

ANALYTIC METHODS FOR UNCOVERING ATTRACTORS

Inês Aniceto

Attractors and thermalisation in nuclear collisions and cold quantum gases

ECT* Workshop, 23rd September 2025

FROM ATTRACTORS TO ASYMPTOTICS

STRONGLY COUPLED SYSTEMS

- Motivation from heavy-ion collisions in particle accelerators (CERN, RHIC)
- Collisions give rise to strongly coupled fluids such as quark-gluon plasma

[RHIC]

• Plasma quickly goes through an **thermalization process**: described by **relativistic hydrodynamics**

Relativistic hydrodynamics: effective field theory describing the slow evolution of averaged conserved currents of fluid close to equilibrium

- Very well described by a perfect fluid + dissipative terms
- Memory loss: evidence of highly non-equilibrium initial conditions?

RELATIVISTIC HYDRODYNAMICS

Simplify problem: expanding plasma, conformal Bjorken flow

(conformal invariance, transversely homogeneous, invariance under longitudinal Lorentz boosts
[Bjoken '83]

From symmetries: All physics encoded in $\mathcal{E}(\tau)$.

Analysis: perform a *large time expansion* $\tau\gg 1$.

ENERGY DENSITY AT LATE TIMES

Symmetries: late-time behaviour highly constrained

$$\varepsilon(\tau) \propto \tau^{-4/3} \left(1 + \sum_{k=0}^{+\infty} \frac{\epsilon_k}{\tau^{2k/3}} \right), \quad \tau \gg 1$$

Leading behaviour:

perfect fluid

Subleading terms: dissipative effects, gradient expansion

But:

- How to effectively determine this series?
- Information of non-hydrodynamic d.o.f.?

EMERGENCE OF HYDRODYNAMICS

Effective evolution towards hydrodynamics

Theories of viscous hydrodynamics

Microscopic **strongly** coupled CFT

Kinetic theory of particle interactions

Truncate gradient expansion of dissipative terms

Non-linear ODEs

Linearised Einstein eqs around black hole solution

Linear PDEs

in RTA Boltzmann equation Integral equation

Particle distribution function

[Anderson, Witting'74]

[Müller'67;Israel, Stewart'76; Baier, Romatschke, Son, Starinets, Stephanov'07]

[Janik,Peschanski'05]

HYDRODYNAMIC ATTRACTORS

Hydrodynamic description accurate at earlier times than expected

- The hydrodynamic model encodes *non-hydrodynamic degrees of freedom*, non-perturbative in nature
- These modes play a major role during the early times of the expanding plasma, very sensitive to initial conditions
- Still far from equilibrium, the different initial solutions become exponential close to each other
- Evolution of the system towards equilibrium effectively described by viscous hydrodynamics

LATE TIME ASYMPTOTICS

Expectations from asymptotics?

$$\varepsilon(\tau) \propto \tau^{-4/3} \left(1 + \sum_{k=0}^{+\infty} \frac{\epsilon_k}{\tau^{2k/3}} \right), \quad \tau \gg 1 \qquad \qquad \epsilon_k \sim \Gamma(k)$$
 factorially divergent!

Hydrodynamic attractor:

- described by a divergent, asymptotic perturbative series;
- asymptotic properties encode all the information about the exponentially small non-hydrodynamic modes;
- initial conditions uniquely encoded in a set of parameters determining the strength of the non-hydrodynamic modes

ON ASYMPTOTIC SERIES AND STOKES PHENOMENA

ASYMPTOTIC SERIES

Start with a function f(g) with perturbative expansion

$$f(g) \simeq \sum_{n=0}^{\infty} f_n g^n$$

Asymptotic expansion

$$f_n g^n \to \infty$$

no matter how small we choose g to be

$$\sum_{n=0}^{N} f_n g^n$$

Truncating the series: good approximation to the function, with an optimal *N*

ASYMPTOTIC SERIES

$$f(g) \simeq \sum_{n=0}^{\infty} f_n g^n$$

- \bullet Assume g fixed and small
- Define $f_N(g) = \sum_{n=0}^{\infty} f_n g^n$

 $N_{(\text{optimal})} \approx A/g$

Optimal error:

$$(f-f_N)(g) \sim e^{-A/g}$$

for some value A

Non-perturbative effect!

Exponentially small

"塵も積もれば、山となる"

"Even dust, when piled up, will become a mountain."

Uncovering non-perturbative phenomena:

- Divergent, asymptotic series reveal existence of exponentially small terms
- <u>Stokes phenomena</u>: these small terms appear and can grow to dominate the system

$$\sum_{n\geq 0} a_n \, \varepsilon^n$$

How does it work?

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

$$|\varepsilon| \ll 1$$
 $a_n(x) \sim n! A(x)^{-n}$

B

$$S_{\theta}y(\varepsilon, x, \sigma_i) = S_{\theta}y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} S_{\theta}y_1 + \cdots$$

 $S_{\theta}y_k$

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

$$|\varepsilon| \ll 1$$
 $a_n(x) \sim n! A(x)^{-n}$

Integral transform \mathcal{B} (Borel)

Analysis of singularity structure:

• Emergence of non-perturbative terms

$$S_{\theta}y(\varepsilon, x, \sigma_i) = S_{\theta}y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} S_{\theta}y_1 + \cdots$$

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

$$|\varepsilon| \ll 1$$
 $a_n(x) \sim n! A(x)^{-n}$

Integral transform \mathcal{B} (Borel)

Analysis of singularity structure:

• Emergence of non-perturbative terms

 $S_{\theta}y_k$

Full description of the system:

Transseries

$$y \sim y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} y_1 + \sigma_2 e^{-\frac{2A(x)}{\varepsilon}} y_2 + \cdots$$

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

$$|\varepsilon| \ll 1$$
 $a_n(x) \sim n! A(x)^{-n}$

Integral transform \mathcal{B} (Borel)

Analysis of singularity structure:

• Emergence of non-perturbative terms

 $S_{\theta}y_k$

Stokes phenomena:

May appear/grow to become $\mathcal{O}(1)$

 $y \sim y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} y_1 + \sigma_2 e^{-\frac{2A(x)}{\varepsilon}} y_2 +$

Full description of the system:

Transseries

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

$$|\varepsilon| \ll 1$$
 $a_n(x) \sim n! A(x)^{-n}$

Integral transform \mathcal{B} (Borel)

Analysis of singularity structure:

• