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the adiabatic picture of attractors



Outline
and the main messages

1. Adiabatic Hydrodynamization


A framework to explain memory loss and out-of-equilibrium universality.


2. Non-thermal fixed points


Scaling (and even time-dependent scaling) attractors are often exactly adiabatic.


3. Bottom-up thermalization in weakly coupled QCD


Memory loss of the initial condition is a sequential, multi-stage process


4. Take-home message: AH is a powerful, versatile framework to study 
attractor phenomena

 explain what attracts to attractors⟺
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1. Adiabatic Hydrodynamization 
(AH)
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Adiabatic Hydrodynamization
as proposed by Brewer, Yan, and Yin

• Idea: the essential feature of an attractor is a reduction in the number of 
quantities needed to describe the system.


• Brewer, Yan and Yin conjectured that this is due to an emergent timescale 
 after which a set of “pre-hydrodynamic” slow modes (that 

gradually evolve into hydrodynamic modes) govern the system.


• Their proposal: try to understand the emergence of  (at which only slow 
modes remain) using the machinery of the adiabatic approximation in 
quantum mechanics.

τRedu ≪ τHydro

τRedu

J. Brewer, L. Yan, Y. Yin “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma” Phys. Lett. B 816, 136189 (2021)
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Adiabatic Hydrodynamization
The analogy between kinetic theory and quantum mechanics

• A kinetic equation  is first-order in time derivatives, just like a 
Schrödinger equation:


 

• The parallel becomes clear if we are able to write the kinetic equation as


 ,

because then we can study  as a generator of time evolution.


• To use QM techniques, let us write .

∂t f = − C[ f ]

∂tψ = − iℋψ

∂t f = − H[ f ] f
H[ f ]

H[ f ] ⟶ H(τ)
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Note: I have not told 
you (yet) how this 

rewriting takes place.



Adiabatic Hydrodynamization
adiabatic theorem and the notion of adiabaticity

• Consider a system whose evolution is given by 


,


where  has eigenstates/eigenvalues :


.


• Then, one may write the system’s evolution as


.

∂τ |ψ⟩ = − H(τ) |ψ⟩

H(τ) { |n(τ)⟩, En(τ)}∞
n=0

H(τ) |n(τ)⟩ = En(τ) |n(τ)⟩

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩
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• Adiabaticity is the degree to which transitions between different instantaneous 
eigenstates are suppressed:


Adiabaticity for the -th eigenstate , for .


• When this is the case, provided there is an “energy” gap between the ground 
state and the excited states, one has


 


that is to say, the dynamics of the system collapses onto a single form.


 Reduction in the number of variables needed to describe the system.

n ⟺
·an

an
≪ |En − Em | n ≠ m

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩

≈ a0 e− ∫τ E0(τ′￼)dτ′￼|0(τ)⟩ ,

⟹
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sequential memory loss!

attractor
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Five different initial conditions

A schematic picture
• The “attractor” is 

described by the slowest 
mode, 


• The timescale in which the 
attractor is reached is set 
by the energy gap (in this 
example, ).


• The AH framework allows 
us to do this for the whole 
distribution function


.


(more information than )

ϕ0(τ)

ΔE = 1

f(x, p, τ)

g(τ)

g(i)(τ) =
4

∑
n=1

a(i)
n e−Enτϕn(τ)

Let’s say we had eigenvalues  

and eigenfunctions 

En = 0,1,2,3
ϕn(τ) = τ−1/3, τ−1/4, τ−1/2,1
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2. Scaling and Adiabaticity
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A case study
with applications to QCD EKT (later)

• Consider the following kinetic equation


 .


where  is an arbitrary diffusion coefficient independent of .


• I will show you that:


1. This equation can be reduced analytically to a single ODE. (for any )


2. It features a scaling fixed point whose “attractiveness” is explained in 
terms of the AH framework.

∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

D[ f; t] x

D[ f; t]

(e.g., )D = ∫
∞

−∞
f(x, t)2 dx
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Scaling
and new variables

• Let’s introduce two time-dependent functions  and a rescaled distribution 
function  as


.


