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FROM ATTRACTORS
TO ASYMPTOTICS



STRONGLY COUPLED SYSTEMS

» Motivation from heavy-ion collisions in particle accelerators
(CERN, RHIC)

* Collisions give rise to strongly coupled fluids such as .. .
quark-gluon plasma [RHIC]

 Plasma quickly goes through an thermalization process: described by relativistic
hydrodynamics

Relativistic hydrodynamics: effective field theory
describing the slow evolution of averaged conserved currents
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< Very well described by a perfect fluid + dissipative terms

< Memory loss: evidence of highly non-equilibrium initial condrtions?



RELATIVISTIC HYDPRODYNAMICS
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K Simplify problem: expanding plasma, conformal Bjorken flow 1\
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(conformal invariance, transversely homogeneous,
invariance under

[Bjoken ‘83]

N

T = Eulu” +HP(E)n"" + ulu”) +@<\

PE)=E/3 ~ T J dissipative effects

— - — S———— i I

From symmetries: All physics encoded in &
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K Analysis: perform a large time
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ENERGY DENSITY AT LATE TIMES
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Symmetries: late-time behaviour highly constrained
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Subleading terms:
L eading behaviour: dissipative effects,

gradient expansion

perfect fluid

» How to effectively determine this series!?

But:

.

» Information of non- hydrodynamlc d.of.




EMERGENCE OF HYDRODYNAMICS

Effective evolution towards

hydrodynamics
Theories of viscous Microscopic strongly Kinetic theory of
hydrodynamics coupled CFT particle interactions

Truncate gradient expansion Linearised Einstein eqs Particle distribution function
of dissipative terms around black hole solution in RTA Boltzmann equation
Non-linear ODEs Linear PDEs Integral equation

[Muller’67;lsrael, Stewart’76;

Baier,Romatschke,Son,Starinets,Stephanov'07] e [Anderson , VYitting /4]



HYPRODYNAMIC ATTRACTORS

* [ he hydrodynamic model encodes non-hydrodynamic
degrees of freedom, non-perturbative in nature
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* [hese modes play a major role during the early times
of the expanding plasma, very sensitive to inrtial
conditions

 Still far from equilibrium, the different inrtial solutions )
become exponential close to each other \
* bvolution of the system towards equilibrium
effectively described by viscous hydrodynamics

MIS [Heller,Spalinski’| 5]



LATE TIME ASYMPTOTICS
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* described by a divergent, asymptotic perturbative series;

* asymptotic properties encode all the information about the exponentially
small non-hydrodynamic modes;

* Inrtial conditions uniguely encoded In a set of parameters determining the
strength of the non-hydrodynamic modes



ON ASYMPTOTIC SERIES
AND STOKES PHENOMENA



ASYMPTOTIC SERIES

Start with a function f(g) with perturbative expansion
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Asymptotic expansion
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no matter how Truncating the series:

small we choose cood approximation to
g to be the function, with an
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ASYMPTOTIC SERIES

« Assume ¢ fixed and small

N
» Define  fn(g) =) fug"
n=0
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K Non-perturbative effect!

Exponentially small




“BHEDNIE. LWERD”

“Even dust, when piled up, will become a mountain.”

Uncovering non-perturbative phenomena:

* Divergent, asymptotic series reveal existence ano Ap, €
of exponentially small terms

» Stokes phenomena: these small terms appear
and can grow to dominate the system

How does it work!



STOKES PHENOMENA § GLOBAL SOLUTIONS

o
Local
e Yo ~ E an(x)e™ xz,e € C
solution: =

e] < 1 ap(x) ~n! A(x)™"



STOKES PHENOMENA § GLOBAL SOLUTIONS

o
pocal yo~ » an(z)e" 2,6 € C
solution: >

el <1 | an(z) ~nlA(z)™

Integral transform 3 (Borel)

A Se 0

Analysis of singularity structure:

* Emergence of non-perturbative terms



STOKES PHENOMENA § GLOBAL SOLUTIONS

O

Local "

solution: Yo Z n( ) x,e € C
n=0

gl <1 | an(z) ~nlA(z)™"

