

Limiting attractors: new universality in heavy-ion collisions and jet quenching

Based on PLB 852 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron] and work in preparation with K. Boguslavski & L. Hörl

Florian Lindenbauer (MIT Center for Theoretical Physics – a Leinweber Institute)

September 23, 2025, ECT* Trento workshop
Attractors and thermalization in nuclear collisions and cold quantum gases

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- **5** Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Heavy-ion collisions and the quark-gluon plasma

- Study properties of the strong interaction
- Collision of atomic nuclei at LHC or RHIC
- Creates high-temperature QCD matter = Quark-Gluon plasma (QGP)

[Alberica Toia 2013, CERN COURIER]

Time-evolution of the QGP in heavy-ion collisions

Interested in pre-equilibrium stages ("Initial stages")

ightarrow QCD out of equilibrium

[Rev.Mod.Phys. 93 (2021) [Berges, Heller, Mazeliauskas, Venugopalan]]

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Effective kinetic theory (EKT) description of the QGP

- Microscopic description
- Gluons with **distribution function** $f(t, \mathbf{p})$

¹[JHEP 01 (2003) [Arnold, Moore, Yaffe], Int.J.Mod.Phys.E 16 (2007) [Arnold]] ←□ → ←② → ←② → ←② → □□ → ○○

Effective kinetic theory (EKT) description of the QGP

- Microscopic description
- Gluons with **distribution function** $f(t, \mathbf{p})$
- Time evolution described by **Boltzmann equation** at leading-order¹

$$(\partial_t + oldsymbol{v} \cdot oldsymbol{
abla})f = egin{bmatrix} oldsymbol{v} & oldsymbol{v} &$$

Azimuthal symmetry around beam axis \hat{z} ,
Bjorken expansion, homogeneous in transverse plane

^{1[}JHEP 01 (2003) [Arnold, Moore, Yaffe], Int.J.Mod.Phys.E 16 (2007) [Arnold]] < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observables in EKT

- Fundamental quantity: Distribution function $f(\mathbf{p})$
- **■** Energy-Momentum tensor:

$$T^{\mu
u} =
u_{m{g}} \int rac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} rac{p^\mu p^
u}{p} f(\mathbf{p})$$

- Longitudinal pressure $P_L = T_{zz}$
- lacktriangle Transverse pressure $P_T = T_{xx} = T_{yy}$

Observables in EKT

- Fundamental quantity: Distribution function $f(\mathbf{p})$
- **■** Energy-Momentum tensor:

$$T^{\mu
u} =
u_{m{g}} \int rac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} rac{p^\mu p^
u}{p} f(\mathbf{p})$$

- Longitudinal pressure $P_L = T_{zz}$
- lacktriangle Transverse pressure $P_T = T_{xx} = T_{yy}$
- Occupancy of the hard sector

$$\frac{\langle pf \rangle}{\langle p \rangle} = \frac{\int d^3 \mathbf{p} \, p \, f(\mathbf{p})^2}{\int d^3 \mathbf{p} \, p \, f(\mathbf{p})}$$

■ Initial condition², with $\lambda = g^2 N_{\rm C}$

$$f(p_{\perp}, p_z) = \text{"squeezed"} \frac{1}{\lambda} \times \exp(-p^2)/p$$

Figure from arXiv:2509.05904 [Altenburger, Boguslavski, FL]

²[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]]

■ Initial condition², with $\lambda = g^2 N_{\rm C}$

$$f(p_{\perp}, p_z) = \text{"squeezed"} \frac{1}{\lambda} \times \exp(-p^2)/p$$

■ Phase 1: Anisotropy increases

Figure from arXiv:2509.05904 [Altenburger, Boguslavski, FL]

²[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]]

■ Initial condition², with $\lambda = g^2 N_{\rm C}$

$$f(p_{\perp}, p_z) = \text{"squeezed"} \frac{1}{\lambda} \times \exp(-p^2)/p$$

- Phase 1: Anisotropy increases
- Phase 2: Occupancy decreases

Figure from arXiv:2509.05904 [Altenburger, Boguslavski, FL]

²[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]]

