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 FROM ATTRACTORS 
TO ASYMPTOTICS



STRONGLY COUPLED SYSTEMS

• Motivation from heavy-ion collisions in particle accelerators 
(CERN, RHIC)

• Collisions give rise to strongly coupled fluids such as  
quark-gluon plasma [RHIC]

• Plasma quickly goes through an thermalization process: described by relativistic 
hydrodynamics

Relativistic hydrodynamics: effective field theory 
describing the slow evolution of averaged conserved currents 

of fluid close to equilibrium

 Very well described by a perfect fluid + dissipative terms

 Memory loss: evidence of highly non-equilibrium initial conditions? 



RELATIVISTIC HYDRODYNAMICS

Simplify problem: expanding plasma, conformal Bjorken flow 

(conformal invariance, transversely homogeneous,  
  invariance under longitudinal Lorentz boosts

[Bjoken ‘83]

Tµ⌫ = E uµu⌫ + P(E)(⌘µ⌫ + uµu⌫) +⇧µ⌫

dissipative effectsP(E) = E/3 ∼ T4

From symmetries: All physics encoded in         .E(⌧)

Analysis: perform a large time expansion           .⌧ � 1



Symmetries:  late-time behaviour highly constrained 

Subleading terms: 
 dissipative effects,
gradient expansion

But:
‣ How to effectively determine this series?
‣ Information of non-hydrodynamic d.o.f.?

ENERGY DENSITY AT LATE TIMES

Leading behaviour: 
perfect fluid 

highly non-equilibrium 
initial conditions

hydrodynamic 
behaviour at late times

ε(τ) ∝ τ−4/3 (1 +
+∞

∑
k=0

ϵk

τ2k/3 ) , τ ≫ 1



EMERGENCE OF HYDRODYNAMICS

Effective evolution towards 
hydrodynamics

Kinetic theory of 
particle interactions

Theories of viscous 
hydrodynamics

Truncate gradient expansion 
of dissipative terms

Non-linear ODEs

Particle distribution function 
in RTA Boltzmann equation

Integral equation

Microscopic strongly 
coupled CFT

Linearised Einstein eqs 
around black hole solution

 Linear PDEs
[Müller’67;Israel, Stewart’76;

Baier,Romatschke,Son,Starinets,Stephanov'07]
[Anderson ,Witting’74][Janik,Peschanski’05]



Hydrodynamic description accurate at earlier times than expected

MIS

𝒩 = 4SYM

HYDRODYNAMIC ATTRACTORS

[Spalinski’17]

[Heller,Spalinski’15]

•The hydrodynamic model encodes non-hydrodynamic 
degrees of freedom, non-perturbative in nature

• These modes play a major role during the early times 
of the expanding plasma, very sensitive to initial 
conditions 

• Still far from equilibrium, the different initial solutions 
become exponential close to each other 

• Evolution of the system towards equilibrium 
effectively described by viscous hydrodynamics



LATE TIME ASYMPTOTICS

Expectations from asymptotics?               

         
factorially divergent!

ϵk ∼ Γ(k)

• described by a divergent, asymptotic perturbative series;
• asymptotic properties encode all the information about the exponentially 

small non-hydrodynamic modes;
• initial conditions uniquely encoded in a set of parameters determining the 

strength of the non-hydrodynamic modes

Hydrodynamic attractor: 

ε(τ) ∝ τ−4/3 (1 +
+∞

∑
k=0

ϵk

τ2k/3 ) , τ ≫ 1



ON ASYMPTOTIC SERIES  
AND STOKES PHENOMENA



f(g) �
∞�

n=0

fn g
n

Start with a function f(g) with perturbative expansion

Asymptotic expansion
fn g

n → ∞

no matter how 
small we choose     

to be g

N�

n=0

fn g
n

Truncating the series:  
good approximation to 

the function, with an 
optimal  N

ASYMPTOTIC SERIES



f(g) �
∞�

n=0

fn g
n

N(optimal)
N

-10

-20
-A/g

log(f − fN )

Optimal error :

for some value A

(f � fN ) (g) ⇠ e�A/g

• Assume    

• Define  fN (g) =
N�

n=0

fn g
n

g fixed and small

N(optimal) ≈ A/g

Non-perturbative effect!
Exponentially small

ASYMPTOTIC SERIES



“Even dust, when piled up, will become a mountain.”