Note: I haven’t done anything. (I just introduced dummy variables)


Motivation to do this: if scaling behavior appears in the system, then we will be 
able to choose  such that  is stationary.                                 
Scaling .


• I will call a given choice of  a “frame.” 


• Next step: rewrite the equation for  in terms of .

A(t), B(t)
w

f(x, t) = A(t) w(x/B(t), t)

A(t), B(t) w(ξ, t)
⟺ ∃A(t), B(t) s . t . w(ξ, t) = w(ξ)

A(t), B(t)

f w
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∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2
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∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2



Finding the adiabatic frame
what we want to get from choosing A, B

• Goal: choose  such that if we write


 ,


then the eigenstates  of  become time-independent (or as much as 
possible). This is quantified by the adiabaticity criterion


 .


• In practice, for attractor behavior to emerge, all we need is that the ground 
state of  evolves adiabatically .

A(t), B(t)
∂w
∂t

= − ℋ[A, B, …](t)w

{ |n⟩}n ℋ

δA = δ(n,m)
A ≡

⟨n |L ∂t |m⟩R

En − Em

ℋ δ(n,0)
A ≪ 1
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Finding the adiabatic frame
what we want to get from choosing A, B

• Rationale: if  is the eigenbasis of ,


 , 


the coefficients  evolve as


 . 


• Both terms on the r.h.s. are frame-dependent. We want to find  such that


 .

{ϕn}n ⟺ { |n⟩}n ℋ

w(ξ, t) = ∑
n

an(t)ϕn(ξ, t)

an

∂tan = − En(t) an − ∑
m

am⟨n |L ∂t |m⟩R

A, B

∂tan = − En(t) an

∂w
∂t

= − ℋ[A, B, …](t)w

δA = δ(n,m)
A ≡

⟨n |L ∂t |m⟩R

En − Em
≪ 1
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Let me choose  such that , which is to say  . Then





• Now diagonalize the operator . The answer is





 ,                                   ,


                                                                            

.

• It is convenient to choose  such that  and then .

B
D

B2(1−β)
= 1

·B
B

= − 1 +
D
B2

∂w
∂t

= − (α − (1 − β)[ξ
∂
∂ξ

+
∂2

∂ξ2 ])w ≡ − ℋw

ℋ

ℋϕR
n (ξ) = EnϕR

n (ξ) , ϕL
n (ξ)ℋ = ϕL

n (ξ)En ,

En = α + (1 − β)(n + 1)

ϕL
n (ξ) = Hen(ξ) , ϕR

n (ξ) = Hen(ξ) exp (−
ξ2

2 ) .

A(t) α = β − 1 En = (1 − β) n
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∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

f(x, t) = A(t) w(x/B(t), t) α ≡ ·A/A β ≡ − ·B/B
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α ≡ ·A/A β ≡ − ·B/B∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

f(x, t) = A(t) w(x/B(t), t)
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+ D[ f; t]
∂2f
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The solution
in the frame we have specified

• We have then obtained that the general solution for  is





where  and  specify the initial condition. All that remains to close 
the system is to solve


  and   .

w

w(ξ, t) =
∞

∑
n=0

an e− ∫t
0 En(t′￼)dt′￼ϕR

n (ξ)

=
∞

∑
n=0

an e−nt ( B(0)
B(t) )

n

Hen(ξ) exp(−ξ2/2)

{an}∞
n=0 B(0)

·B
B

= − 1 +
D
B2

·A
A

= − 1 −
·B
B
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sequential memory loss!

            scaling!
t ≫ 1⟶ a0 exp(−ξ2/2) ⟹



  and  


• The second equation can be integrated directly:  . 


• To solve the first equation, we have to specify  as an explicit function of time 
and . At this point, this is in fact straightforward:





• Then, given initial conditions for , which are specified by  , 
 and , the problem has been reduced to solving one ordinary 

differential equation for .

·B
B

= − 1 +
D
B2

·A
A

= − 1 −
·B
B

A(t) =
A(0)B(0)

B(t)
e−t

D
B(t)

D = D[ f; t]

= D [A(0)
∞

∑
n=0

an e−(n+1)t ( B(0)
B(t) )

n+1

Hen( x
B(t) ) exp(−

x2

2B(t)2 ); t]
f(x, t = 0) {an}∞

n=0
A(0) B(0)

B(t) 23
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1
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D[ f; t] = et ∫x
f2

Scaling  unique  s.t. 


Note: if the system starts in the 
ground state, prescaling!

⟺ n an ≠ 0

w(ξ, t) =
5

∑
n=0

cn(t) Hen(ξ) exp(−ξ2/2)

cn(t) = an e− ∫t
0 En(t′￼)dt′￼

1/3
ξ = x/B(t) ,

Solutions for

with

∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

Solutions of

f(x, t) = A(t) w(x/B(t), t)
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ground state, prescaling!

⟺ n an ≠ 0

1/3

D[ f; t] = et ∫x
f2

w(ξ, t) =
5

∑
n=0

cn(t) Hen(ξ) exp(−ξ2/2)

cn(t) = an e− ∫t
0 En(t′￼)dt′￼

Solutions for

with

∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

Solutions of

ξ = x/B(t) , f(x, t) = A(t) w(x/B(t), t)
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⟺ n an ≠ 0
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D[ f; t] = et ∫x
f2

w(ξ, t) =
5

∑
n=0

cn(t) Hen(ξ) exp(−ξ2/2)

cn(t) = an e− ∫t
0 En(t′￼)dt′￼

Solutions for

with

Prescaling 
after excited 
states decay

∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

Solutions of

ξ = x/B(t) , f(x, t) = A(t) w(x/B(t), t)
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What just happened?
• We started with a kinetic equation


 ,


and we introduced ,  and  such that


.


• We then wrote the kinetic equation as  and found the spectrum 
of  by making a convenient choice for .


• What is special about this choice? 


It makes the eigenstates of  evolve adiabatically. 

∂f
∂t

= − C[ f ]

A(t) B(t) w(ξ, t)

f(x, t) = A(t) w(x/B(t), t)
∂tw = − ℋw

ℋ A(t), B(t)

ℋ
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What just happened?
• We started with a kinetic equation


 ,


and we introduced ,  and  such that


.


• We then wrote the kinetic equation as  and found the spectrum 
of  by making a convenient choice for .


• What is special about this choice? 


It makes the eigenstates of  evolve adiabatically. 

∂f
∂t

= − C[ f ]

A(t) B(t) w(ξ, t)

f(x, t) = A(t) w(x/B(t), t)
∂tw = − ℋw

ℋ A(t), B(t)

ℋ
35

Conclusion:

If a scaling attractor is present, 
it can be identified as the 
ground state in the adiabatic 
( -minimizing) frame.δA



How general is this?
what happens for more general collision kernels?

• For more realistic setups, we will not always be able to choose  such 
that the eigenstates of  are time-independent.


• The point of the AH framework is to provide a prescription to choose the 
frame in an “optimal” way. The desired features are:


a gapped and slowly varying spectrum, so that


the lowest energy state(s) can be identified as an “attractor” (surface).


• The proposal in 1910.00021, 2203.02427, 2405.17545, 2507.21232: define a 
measure of “adiabaticity” and derive equations for the “frame” variables by 
extremizing this quantity. I’ll come back to this later.

A(t), B(t)
ℋ
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When does prescaling happen?
in this model

• If the system starts on the ground state, then prescaling takes place 
automatically.


• If the shape of the distribution function at the initial time is not the scaling 
form (i.e., if the “excited” states have nonzero occupancy), then two 
possibilities emerge:


1. The excited states decay before  approaches its fixed point value.


2. The excited states decay as  approaches its fixed point value.


• In practice, prescaling will always be approximate if excited states are 
present. How close it gets to being exact is determined by the size of the 
excited states’ initial conditions.