■ Initial condition², with $\lambda = g^2 N_{\rm C}$

$$f(p_{\perp}, p_z) = \text{"squeezed"} \frac{1}{\lambda} \times \exp(-p^2)/p$$

- Phase 1: Anisotropy increases
- Phase 2: Occupancy decreases
- Phase 3: System thermalizes at³

$$au_{
m BMSS} = \left(rac{\lambda}{12\pi}
ight)^{-13/5}/Q_{
m s}$$

Figure from arXiv:2509.05904 [Altenburger, Boguslavski, FL]

[[]Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]]

■ Initial condition², with $\lambda = g^2 N_{\rm C}$

$$f(p_{\perp}, p_z) = \text{"squeezed"} \frac{1}{\lambda} \times \exp(-p^2)/p$$

- Phase 1: Anisotropy increases
- Phase 2: Occupancy decreases
- Phase 3: System thermalizes at³

$$au_{
m BMSS} = \left(rac{\lambda}{12\pi}
ight)^{-13/5}/Q_{
m s}$$

Markers represent different stages

Figure from arXiv:2509.05904 [Altenburger, Boguslavski, FL]

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Hydrodynamic description of the QGP

- Macroscopic description
- Expansion around local equilibrium

$$\langle T^{\mu\nu}
angle = T^{\mu\nu}_{(0)} + \underbrace{T^{\mu\nu}_{(1)} + T^{\mu\nu}_{(2)} + \dots}_{ ext{shear and bulk stress } \pi^{\mu\nu},\Pi}$$

- Macroscopic properties (pressure, temperature, energy density, . . .)
- Works **close to equilibrium** (small gradients)
- Approach to equilibrium governed by **transport coefficients** η , ζ , ...

Hydrodynamic attractors

- Attractor found by solving hydro equations
- Complexity of initial state quickly reduced, rapid loss of information

\rightarrow See talk by A. Soloviev

[Eur.Phys.J.C 82 (2022) [Soloviev], Prog.Part.Nucl.Phys. 132 (2023) [Jankowski, Spaliński]]

[Phys.Rev.Lett. 115 (2015) [Heller, Spalinski]]

Hydrodynamic attractors

- Attractor found by solving hydro equations
- Complexity of initial state quickly reduced, rapid loss of information
- Similarly observed in kinetic theory

\rightarrow See talk by A. Soloviev

[Eur.Phys.J.C 82 (2022) [Soloviev], Prog.Part.Nucl.Phys. 132 (2023) [Jankowski, Spaliński]]

[Phys.Rev.Lett. 125 (2020) [Almaalol, Kurkela, Strickland]]

Hydrodynamic attractors

- Attractor found by solving hydro equations
- Complexity of initial state quickly reduced, rapid loss of information
- Similarly observed in kinetic theory
- Different couplings $\lambda \to \text{same curve}$ (when rescaled with η/s)

\rightarrow See talk by A. Soloviev

[Eur.Phys.J.C 82 (2022) [Soloviev], Prog.Part.Nucl.Phys. 132 (2023) [Jankowski, Spaliński]]

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney,
Phys.Rev.Lett. 122 (2019)]

Relaxation time τ_R

■ Conformal (first order) hydro:

$$rac{P_L}{P_T} = 1 - 8 \underbrace{rac{\eta/s}{ au T_R/ au}}_{\sim au_R/ au}$$

[[Romatschke, Romatschke] (2019)]

Relaxation time τ_R

Conformal (first order) hydro:

$$\frac{P_L}{P_T} = 1 - 8 \underbrace{\frac{\eta/s}{\tau T}}_{\sim \tau_R/\tau}$$

Depends only on ratio τ/τ_R with

$$au_R = rac{4\pi\eta/s}{T}.$$

[[Romatschke, Romatschkel (2019)]

Relaxation time τ_R

Conformal (first order) hydro:

$$\frac{P_L}{P_T} = 1 - 8 \underbrace{\frac{\eta/s}{\tau T}}_{\sim \tau_R/\tau}$$

■ Depends only on ratio τ/τ_R with

$$au_R = rac{4\pi\eta/s}{T}.$$

■ Conformal: $P_L + 2P_T = \epsilon \rightarrow \text{similar relation for } P_T/\epsilon, P_L/\epsilon, \dots$

[[Romatschke, Romatschke] (2019)]

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Pressure ratio

$$au_R = rac{4\pi\eta/s}{T}$$
, $au_{
m BMSS} = lpha_s^{-13/5}/Q_s$

■ Kinetic theory simulations for different couplings $0.5 \le \lambda \le 20$ and initial conditions.