Integral transform 3 (Borel)

A Se 0

Analysis of singularity structure:

* Emergence of non-perturbative terms

A(x 2A(x
Full description of the system: Yy~ Yo + 01 e——i ) Y1 +oge” e( ) Ys + - -
Transseries




STOKES PHENOMENA § GLOBAL SOLUTIONS

o
ol yo~ » an(z)e" 2,6 € C
solution: >

el <1 | an(z) ~nlA(z)™

Integral transform 3 (Borel)

A Se 0

Analysis of singularity structure:

* Emergence of non-perturbative terms
Stokes phenomena:

May appear/grow to become (O(1)
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STOKES PHENOMENA § GLOBAL SOLUTIONS

o
ol yo~ » an(z)e" 2,6 € C
solution: >

el <1 | an(z) ~nlA(z)™

Integral transform 3 (Borel)

A Se 0

<'\3’,§//3— General summation procedures

S
(6 —— for each series oSk

Analysis of singularity structure:

* Emergence of non-perturbative terms
Stokes phenomena:

May appear/grow to become (O(1)

A(x 2A(x
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STOKES PHENOMENA § GLOBAL SOLUTIONS

O
Local "
solution: Yo Z n( ) x,e € C
n=0
gl <1 | an(z) ~nlA(z)™"

Integral transform 3 (Borel)

A Se 0

Analysis of singularity structure:

* Emergence of non-perturbative terms

Full description of the system:

Transseries

Global analytic solution: summed
Transseries including all contributions

A(x)

599(67%0@') = SpYo + o1 "¢

O; initial data

General summation procedures
for each series

SoYk

Stokes phenomena:

May appear/grow to become (O(1)

A(x) 2A(x)

Yy~yo +o01€ < Yy +o2e =

SolNeREE
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NON-HYDRO MODES AS SINGULARITIES
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[Heller,Spalinski’ | 5]

[Heller,Kurkela,Spalinski,Svensson’ | 6]
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ASYMPTOTICS N MIS



MIS HYDPRODYNAMICS

Non-linear ODE describing the energy density/anisotropy:

16C,, >
3

wC ff +4C f> + (w
¥ = 9 9 3 phenomenological

parameters

w =11 dimensionless parameter

Attractor solution: stable solution, converging to
a finrte value at early times

Generic solution: divergent at early times,
decays rapidly towards
the attractor solution

[Heller, Spalinski ’ | 5; Basar, Dunne ’ 1 5; A, Spalinski ’ 1 5]



MIS HYDPRODYNAMICS

Early time: convergent series Late time: asymptotic series

Finite: attractor e
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RTA BOLTZMANN ATTRACTOR
FROM EARLY TIMES



BOLTZMANN RTA ATTRACTOR
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Boltzmann equation RTA (Bjorken flow)

Study the early time attractor using dimensionless moments:

M , n>1, where L =

n —_ n
2

2, dp
J Po Py, (cosy) (7, py, p.)

= (2r)3t

Analysis of moments via generating function: G , = Z x" M, (w)

n>0

+ Obeys a PDE inx,w

» Very efficient calculation at early late ‘times'w ~ /75

[IA,Noronha,Spalinski’23]



CONTINUATION FROM BARLY TO LATE TIMES

Pressure anisotropy at early times: =——= Z a, w"
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. Convergent series: Analytically continue to late times

1.60004 0.27348
P 7071 ~ ” +

w2

Pade approximant: excellent agreement with hydrodynamic behaviour!

Predicts value of shear viscosity for RTA Kinetic theory
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SUMMARY/OUTLOOK.

Hydrodynamic gradient expansion

* accurate description after decay of non-hydro modes

 asymptotics encodes all “lost™ information of non-

hydrodynamic modes

Analytic continuation

* Interpolation between inrtial conditions and e
hydrodynamic regime AN

* can be done for convergent and asymptotic series

Further analytic behaviour in parameter space:

* summation of non-hydro modes: analytic structures in
parameter space (branch points, zeros...)

* evidence of phase transitions (transient modes dominating)

Applications to other (non) hydrodynamic attractors!?
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