Thermalization and entropy production in heavy-ion collisions

Li Yan

Fudan Univerity

Attractors and thermalization in nuclear collisions and cold quantum gases

Sep. 25, 2025, Trento, Italy

With Chenxi Liang

Hybrid Hydro modeling of heavy-ion collisions

• Relativistic hydrodynamics solves conservation of energy and momentum (baryon charge, etc.)

Hybrid Hydro modeling of heavy-ion collisions

hydro attractor

How and why?

• Relativistic hydrodynamics solves conservation of energy and momentum (baryon charge, etc.)

Observable or effect	Pb-Pb, Xe-Xe, Au-Au	\mid p-Pb, a-A (high N)	pp (high N)	Refs.
Near-side ridge yields	yes	yes	yes	33-36,74,76,77,79,79,100
Azimuthal anisotropy	$v_1 - v_9$	$v_1 - v_5$	$v_2 - v_4$	34-36,46,73-89,101,102
Weak η dependence	yes	yes	yes	82,90+98
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2	78,81,83,87,103-110
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx \text{LYZ}$ "	" $4 \approx 6 \approx 8 \approx \text{LYZ}$ "	" $4 \approx 6$ "	83 84 88 96 109 111 123
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		
Symmetric cumulants (SC)	up to $(5,3)$	only $(4,2)$, $(3,2)$	only $(4,2), (3,2)$	86,88,124-130
Non-linear flow modes	up to v_7	not measured	not measured	89,131,132
Factorization breaking	$n = 2-4, \{2\}, \{4\}$	$n=2,3, \{2\}$	not measured	77,85,133+137
Event-by-event $v_{\rm n}$ distributions	$v_2 - v_4$	not measured	not measured	138-140
Flow- $p_{\rm T}$ correlation	up to v_4	v_2	not measured	141,142
Directed flow (from spectators)	yes	no	no	143
Charge-dependent correlations	yes	yes	yes	144-150
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	52,151 , 161
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes	153,156,160,162 - 166
Particle ratios	GC level	GC level	GC level	153,154,157,158,167,168
Statistical model	$\gamma_s^{ m GC} = 1$	$\gamma_s^{\rm GC} \approx 1$	$\gamma_s^{\rm C} < 1$	52,161,169 + 171
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N}))$	$R_{\rm out}/R_{\rm side} \approx 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	172 + 180
Direct photons at low $p_{\rm T}$	yes	not measured	not observed	181-183

To some extent, hydro works for all these observables! (unreasonable success of hydro.)

Entropy production ↔ Thermalization

Thermalization assumption and entropy production in models

[Trento Model, J. Moreland, J. Bernhard, and S.Bass, 1412.4708]

- Determine where entropy is produced.
- Determine whether entropy is produced.
- How much entropy is produced?

$$\frac{dS}{dy}\big|_{\tau_0} = N_{norm} T_R(T_A, T_B) \propto \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$$

nucleon-nucleon collision

Estimate entropy production from $dN_c/d\eta$

• Linearity between $dN_c/d\eta$ and dS/dy

[P. Hanus, K. Reygers and A. Mazeliauskas, 1908.02792]

system	$\mathrm{d}S/\mathrm{d}y$	$(\mathrm{d}S/\mathrm{d}y)/(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}y)$
Pb–Pb, $0-10\%$	11335 ± 1188	6.7 ± 0.8
pp minimum bias	37.8 ± 3.7	5.2 ± 0.5
pp high mult.	135.7 ± 17.9	5.4 ± 0.7

$$\left. \frac{dN_c}{d\eta} \propto \frac{dS}{dy} \right|_{total} \gtrsim \left. \frac{dS}{dy} \right|_{hyd}$$

[J. Churchill, LY, S. Jeon and C. Gale, PRC 21]

Empirical estimate of the total entropy S_{total} from Trento

- Calibrate with respect to $N_c \propto S_{total}$ in ultra-central events.
- Determine collision centrality using EbE Trento, estimate S_{total} for all centralities.
- Empirical based on hydro, less reliable at peripheral collisions.

Entropy production in different stages

• Evolution stages and effective model characterization

III. Fluid Entropy production: dissipative fluid:

$$\partial_{\mu}s^{\mu} = \pi^{\alpha\beta} \langle \nabla_{\alpha} u_{\beta} \rangle / T + \dots$$

Thermalization of a QCD matter: quantum thermalization

[Nature 561, 321(2018)]

similarly for pp, electron-positron

How thermal ensemble emerges from pure Quantum states, under unitarty interaction?

- QGP is a high-energy (closed) quantum system obeying non-Abelian gauge theory.
- QGP thermalization is beyond perturbative QCD characterization.
- Beyond current lattice QCD simulation: time evolution requires diagonalization of Hamiltonian.