- \blacksquare Attractor for each λ (insensitive to IC)
- Curves approach limiting attractors after •

Pressure ratio

$$\tau_R = \frac{4\pi\eta/s}{T}$$
, $\tau_{\rm BMSS} = \alpha_s^{-13/5}/Q_s$

■ Kinetic theory simulations for different couplings $0.5 \le \lambda \le 20$ and initial conditions.

- Attractor for each λ (insensitive to IC)
- Curves approach limiting attractors after •

Extrapolation to limiting attractors

$$au_R = rac{4\pi\eta/s}{T} \ au_{
m BMSS} = lpha_s^{-13/5}/Q_s$$

- Obtain limiting attractors by extrapolating at fixed τ/τ_R or $\tau/\tau_{\rm BMSS}$
- **Bottom-up attractor**: Linear extrapolation to $\lambda \rightarrow 0$, i.e.,

$$\frac{P_T}{P_L}(\tau/ au_{
m BMSS}) = a(\tau/ au_{
m BMSS}) + \lambda b(\tau/ au_{
m BMSS})$$

■ **Hydro attractor**: Linear extrapolation to $1/\lambda \rightarrow 0$

[Phys.Lett.B 852 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]

- $\tau_R = \frac{4\pi\eta/s}{T(\tau)}$ $\tau_{\rm BMSS} = \alpha_s^{-13/5}/Q_s$
- Difficult comparison, τ_R function of τ
- Also: Bottom-up⁴: $T_{\rm max} \sim \alpha_s^{2/5}$, $\eta/s \sim \alpha_s^{-2} \rightarrow \tau_R \sim \alpha_s^{-12/5}$ But: **Strong coupling attractor** only valid for large λ , where $\eta/s \neq \alpha_s^{-2}$
- Thermalization dominated by largest time scale

Ш

⁴[Phys.Lett.B 502 (2001) [Baier, Mueller, Schiff, Son]]

- Extrapolation to bottom-up attractor robust?
- Different times?

$$rac{P_T}{P_L}(au/ au_{
m BMSS}) = a(au/ au_{
m BMSS}) + \lambda b(au/ au_{
m BMSS})$$

Extrapolation revisited

[See my PhD thesis]

- Extrapolation to bottom-up attractor robust?
- Different times?

$$rac{P_T}{P_L}(au/ au_{
m BMSS}) = a(au/ au_{
m BMSS}) + \lambda b(au/ au_{
m BMSS})$$

Additional simulations with smaller couplings

Extrapolation revisited

[See my PhD thesis]

- Extrapolation to bottom-up attractor robust?
- Different times?

$$rac{P_T}{P_L}(au/ au_{
m BMSS}) = a(au/ au_{
m BMSS}) + \lambda b(au/ au_{
m BMSS})$$

Additional simulations with smaller couplings

Note: Runs with $\lambda \in \{0.25, 0.75, 1.5\}$ with slightly different systematics

Are there **Limiting attractors in other quantities?**

Are there **Limiting attractors in other quantities?**

■ Jet quenching parameter \hat{q}

lacktriangle Heavy quark diffusion coefficient κ

Are there **Limiting attractors in other quantities?**

■ Jet quenching parameter \hat{q}

■ Heavy quark diffusion coefficient κ (not in this talk)

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- **5** Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Jets in heavy-ion collisions

Study modifications of jets

Jets in heavy-ion collisions

- Study modifications of jets
 - **Highly energetic partons** created in initial collision
 - Splits into many particles

 → then measured in the detectors
 - Imprints of medium interactions

Jets in heavy-ion collisions

- Study modifications of jets
 - **Highly energetic partons** created in initial collision
 - Splits into many particles

 → then measured in the detectors
 - Imprints of medium interactions
- Momentum broadening quantified by $\hat{q} = \frac{d\langle p_1^2 \rangle}{dL} = \frac{d\langle p_1^2 \rangle}{dL}$
- Input to simple jet energy loss models

Obtaining \hat{q}

Phys.Rev.D 110 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]

■ Provided we know $f(\mathbf{k})$:

■ Provided we know $f(\mathbf{k})$: Outgoing plasma particle

Time evolution of jet quenching parameter

- Recently computed $\hat{q}(\tau)$
- Bands: Vary cutoff and initial conditions
- Supports large values from Glasma⁵ and lower values in hydrodynamic stage

[Phys.Lett.B 850 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]

⁵[Phys.Lett.B 810 (2020) [Ipp, Müller, Schuh]]

Time evolution of jet quenching parameter

- Recently computed $\hat{q}(\tau)$
- Bands: Vary cutoff and initial conditions
- Broadening anisotropy up to 15 %
- Mostly $\hat{q}^{zz} > \hat{q}^{yy}$ → Enhanced broadening along beam axis
- Possible impact on polarization⁵, azimuthal and spin observables⁶

[Phys.Lett.B 850 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]

Kinetic Hvdrodvnamics theory 1.0 0.8 $E_{iet} = 100 \text{ GeV}$ $E_{ict} = 20 \text{ GeV}$ 10^{-1} τ (fm/c)

⁵[JHEP 08 (2023) [Hauksson, lancu]]

⁶[JHEP 12 (2024) [Barata, Salgado, Silva]]

\hat{q} and the limiting attractors

[Phys.Lett.B 852 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]

- lacksquare \hat{q} allows extrapolation to **both limiting attractors**
- Weak-coupling attractor approached even at moderate couplings

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ●|= 釣@@

Check linear extrapolation

[See my PhD thesis]

 \blacksquare Excellent extrapolation at different times and cutoffs $\Lambda_{\perp}.$

But: \hat{q} not directly measurable

→ do these attractors survive in experimental observables?

(Spoiler: cannot give concrete answer yet, but consider jet energy loss calculations)

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Obtaining the gluon emission spectrum JETP Lett. 65 (1997) [Zakharov] Nucl.Phys.B 483 (1997) [Baier, Dokshitzer, Mueller, Peigne, Schiff]

■ Energy loss dominated by **gluon radiation**

$$\frac{\mathrm{d}I}{\mathrm{d}\omega} \sim \mathrm{Re} \int_{t_0}^{\infty} \mathrm{d}t_2 \int_{t_0}^{t_2} \mathrm{d}t_1 \partial_{\mathbf{x}} \cdot \partial_{\mathbf{y}} (G(\mathbf{x}, t_2; \mathbf{y}, t_1)_{\mathbf{y}=0} - G_{\mathrm{vac}}),$$

- \blacksquare ω : emitted gluon energy
- $t^{\text{form}} \sim \sqrt{\omega/\hat{q}}$: formation time

Obtaining the gluon emission spectrum JETP Lett. 65 (1997) [Zakharov] Nucl.Phys.B 483 (1997) [Baier, Dokshitzer, Mueller, Peigne, Schiff]

■ Energy loss dominated by gluon radiation

$$\frac{\mathrm{d}I}{\mathrm{d}\omega} \sim \mathrm{Re} \int_{t_0}^{\infty} \mathrm{d}t_2 \int_{t_0}^{t_2} \mathrm{d}t_1 \partial_{\mathbf{x}} \cdot \partial_{\mathbf{y}} (G(\mathbf{x}, t_2; \mathbf{y}, t_1)_{\mathbf{y}=0} - G_{\mathrm{vac}}),$$

■ Greens function *G* of 2D Schrödinger equation

$$(\partial_t - \frac{\partial_x^2}{2\omega} + \frac{i}{4}\hat{q}(t)x^2) = i\delta^2(\mathbf{x} - \mathbf{y})\delta(t_1 - t)$$

Ш

Obtaining the gluon emission spectrum JETP Lett. 65 (1997) [Zakharov] Nucl.Phys.B 483 (1997) [Baier, Dokshitzer, Mueller, Peigne, Schiff]

■ Energy loss dominated by **gluon radiation**

$$\frac{\mathrm{d}I}{\mathrm{d}\omega} \sim \mathrm{Re} \int_{t_0}^{\infty} \mathrm{d}t_2 \int_{t_0}^{t_2} \mathrm{d}t_1 \partial_{\mathbf{x}} \cdot \partial_{\mathbf{y}} (G(\mathbf{x}, t_2; \mathbf{y}, t_1)_{\mathbf{y}=0} - G_{\mathrm{vac}}),$$