“塵も積もれば、山となる”

Uncovering non-perturbative phenomena:

• Divergent, asymptotic series reveal existence 
of exponentially small terms 

• Stokes phenomena: these small terms appear 
and can grow to dominate the system

P
n�0 an "n
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How does it work?



STOKES PHENOMENA & GLOBAL SOLUTIONS

Local  
solution:

x, " 2 C

|"| ⌧ 1 an(x) ⇠ n!A(x)�n

y0 ⇠
1X

n=0

an(x) "
n

A

2A

3A

...

Integral transform     (Borel)B

Full description of the system: 
Transseries

y ⇠ y0 + �1 e
�A(x)

" y1 + �2 e
� 2A(x)

" y2 + · · ·

Stokes phenomena:

Global analytic solution:  summed 
Transseries including all contributions

S✓y(", x,�i) = S✓y0 + �1 e
�A(x)

" S✓y1 + · · ·

S✓ykfor each series
General summation procedures

May appear/grow to become O(1)

• Emergence of non-perturbative terms

�i initial data

Analysis of singularity structure:
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NON-HYDRO MODES AS SINGULARITIES
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[Romatschke’18]

[Heller,Kurkela,Spalinski,Svensson’16]

[Heller,Janik,Witaszcyk ’15][IA et al '18][Heller,Spalinski’15]



ASYMPTOTICS IN MIS



Non-linear ODE describing the energy density/anisotropy:

MIS HYDRODYNAMICS

w CτΠ f f′￼+ 4CτΠ f 2 + (w −
16CτΠ

3 ) f −
4Cη

9
+

16CτΠ

9
−

2w
3

= 0
phenomenological
 parameters

Attractor solution: stable solution, converging to 
                          a finite value at early times 

Generic solution: divergent at early times, 
                          decays rapidly towards 
                        the attractor solution

w

[Heller, Spalinski ’15; Basar, Dunne ’15; IA, Spalinski ’15]

w = τ T dimensionless parameter



Early time: convergent series Late time: asymptotic series

fAtt(w) =
2
3

+
1
3

Cη

CτΠ
+ 𝒪(w)

f(w, σ) =
+∞

∑
n=0

(σw−βe−Aw)n Φn(w)

Φn(w) ≃
+∞

∑
k=0

a(n)
k w−k

transseries with single, 
decaying non-hydro mode

t

Map σ ↔ C

Finite: attractor

Generic: 1-parameter family

fC(w) =
2C
3w4

+
4
3

+ 𝒪(w)

MIS HYDRODYNAMICS

Re (σAttr) ∼ − 0.3493
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[IA,Hasenbichler,Olde Daalhuis ’22]



RTA BOLTZMANN ATTRACTOR 
FROM EARLY TIMES



BOLTZMANN  RTA  ATTRACTOR

where

Boltzmann equation RTA (Bjorken flow) ∂f
∂τ

=
feq − f

τR
, τR = γT (τ)−1

Study the early time attractor using dimensionless moments:

ℳn ≡
ℒn

ℒ0
, n ≥ 1 , ℒn ≡ ∫

d3p
(2π)3τ

p0 P2n(cos ψ) f(τ, p0, pς)

Analysis of moments via generating function: Gℳ = ∑
n≥0

xn ℳn(w)

• Obeys a PDE in 
• Very efficient calculation at early late ‘times’ 

x, w
w ∼ τ/τR

[IA,Noronha,Spalinski’23]



CONTINUATION FROM EARLY TO LATE TIMES 

Convergent series: Analytically continue to late times

Pressure anisotropy at early times:   𝒜 = −
ℳ1

3
= ∑

n≥0

an wn

P𝒜(70,71) ∼
1.60004

w
+

0.27348
w2

Padé approximant: excellent agreement with hydrodynamic behaviour! 

Predicts value of shear viscosity for RTA Kinetic theory

𝒜w≫1 ∼
8η/s

w
=

8/5
w



SUMMARY/OUTLOOK

Analytic continuation 

• interpolation between initial conditions and 
hydrodynamic regime
• can be done for convergent and asymptotic series

Hydrodynamic gradient expansion
• accurate description after decay of non-hydro modes 
• asymptotics encodes all “lost” information of non-
hydrodynamic modes

Further analytic behaviour in parameter space:
• summation of non-hydro modes: analytic structures in 
parameter space (branch points, zeros…)
• evidence of phase transitions (transient modes dominating)
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Applications to other (non) hydrodynamic attractors?
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