Quantum thermalization and entanglement entropy in QED₂

Entanglement Entropy

$$\hat{H} = \int \left(\bar{\psi} \left(\gamma^1 (-i\partial_z - g A_1) + m e^{i\theta\gamma^5} \right) \psi + \frac{1}{2} \mathcal{E}^2 \right) dz$$

- How a system resembles QCD thermalizes quatum mechanically? (with confinement, vacuum topoloty, ...)
- Realization on 1D lattice and quantum computation (classical/quantum device): 1D spin model
- Quantum thermalization realized in "massless"/strongly-coupled system: $\delta m \sim ag^2$

[Shile Chen, Shuzhe Shi, LY, 2412.00662]

Entanglement entropy production in high-Q² inclusive scatterings

[D. Kharzeev and E. Levin, PRD 95, 114008 (2017), Z. Tu, D. Kharzeev and T. Ulirich, PRL19]

- In high- Q^2 inclusive scatterings no interference among states of different n_{parton} , in small x limit.
- Region involved in collision approaches maximally entanglement.
- Entanglement entropy is calculable and related to the parton distribution function (pdf).

$$S_{En} = \log(xG(x,Q^2))$$

Quantum thermalization in inclusive scatterings

• "Spectators" are traced away → reduced density matrix

$$|\psi\rangle_p = \sum_n \frac{1}{\sqrt{\mathcal{D}}} |n, x, Q^2\rangle$$
, \mathcal{D} : dimension of Fock space

• Maximally entangled in a bipartite system: "participant" + "spectator"

[PRA43, 2046 (1991); PRE50.888 (1994)]

$$xG(x,Q^2) \equiv \langle \psi | \hat{N} | \psi \rangle = \frac{\mathcal{D}}{2} \stackrel{\text{ETH}}{\longleftarrow} N_{mn} = N(E) \delta_{mn} + e^{-S} r_{mn}$$

 $\rho_p = |\psi\rangle_{pp} \langle \psi | \to S_{En} = -\text{tr}[\rho_p \log \rho_p] = \log \mathcal{D} \approx \log(xG(x,Q^2))$

Quantum thermalization in high-Q² and small-x inclusive scatterings is generic.

$$Q \gg \Lambda_{QCD}$$
, $x \ll 1$

Generalization to heavy-ion collisions

- Generalization: (pdf \rightarrow npdf) + nuclear geometry from Trento model [2112.12462]
- Consider central rapidity and Q depends on collision energy and collision system, e.g.,

$$Q \sim A^{1/3}$$
, $Q \sim \sqrt{s}^{\lambda}$, $x \sim Q/\sqrt{s}$

• A more sophisticated/realistic formulation:

[L.McLerran and R. Venugopalan, PRD 1994]

$$S_{En} = \sum_{i}^{N_{part}} \log[xG_N(x, Q^2(\vec{x}_{\perp}^i, b))]$$

[H. Kowalski and D. Teaney, PRD 2003]

Entanglement entropy production

Exclude S_{En} , one does notice an increase of entropy production from late stages, from pp to PbPb.

Pre-equilibrium entropy production wrt. hydro attractor

$$\partial_{\tau} e + \frac{4}{3} \frac{e}{\tau} = \frac{\pi}{\tau}$$

$$\tau_{\pi} \partial_{\tau} \pi + \pi = \frac{4}{3} \frac{\eta}{\tau} - a_{1} \frac{\tau_{\pi}}{\tau} \pi \rightarrow g(\tau/\tau_{R}) \equiv \frac{d \ln e}{d \ln \tau} \xrightarrow{de=Tds} \frac{d \ln(s\tau)}{d \ln \tau} = 1 + \frac{3}{4} g(\tau/\tau_{R})$$

[Blaizot, LY, 2106.10508]

Non-equilibrium entropy production

• 2nd law: Thermal entropy increases as system approaching equilibrium.

Entropy production and thermalization

- Structure of thermalization plateau.
- Initial time (~1/Q) is bounded from above in different systems: earlier in larger systems.
- pp is unlikely fully thermalized ...

Summary

- Late-stage entropy production can be estimated in heavy-ion collisions, by experiment.
- Thermalization can be quantified in terms of late-stage entropy production.

Wigner function thermalization in QED₂

- Quantum thermalization realized in "massless"/strongly-coupled system: $\delta m \sim a g^2$
- Quantum thermalization partly realized in massive/weakly-coupled system: parity dependent!

thermalized: pseudo-scalar and vector charge not thermlized: scalar and axial vector charge

Distribution of diagonal elements of Wigner function

- Strong coupling: single and narrow band ==> smooth function ==> ETH condition ==> thermalization
- Scalar: The distribution gradually splits as coupling gets weaker: break down of ETH
- Pseudo-scalar: always thermalize