■ Greens function *G* of 2D Schrödinger equation

$$(\partial_t - \frac{\partial_x^2}{2\omega} + \frac{i}{4}\hat{q}(t)x^2) = i\delta^2(\mathbf{x} - \mathbf{y})\delta(t_1 - t)$$

■ Isotropic (in transverse plane): Trick: Find spectrum using 'simple formula' ⁷

$$\ddot{c}(t) = irac{\hat{q}(t)}{2\omega}c(t), \qquad \qquad o rac{\mathrm{d}I}{\mathrm{d}\omega} \sim \ln|c(0)|$$

Ш

⁷[Phys.Rev.D 79 (2009) [Arnold]]

Simple formula for jet energy loss (isotropic \hat{q})

 τ (fm/c)

Output: Spectrum $\frac{\mathrm{d}I}{\mathrm{d}\omega}$

Naive picture: Mean energy of single emitted gluon

mean energy loss: $E = \int \mathrm{d}\omega \, \omega \, \frac{\mathrm{d}I}{\mathrm{d}\omega}$

Generalizing 'simple formula' to anisotropic \hat{q}

- Previous trick⁸ not applicable
- Need to perform time integrals numerically

⁸ [Phys.Rev.D 79 (2009) [Arnold]]

Generalizing 'simple formula' to anisotropic \hat{q}

- Previous trick⁸ not applicable
- Need to perform time integrals numerically
- Calculate in static brick
- Only small effect < 2% for realistic $\hat{q} \rightarrow$ (may be observable dependent!)

$$\hat{q} = rac{\hat{q}^{zz} + \hat{q}^{yy}}{2}$$
, $\Delta \hat{q} = rac{\hat{q}^{zz} - \hat{q}^{yy}}{2}$

$$\Delta E = E_{\rm aniso} - E_{\rm iso}$$

^{8 [}Phys.Rev.D 79 (2009) [Arnold]]

Plugging $\hat{q}(\tau)$ evolution

Other estimates using hydro attractor:

Phys. Rev. Lett. 122 (2019) [Kurkela, Mazeliauskas, Paguet, Schlichting, Teaney]. Phys.Rev.Lett. 123 (2019) [Giacalone, Mazeliauskas, Schlichting]. JHEP 06 (2024) [Zhou, Brewer, Mazeliauskas], . . .

- Now use $\hat{q}(t)$ from previous simulation
- Use 'corresponding brick'⁹ $\hat{q}_{x}^{\text{eff}}(L) = \frac{2}{L^{2}} \int_{\tau_{0}}^{L+\tau_{0}} (\tau - \tau_{0}) \, \hat{q}_{x}(\tau) \, d\tau$
- Extrapolation to **limiting attractor**

$$E_{
m aniso}/Q_s \approx 6.5 imes ilde{w}^{1.8},$$

Obtain estimate

$$E_{
m aniso} pprox 74\,{
m GeV} imes \left(rac{Q_s}{2\,{
m GeV}}
ight) \left(rac{\langle s au
angle}{4.1\,{
m GeV}^2}
ight)^{3/5} \ imes \left(rac{
u}{40}
ight)^{-3/5} \left(rac{ au}{5\,{
m fm}}
ight)^{6/5} \left(rac{4\pi\eta/s}{2}
ight)^{-9/5}$$

Preliminary

◆ロト ◆御ト ◆ 重ト ◆ 重 ト 至 日 * り Q (へ)

⁹ [Phvs.Rev.Lett. 89 (2002) [Salgado, Wiedemann]]

Relative change $\Delta E/E$

Preliminary

- Bottom-up attractor visible in relative change (despite averaging)
- Both attractors visible in mean energy loss

Outline

- 1 Introduction
- 2 Kinetic theory
- 3 First-order hydrodynamics
- 4 Limiting attractors
- 5 Limiting attractors for \hat{q}
- 6 Jet energy loss
- 7 Summary

Summary and outlook

- Performed kinetic theory simulations of early stages in heavy-ion collisions
- Limiting attractors emerge for P_T/P_L , \hat{q}
 - \blacksquare Strong coupling: $\lambda \to \infty$ Hydrodynamic attractor
 - lacktriangle Weak coupling: $\lambda o 0$ Weak-coupling bottom-up attractor
- For $\hat{q}^{yy}/\hat{q}^{zz}$ even at moderate coupling: universal curves in $\tau/\tau_{\rm BMSS}$
- Application to jet energy loss:
 - Both attractors visible/survive despite averaging procedure

Outlook:

- Which experimental observables are sensitive and what can be predicted?
- Detailed understanding of their emergence?
- Similar concept(s) in cold atoms?