β

β
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2.B. Application: A model of QCD EKT

38

∂τ f −
pz

τ
∂f
∂pz

= 4π α2
s N2

c lCb[ f ]Ia[ f ]
∂2f
∂p2

z

at very early times in a weakly coupled, boost-invariant setup

⟺
∂f
∂y

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2 y ≡ ln(τ/τI) , x ≡ pz , D[ f ] ≡ 4π α2

s N2
c lCb[ f ]Ia[ f ] .with



comparison with QCD EKT
• We compare our results with 

those of [6], using the same initial 
condition:


.


• In our description, for this initial 
condition we predict a deviation 
from the BMSS scaling 
exponents given by:


f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s )

δγ ≡ γ −
1
3

= −
1

3 ln ( 4πτ
NcτIσ0 )

Scaling exponents

α(τ) β(τ) γ(τ)

evo EKT

1 5 10 50 100
-1.5

-1.0

-0.5

0.0

0.5

1.0

τ

gs=10-3, σ0=0.1

1/3

1/4

-2/3

-3/4

Flow equations [1] (solid) versus QCD EKT [6] (dashed)

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)

see also [7] A. N. Mikheev, A. Mazeliauskas, J. Berges, “Stability analysis of nonthermal fixed points in longitudinally expanding kinetic theory” Phys. Rev. D 105, 116025 (2022)
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Flow equations [5] (solid) versus QCD EKT [6] (dashed)

comparison with QCD EKT
• We compare our results with 

those of [6], using the same initial 
condition:


.


• In our description, for this initial 
condition we predict a deviation 
from the BMSS scaling 
exponents given by:


f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s )

δγ ≡ γ −
1
3

= −
1

3 ln ( 4πτ
NcτIσ0 )

Scaling exponents

α(τ) β(τ) γ(τ)

evo EKT
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1/3

1/4

-2/3

-3/4

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)

see also [7] A. N. Mikheev, A. Mazeliauskas, J. Berges, “Stability analysis of nonthermal fixed points in longitudinally expanding kinetic theory” Phys. Rev. D 105, 116025 (2022)

Given this initial 
condition, our analytic 

result agrees with 
numeric QCD EKT that 

 at the fixed 
point!

γ ≈ 0.29
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τI τS τFP

ground state dominance

C(τS)

C(τ)

τ

Fixed Point: const.γ =

C(τ) γ = − d log C
d log τ

time-dependent scaling

universal scaling

f(pz; τ)

pz

τ

Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma

= τRedu τHydro
41



Takeaway message from this example
what adiabaticity can do for you

• Essentially, what we have done is to rewrite  as


 ,


choosing  in such a way that the dynamics of  is as simple as possible.


• The Adiabatic Hydrodynamization framework provides a way to identify the 
“optimal” choice for : they are the instantaneous eigenstates of the 
time evolution operator in the frame that gives the most adiabatic description.

f(x, t)

f(x, t) =
∞

∑
n=0

an(t) ϕn(x, t)

ϕn {an}n

ϕn(x, t)

42



3. Bottom-up thermalization

43

[3]  K. Rajagopal, B. Scheihing-Hitschfeld, and R. Steinhorst,  Attractors Without Scaling: Adiabatic   
       Hydrodynamization With and Without Inelastic Scattering, arXiv:2507.21232.

Adiabaticity beyond scaling



Breakdown of the scaling regime
a necessary stage in the hydrodynamization process
• In the previous discussion, a distribution function  of the form





is the instantaneous ground state that explains an initial stage of memory loss.


