-shape jet resulted from boost-invariant assumption, which

22

z

t

τ = τ0

z

captures main effects qualitatively; 

characterizes the longest wavelength modes along rapidity. 

22

• Jet source current: Jμ = fμ(t) njet(t, x)

fμ(t) =
dE
dt

uμ
s

spacetime distribution of source, e.g, effective drag force

njet(t, x) ∼ δ(2)(x − xs(τ))

Yan et al, 1707.09519
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Energy loss
• We assume the BBMG energy loss formalism

23

Chesler et al, 1402.6756

dE
dτ

=
4Einτ2

πℓ2
stop ℓ2

stop − τ2
∼ (τT)2T 2

dE
dτ

= κ ( E
T )

a

(τT) z T 2
: jet-medium coupling

: jet-energy dependence

: path-length dependence

κ
a
z

• Energy loss formula may fall into BBMG classification in certain limit, e.g.,

 class(0,2)
(energetic partons / small systems)
ℓstop ≫ τ, R

model (a, z) applicable regime

Bethe-Heitler limit (1, 0) additive single scattering

N=4 SYM (0, 0) pQCD elastic, non-relativistic heavy quark

LPM factorization limit (0, 1) pQCD radiative, weakly coupled 

AdS/CFT (0, 2) light quark, strongly coupled 

Betz, Gyulassy and Torrieri, 1102.5416
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Asymptotic jet solutions at late time
• Inhomogeneous EOM

24

∂τ ϕi (τ, k) = Mij ϕj (τ, k) + Ji(τ, k)

• The late-time asymptotic solutions can be found by Wronskian:

δϕ(τ, k) = ∑
i

Ci(k) δϕi(τ, k) + δϕp(τ, k)

• The particular solutions have the universal power-law behavior, e.g.,

δTp(τ, k) ∼ i njet(k) e−ik⋅xs(τ) ΓT (vs ⋅ k)2 + (vs × k)2

vs ⋅ k (ΓL (vs ⋅ k)2 + (vs × k)2)
(Λτ)β(1 + 𝒪(τ−1/3))

Kevin/Shock wave structure
leading power-law exponents

ΓL = 1 −
v2

s

c2
, ΓT = 1 −

3v2
s

2α2

β = −
1
3 (1 +

2(a + z)
a − 1 )
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Matching to numerics
• The analytic solutions (solid curves) fit the numerics (discrete points) even at  fm 

(with the same initial conditions ’s).
τ = 3

Ci

25
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Jet wake: analytic results

• Transition from subsonic to supersonic wave via analytic inverse FT of .δTp

26

MIS speed of sound c∞ = (1 + 4α2)/3 ∼ 0.92 (cf conformal speed of sound )1/3 ∼ 0.58

arcsin θM = arcsin c∞/vs ∼ 68∘

Supersonic: vs = 0.99Subsonic: vs = 0.50

Kevin wave with Doppler effect

θM

Shock wave with Mach cone angle

preliminary
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Jet wake: numerical results
• The transverse tomography with background.

27

energy density velocity 
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Collectivity with jet: multiplicities 
• Comparison of flow observables without jet (solid) and with jet (dashed)

28
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Disentangle the jet wake from QGP medium?
• Multiplicity subtracted by background

29

dΔN(ϕ)
dϕdy / dN

2πdy
∼ [τfo( s)]

1+β

dΔN(ϕ)
dϕdy

≡
dN(ϕ)
dϕdy

−
dN

2πdy
=

dN
2πdy

Στfo f(Tfo, m)⟨δπii⟩cos(2ϕ)

which suggests at high collision energies, approximately

Can the power-law behavior be measurable in experiments?

preliminary

⟨δπii⟩ ∼ τβ

Isotropic background β = −
1
3 (1 +

2(a + z)
a − 1 )
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Recap
• Hydro attractors provide a background for theoretical analysis for observables.


• Soft modes are dominated by non-perturbative transseries.


• Jet wakes dominate at late time; shock wave and energy loss may be measurable.

Outlook

• More realistic setup: e.g., with rapidity dependence;


• Other contexts: e.g., cold quantum gases, cosmology, stochastic sources;


• Complementary methods: e.g., kinetic theory, holography, top-down approaches.

Thank You