Thank you very much for your attention!

FL is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the University TU Wien. This work is supported by the Austrian Science Fund (FWF) under project DOI 10.55776/P34455 and 10.55776/J4902

Outline

- 8 Backup slides
- 9 Jet quenching parameter
- 10 Relation to jet momentum broadening

Outline

- 8 Backup slides
- 9 Jet quenching parameter
- 10 Relation to jet momentum broadening

Jet energy loss through medium-induced radiation

- Very many works on energy loss of energetic parton
- Difficulties: Correctly including the LPM suppression

Jet energy loss through medium-induced radiation

- Very many works on energy loss of energetic parton
- Difficulties: Correctly including the LPM suppression
- Harmonic approximation:

 Depend on single

 medium parameter \hat{q} "Jet quenching parameter"

Jet energy loss through medium-induced radiation

- Very many works on energy loss of energetic parton
- Difficulties: Correctly including the LPM suppression
- Harmonic approximation:
 Depend on single
 medium parameter q̂
 "Jet quenching parameter"
- Quantifies momentum broadening

$$\hat{q} = \frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}L} = \frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} = \int \mathrm{d}^2 q_{\perp} \, q_{\perp}^2 \frac{\mathrm{d}\Gamma^{\mathrm{el}}}{\mathrm{d}^2 q_{\perp}}$$

■ Cutoff Λ_{\perp} restricts transverse momentum transfer $q_{\perp} < \Lambda_{\perp}$ (needed in eikonal limit $p \to \infty$)

$$\hat{q} \sim \int \mathrm{d}^2 q_\perp \ q_\perp^2 \ \underbrace{rac{\mathrm{d}\Gamma^{
m el}}{\mathrm{d}^2 q_\perp}}_{1/q_\perp^4 ext{ for large } q_\perp} \sim \int rac{\mathrm{d} q_\perp}{q_\perp}$$

- Cutoff Λ_{\perp} restricts transverse momentum transfer $q_{\perp} < \Lambda_{\perp}$ (needed in eikonal limit $p \to \infty$)
- Cutoff somehow grow with jet energy

[arXiv:2312.00447 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

- lacktriangle Cutoff Λ_{\perp} restricts transverse momentum transfer $q_{\perp} < \Lambda_{\perp}$ (needed in eikonal limit $p o \infty$)
- Cutoff somehow grow with jet energy
- kinematic cutoff $\Lambda_{\perp}^{\rm kin}(E,T) = \zeta^{\rm kin}g(ET)^{1/2}$ obtained from comparing leading log behavior for large p and Λ_{\perp}

[arXiv:2312.00447 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

- Cutoff Λ_{\perp} restricts transverse momentum transfer $q_{\perp} < \Lambda_{\perp}$ (needed in eikonal limit $p \to \infty$)
- Cutoff somehow grow with jet energy
- kinematic cutoff $\Lambda_{\perp}^{\rm kin}(E,T) = \zeta^{\rm kin}g(ET)^{1/2}$ obtained from comparing leading log behavior for large p and Λ_{\perp}
- LPM cutoff $\Lambda_{\perp}^{\mathrm{LPM}}(E,T) = \zeta^{\mathrm{LPM}} g(ET^3)^{1/4}$ Estimate for momentum broadening during LPM 'formation time': $Q_{\perp}^2 \sim \hat{q}t^{\mathrm{form}}$, $t^{\mathrm{form}} \sim \sqrt{E/\hat{q}}$, approximately $\hat{q} \sim g^4 T^3$

[arXiv:2312.00447 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

Generalization of $\hat{q} \rightarrow \hat{q}^{ij}$ for anisotropic systems

■ **Previously** (isotropic definition):

$$\hat{q} = rac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}L} = rac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} = \int \mathrm{d}^2 q_{\perp} \, q_{\perp}^2 rac{\mathrm{d}\Gamma^{\mathrm{el}}}{\mathrm{d}^2 q_{\perp}}$$

with elastic scattering rate $\Gamma^{\rm el}$

Generalization of $\hat{q} \rightarrow \hat{q}^{ij}$ for anisotropic systems

Previously (isotropic definition):

$$\hat{q} = rac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}L} = rac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} = \int \mathrm{d}^2 q_{\perp} \, q_{\perp}^2 rac{\mathrm{d}\Gamma^{\mathrm{el}}}{\mathrm{d}^2 q_{\perp}}$$

with elastic scattering rate $\Gamma^{\rm el}$

■ To take into account anisotropies:

Define matrix

$$\hat{q}^{ij} = \int \mathrm{d}^2 q_\perp \, q_\perp^i q_\perp^j rac{\mathrm{d}\Gamma^\mathrm{el}}{\mathrm{d}^2 q_\perp}$$

Thus
$$\hat{q} = \hat{q}^{yy} + \hat{q}^{zz}$$
 (and $\hat{q}^{yz} = 0$)

 \hat{q} for fixed coupling $\lambda = 2$

- \hat{q} for fixed coupling $\lambda=2$ and varying cutoffs Λ_{\perp}
- Ordering $\hat{q}^{yy} \leq \hat{q}^{zz}$ depends on cutoff

- \hat{q} for fixed coupling $\lambda=2$ and varying cutoffs Λ_{\perp}
- Ordering $\hat{q}^{yy} \leq \hat{q}^{zz}$ depends on cutoff

- \hat{q} for fixed coupling $\lambda=2$ and varying cutoffs Λ_{\perp}
- Ordering $\hat{q}^{yy} \leq \hat{q}^{zz}$ depends on cutoff
- Compare with energy-density matched thermal equilibrium

Cutoff dependence and comparison with equilibrium

- \hat{q} for fixed coupling $\lambda=2$ and varying cutoffs Λ_{\perp}
- Ordering $\hat{q}^{yy} \leq \hat{q}^{zz}$ depends on cutoff
- Energy-matched equilibrium over- or underestimates \hat{q} , depending on cutoff

Screening in the matrix element of \hat{q}

- Scattering matrix element includes in-medium propagator
- Receives self-energy corrections
- lacktriangledown Anisotropic hard thermal loop (HTL) self-energy ightarrow unstable modes 10
- Approximation: Use isotropic HTL matrix element Similar approximation also in EKT implementations¹¹

Phys.Rev.D 104 (2021) [Du, Schlichting]]

¹⁰[Phys.Rev.D 68 (2003) [Romatschke, Strickland]]

¹¹[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]; Phys.Rev.Lett. 122 (2019) [Kurkela, Mazeliauskas];

Screening approximation to the matrix element

Compare with simple screening approximation

$$rac{(s-u)^2}{t^2}
ightarrow rac{(s-u)^2}{t^2} rac{q^4}{(q^2 + \xi_T^2 m_D^2)^2}$$

- Longitudinal¹² $\xi_L = e^{5/6}/\sqrt{8}$
- Transverse broadening: $\xi_T = e^{1/3}/2$
- **■** Good agreement

s, u, t: Mandelstam variables

¹²[Phys.Rev.D 89 (2014) [York, Kurkela, Lu, Moore]]

Outline

- 8 Backup slides
- 9 Jet quenching parameter
- 10 Relation to jet momentum broadening

What about momentum broadening?

- lacksquare Per definition, $\hat{q}=rac{\mathrm{d}\langle p_{\perp}^2
 angle}{\mathrm{d} au}$
- Naïvely $\Delta p_{\perp}^2 = \int \mathrm{d} au \, \hat{q}(au)$ over lifetime of jet
- But: only true if no splittings occur.
- Think of \hat{q} as medium parameter.

Use cutoffs

$$lack \Lambda_{\perp}^{ ext{LPM}}(E,\,T_{arepsilon})=\zeta^{ ext{LPM}}g(ET_{arepsilon}^3)^{1/4}$$

$$lack \Lambda_{\perp}^{
m kin}(E,T_{arepsilon})=\zeta^{
m kin}g(ET_{arepsilon})^{1/2}$$

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,\,T_{arepsilon}) = \zeta^{\mathrm{LPM}}g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{\mathrm{kin}}(E,T_{arepsilon})=\zeta^{\mathrm{kin}}g(ET_{arepsilon})^{1/2}$
- Fix ζ^i at triangle marker to match with JETSCAPE¹³ for $\lambda=10$, use jet energy $E=100\,\mathrm{GeV}$ and $Q_s=1.4\,\mathrm{GeV}$.