• However, at late times in a locally equilibrated expanding system





where the different values of  correspond to fermions, classical particles, and 
bosons, respectively.

f

f = A(y) w( p⊥

B(y)
,

pz

C(y) ) , with w(ζ, ξ) = exp[ − (ζ2 + ξ2)/2]

f = w( p
T(y) ) , with w(χ) = [exp(χ) − s]−1 , s ∈ {−1,0,1} ,

s
44



A more complete model of QCD EKT
including number-changing processes

• In the previous discussion, we omitted the 1 <—> 2 terms in


 .


• For the 2 <—> 2 part, we will use the diffusion approximation:





• For the 1 <—> 2 part,


∂f
∂τ

−
pz

τ
∂f
∂pz

= − 𝒞1↔2[ f ] − 𝒞2↔2[ f ]

𝒞2↔2[ f ] = − 4π α2
s N2

c lCb[ f ][Ia[ f ]∇2
p f + Ib[ f ]∇p ⋅ ( ̂p f)]

𝒞1↔2[ f ] = − 8πα2
s N2

c
Ia[ f ]ℓCb[ f ]

2π3p [1 − f(p = 0)] ( 7
2

+ p ⋅ ∇p) f

… and I will drop Bose enhancement

45

see also Xiaojian Du’s talk Tue 16:00



Adiabaticity beyond scaling
how to choose a frame with adiabatic ground state evolution
• The description in the previous discussion may be cast as an expansion


,


where  is a polynomial of degree  in  and  in . This, by construction, is well-
adapted to describe the ground state at early times.


• To accommodate the transition to a hydrodynamic state, we write a new basis


,


where we introduced a new time-dependent variable  and . 
We define  as the operator that evolves the coefficients  .

f(p⊥ = ζB(τ), pz = ξC(τ), τ) = ∑
i,j

cij(τ) Pij(ζ, ξ) exp{−(ξ2 + ζ2)/2}

Pij i ζ j ξ

f(p = χD(τ), u, τ) = ∑
n,l

cnl(τ) Pnl(χ, u; r(τ)) exp{−(u2r2(τ)/2 + χ)}

r(τ) u ≡ pz/p = cos θ
ℋ cnl46

It is, in fact, the eigenbasis

Not the eigenbasis (but hopefully close) — also, not scaling



Results
What comes next is the result of:

1. Solving the dynamics numerically

2. Calculating the eigenvalues and eigenstate occupations

3. Diagnose memory loss and adiabaticity

2507.21232
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Adiabatic Hydrodynamization
the stages of the bottom-up scenario
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arXiv:2507.2132 AH framework with 
BEDA + (1 <—> 2)* - (Bose enhancement)

QCD EKT (Figure by F. Lindenbauer)  
PLB 852 (2024) 138623

arXiv:2507.2132 AH 
framework with BEDA + 

(1 <—> 2)* - (Bose 
enhancement) 

c.f. Kurkela & Zhu (2015) 
on the right (λ = 1)

|ψ⟩ = ∑
n

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩

At the initial time,
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see Florian’s talk 

Tue 16:30
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|ψ⟩ = ∑
n

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩
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QCD EKT (Figure by F. Lindenbauer)  
PLB 852 (2024) 138623

In the dilute regime,

|ψ⟩ = ∑
n∈g.s.b.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩ + ∑
n∈e.s.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩
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In the dilute regime,

|ψ⟩ = ∑
n∈g.s.b.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩ + ∑
n∈e.s.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩

→ 0
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Approaching hydrodynamics,

|ψ⟩ = a0(τ)e− ∫τ E0(τ′￼)dτ′￼|0(τ)⟩ + ∑
n∈e.s.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩
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Approaching hydrodynamics,

|ψ⟩ = a0(τ)e− ∫τ E0(τ′￼)dτ′￼|0(τ)⟩ + ∑
n∈e.s.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩

→ 0
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arXiv:2507.2132 AH framework with 
BEDA + (1 <—> 2)* - (Bose enhancement)

QCD EKT (Figure by F. Lindenbauer)  
PLB 852 (2024) 138623

Approaching hydrodynamics,

|ψ⟩ = a0(τ)e− ∫τ E0(τ′￼)dτ′￼|0(τ)⟩ + ∑
n∈e.s.

an(τ)e− ∫τ En(τ′￼)dτ′￼|n(τ)⟩

→ 0

Sequential memory loss!

