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What you will see today

We look for hints of hydrodynamic attractors in simulations of 
heavy ion collisions

● Motivation

● Attractors in (0+1)D Bjorken flow

● (2+1)D Hydrodynamic simulations and attractors

Outline:

● Discussion and conclusions
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Initial state

Pre-equilibrium
dynamics

QGP as a relativistic
fluid

Hadronization Transport/Freezeout

0 ~1 ~10

fm/c

~20

Current picture of a heavy ion collision 

Empirical: Fluid-dynamical models of heavy ion collisions work well 
at RHIC and LHC energies

Main assumption: fluid dynamics can be applied at early times ~ 0.1--1 fm

MADAI collaboration



  

Extreme Conditions

Or domain of applicability of hydrodynamic theories better than 
expected?

Knudsen number

is not small at early 
times

Can this system be close to equilibrium? 
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Relativistic fluid dynamics
Effective theory describing the dynamics of a system over 

long-times and long-distances

Conservation laws 
+

Equation of state
+

 simple constitutive relations

separation of scales: macroscopic: 

microscopic:
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Relativistic Fluid dynamics
Conservation laws Tensor decomposition

Projection operator: Bulk viscous
pressure

Shear stress
tensor

Navier-Stokes theory:
constitutive relations

EoS: P0 = P0(e)
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What we solve is not “traditional” fluid dynamics

Causality: constitutive relations for the dissipative currents cannot 
be imposed

Dynamical equations, e.g. Israel-Stewart theory

...

...

relaxation times higher-order terms

non-perturbative theory in gradients!

Annals Phys. 118 (1979) 341-372

Heller&Spalinski, PRL 115 (2015) 7, 072501

shear tensor

expansion rate



  

Bjorken flow (toy model of heavy ion collisions) J. D. Bjorken, Phys. Rev. D27, 140 (1983)

Homogeneous fluid in hyperbolic coordinates

v
z
 = z/t

Simple model for boost invariant longitudinal expansion

Static  velocity energy-momentum tensorGradients ~ 1/t

dissipative correction

Knudsen number:



  

Fluid-dynamical regime 
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transient part 

universal solution

Navier-Stokes

● System forgets about initial state 
very fast

● This occurs far from equilibrium, 
before NS limit is achieved

Late-time solution of the conformal (RTA) Boltzmann equation appears to be universal



  

Fluid-dynamical regime 
Late-time solution of the conformal (RTA) Boltzmann equation appears to be universal
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transient part 

universal solution

Navier-Stokes

● System forgets about initial state 
very fast

● This occurs far from equilibrium, 
before NS limit is achieved

Emergence of constitutive 
relations far-from-equilibrium?

~ Kn-1



  

Fluid-dynamical regime 

First proposed by Heller&Janik& Witaszczyk in 
holography, PRL 108 (2012) 201602 
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universal solution

Late-time solution of the conformal (RTA) Boltzmann equation appears to be universal



  

Fluid-dynamical regime 

First proposed by Heller&Spalinski, PRL 115 
(2015) 7, 072501 

Late-time solution of Israel-Stewart theory displays the same feature

transient part 

asymptotic part 

PRD 97 (2018) 5, 056021



  

Relativistic gas of hard spheres
System with a contant Knudsen number

● Solution for the 
normalized shear-stress 
tensor relaxes to a 
constant (attractor!)  

Phys.Rev.Lett. 124 (2020) 15, 152301



  

Relativistic gas of hard spheres
Attractor solution of the Boltzmann equation and DNMR theory can be calculated

● DNMR attractor is 
qualitatively and even 
quantitatively similar 
to the attractor of the 
Boltzmann equation

● Navier-Stokes only 
works for small 
Knudsen number



  

In Bjorken flow (boost invariant), every fluid element is identical → 
same attractor for all.

In more realistic flow profiles, different fluid elements (in a Lagrangian 
view) may each approach their own local attractor ????

Here we investigate this using Lagrangian solvers: attractor behavior is 
easier to identify for each moving fluid element

Can we study attractors in more 
general flow configurations?



  

Simulation

Phys.Rev.C 80 (2009) 064901

✔  Ideal equation of state: e = 3P

✔  We solve the fluid-dynamical equations using a relativistic version of 
the SPH algorithm

✔  Transport coefficients:

✔  Initial condition: Optical Glauber, central collision

h/s = cte

initial shear stress  ~  e + P  

e0 ~ 40 GeV/fm3    



  

h/s = 1/8p

t/tp

Fluid element near
the center (r=0.25 fm)
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Navier-Stokes

0 0.05 0.1 0.15 0.2 0.25
0

0.04

0.08

0.12

0.16

0.2

h/s = 1/8p

Fluid element near
the center (r=0.25 fm)

Knudsen number starts 
to increase again

Fluid element starts to 
deviate from equilibrium



  

Navier-Stokes

h/s = 1/8p

0 0.05 0.1 0.15 0.2 0.25
0

0.04

0.08

0.12

0.16

0.2Another fluid element
 (r=2 fm)



  

Navier-Stokes

h/s = 1/8p

Another fluid element
 (r=4 fm)
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h/s = 1/8p
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edge (r=6 fm)

Navier-Stokes

●Transient dynamics still 
goes away, but system 
does not display 
hydrodynamic behavior
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Different viscosities 



  

Far-from-equilibrium hydrodynamics for general flows

Consider the usual gradient expansion (Kn <<1)

When Kn ~1: ●  Large rearrangement of the series
●  3rd-order terms like ~sabsabsmn may be grouped with 2hsmn

 Resummation of transport coefficients  h        hR(Kn) 



  

Example: slow-roll solution of Israel-Stewart theory

Simplified Israel-Stewart theory:

Slow-roll expansion:

Leading solution:
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Resummed Navier-Stokes

●Does not work very well

●Maybe contribution from
other Knudsen numbers
is more relevant?
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Conclusions

Attractor behavior, previously seen in symmetric (0+1)D Bjorken 
flow, also manifests locally in complex (2+1)D heavy-ion collisions

● Each fluid element can approach its own far-from-equilibrium 
attractor, provided it evolves long enough (i.e., not at the very edge of 
the fireball)

What is the correct functional form of the attractor for a general flow? 
Is it a function of one Knudsen number, or multiple independent 

invariants?
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