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,\,T_{arepsilon}) = \zeta^{\mathrm{LPM}}g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{\mathrm{kin}}(E,T_{arepsilon})=\zeta^{\mathrm{kin}}g(ET_{arepsilon})^{1/2}$
- Fix ζ^i at triangle marker to match with JETSCAPE¹³ for $\lambda=10$, use jet energy $E=100\,\mathrm{GeV}$ and $Q_s=1.4\,\mathrm{GeV}$.
- Obtain \hat{q} for multiple fixed Λ_{\perp} .
- Interpolate, using¹⁴

$$\hat{q}^{\mathsf{xx}}(\mathsf{\Lambda}_{\perp}\gg \mathit{T}_{arepsilon})\simeq \mathsf{a}_{\mathsf{x}}\lnrac{\mathsf{\Lambda}_{\perp}}{Q_{\mathsf{s}}}+\mathsf{b}_{\mathsf{x}}$$

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,T_{arepsilon}) = \zeta^{\mathrm{LPM}} g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{
 m kin}(E,T_{arepsilon})=\zeta^{
 m kin}g(ET_{arepsilon})^{1/2}$
- Mostly $\hat{q}^{zz} > \hat{q}^{yy} \rightarrow$ Momentum broadening along beam axis enhanced
- Similar results for both cutoffs

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,T_{arepsilon}) = \zeta^{\mathrm{LPM}} g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{
 m kin}(E,T_{arepsilon})=\zeta^{
 m kin}g(ET_{arepsilon})^{1/2}$
- Mostly $\hat{q}^{zz} > \hat{q}^{yy} \rightarrow$ Momentum broadening along beam axis enhanced
- Similar results for both cutoffs

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,T_{arepsilon}) = \zeta^{\mathrm{LPM}} g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{
 m kin}(E,T_{arepsilon})=\zeta^{
 m kin}g(ET_{arepsilon})^{1/2}$
- Mostly $\hat{q}^{zz} > \hat{q}^{yy} \rightarrow$ Momentum broadening along beam axis enhanced
- Similar results for both cutoffs

- Use cutoffs
 - $lack \Lambda_{\perp}^{\mathrm{LPM}}(E,T_{arepsilon}) = \zeta^{\mathrm{LPM}} g(ET_{arepsilon}^3)^{1/4}$
 - $lack \Lambda_{\perp}^{
 m kin}(E,T_{arepsilon})=\zeta^{
 m kin}g(ET_{arepsilon})^{1/2}$
- Mostly $\hat{q}^{zz} > \hat{q}^{yy} \rightarrow$ Momentum broadening along beam axis enhanced
- Similar results for both cutoffs

[2303.12595 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

Transport coefficients

■ Jet quenching parameter:

Transverse momentum broadening of jets is quantified by $\hat{q} = \hat{q}^{yy} + \hat{q}^{zz}$,

$$\hat{q}^{ii} = \int \mathrm{d}\Gamma(q^i)^2 \left| \mathcal{M} \right|^2 f(k) (1 + f(k'))$$

■ Heavy-quark diffusion coefficient κ

$$\kappa^i = \int \mathrm{d}\Gamma_\kappa \, (q^i)^2 \left| \mathcal{M}_\kappa
ight|^2 f(k) (1 + f(k'))$$

measures momentum transfer to (infinitely) heavy quark

Transport coefficients

■ Jet quenching parameter:

Transverse momentum broadening of jets is quantified by $\hat{q} = \hat{q}^{yy} + \hat{q}^{zz}$,

$$\hat{q}^{ii} = \int \mathrm{d}\Gamma (q^i)^2 \, |\mathcal{M}|^2 \, f(k) (1 + f(k'))$$

■ Heavy-quark diffusion coefficient κ

$$\kappa^i = \int \mathrm{d}\Gamma_\kappa \, (q^i)^2 \left| \mathcal{M}_\kappa
ight|^2 f(k) (1 + f(k'))$$

measures momentum transfer to (infinitely) heavy quark

Jets: $v \rightarrow c$, $m \rightarrow 0$

Heavy quark: $v \to 0$, $m \to \infty$