55

At late times,
describes a thermal 

distribution with a time-
dependent temperature

|0(τ)⟩
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Approach to Hydrodynamics
a robust feature of the spectrum of  at late timesℋ

• If we look at the late-time energy 
spectrum*, we see that the 
energies grow  (actually  ).





• Compare with Du, Heller, 
Schlichting & Svensson Phys.Rev.D 
106 (2022) 1, 014016


• This holds for any scaleless 
collision kernel [2507.21232]

∝ τ2/3 τT

⟹ anon−hydro
n ∝ e−#τ2/3
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*with respect to y = ln(τ/τI)

(faster than hydro evolution!)

56
(i.e., if all dimensionful quantities are derived from  )f

as a consequence of rescaling the momentum  by , i.e., write the evolution in terms of p T(τ) χ = p/T(τ)

Nstates = 12

hydro transseries?



Conclusions from this study
new insights into the process of hydrodynamization

• We have shown, in a not too simple kinetic theory, that:

Loss of memory of the initial condition can be understood in terms of the 
opening of energy gaps that make the information in excited states decay.

In each scaling regime, the ground state(s) evolve adiabatically, either by 
themselves or as a set, and “high-energy” modes effectively decouple from 
the dynamics.


With  processes in the collision kernel, we were able to apply the AH 
framework in a setting where hydrodynamization is rapid.


• Future work:

Include a nontrivial profile in position space, emulating the fireball formed in a 
HIC.

1 ↔ 2
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Outlook
for the Adiabatic Hydrodynamization framework

• AH provides an organizing principle to:


Identify attractors, regardless of whether they exhibit scaling phenomena


Explain memory loss of the initial condition by explicitly characterizing the 
decay of rate of information outside the attractor


• I have only discussed kinetic theory applications today. However,


Nothing stops us from using this framework for any equation that looks like 
 .


The main task for a practitioner is to cast the dynamics in this form.

∂t f = − H f
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Extra slides



Finding the adiabatic frame

• Putting together     and   , we get





• This is valid for any choice of . Then, let me choose  such that


,    which is to say     . 


• With this choice,


.

∂f
∂t

= x
∂f
∂x

+ D[ f; t]
∂2f
∂x2

f(x, t) = A(t) w(x/B(t), t)
∂w
∂t

= − αw + (1 − β)[ξ
∂w
∂ξ

+
D

B2(1 − β)
∂2w
∂ξ2 ]

A(t), B(t) B

D
B2(1 − β)

= 1
·B
B

= − 1 +
D
B2

∂w
∂t

= − αw + (1 − β)[ξ
∂w
∂ξ

+
∂2w
∂ξ2 ]

α ≡ ·A/A
β ≡ − ·B/B



‘Optimizing’ adiabaticity
rescaling the degrees of freedom

• From the previous discussion, we see that scaling plays a crucial role in this 
problem.


• This gives us a very useful tool to ‘optimize’ adiabaticity. For instance, if we 
have a distribution function evolving as


,


then we can look for the choice of  that maximize the degree to which 
the dynamics of  is adiabatic.


• We take .

f(p⊥, pz, τ) = A(τ) w(p⊥/B(τ), pz/C(τ); τ)
A, B, C

w

|ψ⟩ ↔ w(ζ, ξ; τ)
ES 1



‘Optimizing’ adiabaticity
in practice

• The original kinetic equation has the form


 .


• This is a linear equation of motion, except for the non-linear dependence 
through .


• Nothing prevents us from making the replacement , solve the 
equation for an arbitrary , and in the end replace the resulting distribution 

 in the definition of  and solve self-consistently:


.

τ∂τ f − pz∂pz
f = q[ f; τ]∇2

p f

q[ f; τ]

q[ f; τ] → q(τ)
q(τ)

f[q(τ)] q

q(τ) = q[ f[q(τ)]; τ]

q[ f; τ] = 4πα2
s N2

c lCb[ f ]Ia[ f ]τ

ES 2



‘Optimizing’ adiabaticity
in practice

• One can then write the kinetic equation for  as


 ,


with  .


For brevity, we have denoted

w

∂yw = − ℋw

ℋ = α − (1 − γ)[q̃ ∂2
ξ + ξ ∂ξ] + β [q̃B (∂2

ζ +
1
ζ

∂ζ) + ζ ∂ζ]
q̃ =

q
C2(1 − γ)

, q̃B ≡ −
q

B2β
.

ES 3



What is the advantage of this?


• Because  are a choice of coordinates (a “gauge” choice to describe 
the system), we can choose them such that . 


• Then, we get


,


which is a separable Hamiltonian of the form


,


where the Hamiltonians  are constant and can be “diagonalized” 
simultaneously. In this situation, the adiabatic approximation is exact.

A, B, C
q̃ = q̃B = 1

ℋ = α − (1 − γ)[∂2
ξ + ξ ∂ξ] + β [∂2

ζ +
1
ζ

∂ζ + ζ ∂ζ]
ℋ = f0(y) H0 + f1(y) Hξ + f2(y) Hζ

H0, Hξ, Hζ

How? 


Note that


  ,


 we can choose  by “fixing the gauge” and choosing .


 corresponds to fixing  by solving:  . Same for  and .

q̃(τ) =
q(τ)

C2(τ)(1 − γ(τ))
⟹ γ(τ) = −

τ∂τC
C

= 1 −
q(τ)

q̃(τ)C2

⟹ q̃ C(τ)

q̃ = 1 C(τ) −
τ∂τC

C
= 1 −

q(τ)
C2

β q̃B

Differential equation for C(τ)

ES 4



Results
low-lying energy states

• We can choose  such that  to set the ground state energy .


• The eigenvalues of  are 


• The left and right eigenstates are:


,


A α = γ + 2β − 1 ℰ0,0 = 0

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …

ϕL
n,m = He2n(ξ) 1F1(−2m,1,

ζ2

2 )
ϕR

n,m =
1

2π (2n)!
He2n(ξ) 1F1(−2m,1,

ζ2

2 ) exp (−
ξ2

2
−

ζ2

2 )
ES 5



Results
low-lying energy states

• We can choose  such that  to set the ground state energy .


• The eigenvalues of  are 


• The left and right eigenstates are:


,


A α = γ + 2β − 1 ℰ0,0 = 0

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …

ϕL
n,m = He2n(ξ) 1F1(−2m,1,

ζ2

2 )
ϕR

n,m =
1

2π (2n)!
He2n(ξ) 1F1(−2m,1,

ζ2

2 ) exp (−
ξ2
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−
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Gapped energy levels! 
 Ground state will 

dominate after a 
transient time

⟹
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2π (2n)!
He2n(ξ) 1F1(−2m,1,
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2 ) exp (−
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Left and right 
eigenstates differ 
because  is not 
hermitian
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Evolution of the exponents for different coupling strengths

σ0 = 0.1ES 5



Evolution of the exponents for different coupling strengths
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Evidence for AH in QCD effective kinetic theory
by A. Mazeliauskas, J. Berges [6]

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)
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• After a transient time, [6] observed that  took a time-dependent scaling form 

.

fg
f(p⊥, pz, τ) = e ∫τα(τ′￼) dln τ′￼fS(e ∫τβ(τ′￼) dln τ′￼p⊥, e ∫τγ(τ′￼) dln τ′￼pz)

; , , f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s ) ξ = 2 QsτI = 70 gs = 10−3
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In the plots, the exponents were obtained by 
taking moments of the distribution function:


,


and using that, if scaling takes place,


nm,n(τ) = ∫p
pm

⊥ |pz |n f(p⊥, pz; τ)

∂τ ln nm,n

∂ ln τ
= α(τ) − (m + 2) β(τ) − (n + 1) γ(τ)

; , , f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s ) ξ = 2 QsτI = 70 gs = 10−3

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019) ES 8
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Then, one can use triads of moments to obtain 
. For example, if we use ,





If every triad of moments gives the same , 
then the distribution has the above scaling form.

Curves in the figure  different triad choices.

α, β, γ n0,0, n1,0, n0,1

α = 4∂ln τln n0,0 − 2∂ln τln n1,0 − ∂ln τln n0,1 ,
β = ∂ln τln n0,0 − ∂ln τln n1,0 ,
γ = ∂ln τln n0,0 − ∂ln τln n0,1 .

α, β, γ

⟺
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conservation 

⟺ α = γ + 2β − 1
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Reduction in the 
number of quantities 
needed to describe 
the system! All we 
need is: 
•  
•

fS
α, β, γ
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Recapitulation: Results of the previous section
low-lying energy states

• Recall that the eigenvalues of  
in the early time regime are

, for 
.


• But,  on the BMSS fixed 
point (late times on the plot on 
the right).


 No substantial memory loss 
for the  dependence of . That 
is to say, no thermalization.

ℋ

ℰn,m = 2n(1 − γ) − 2mβ
n, m = 0, 1, 2, …

β → 0

⟹
p⊥ f

α(τ) β(τ) γ(τ)

evo EKT
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Breaking the scaling regime
restoring terms in the collision kernel

• To make the approach to hydrodynamics possible, we need to restore the terms 
we dropped:








• We will neglect the explicit Bose enhancement in the last term in what 
follows. The equilibrium distribution will thus be Boltzmann instead of Bose-
Einstein.

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ]Ia[ f ]∇2
p f

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ][Ia[ f ]∇2
p f + Ib[ f ]∇p ⋅ ( ̂p(1 + f )f)]
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Adiabaticity beyond scaling
how to choose a frame with adiabatic ground state evolution
• We evolve  and  according to





where


and we set 

r(y) D(y)
∂yD
D

= ρ (1 − D ⟨ 2
p ⟩) ,

∂yr = −
1
r

J0

J4J0 − J2
2 [−2(J2 − J4) +

τλ0ℓCbIa

D2
(J0 − 3J2)] ,

Jn(r) = ∫
1

−1
du une−u2r2/2 , ρ = 10 .
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Scaling exponents in the new basis
• We plot





from the solution to the kinetic 
equation, and also from the first basis 
state .


• At early times (up to ) 
we see the dilute fixed point.


• At late times, hydrodynamics.

βp2
T

= − (1/2)∂y log⟨p2
⊥⟩ ,

γp2
z

= − (1/2)∂y log⟨p2
z ⟩ ,

αnCons = γp2
z

+ 2βp2
T

− 1 ,

βbasis, γbasis, αbasis

log(τ/τI) ∼ 10

βpT2 γpz2 αnCons

βbasis γbasis αbasis
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Evidence for an attractor
starting from different initial conditions

βpT2 γpz2 αf
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Energy levels
from early times to late times

• We see that up until
, the 

ground state is 
approximately 
degenerate.


• When the system 
approaches 
hydrodynamics, a 
gap opens and a 
unique ground state 
remains. 

log(τ/τI) ∼ 10
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Log(τ/τI)

R
e[
ϵ i]
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f(p, τ = τI) =
σ0

g2
s

e− 2p/Qse−r2
i u2/2Q0(u; r)
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Eigenstate coefficients
from early times to late times

• We see that up until
, the 

ground state is 
approximately 
degenerate.


• When the system 
approaches 
hydrodynamics, a 
gap opens and a 
unique ground state 
remains. 

log(τ/τI) ∼ 10

f(p, τ = τI) =
σ0

g2
s

e− 2p/Qse−r2
i u2/2Q0(u; r)
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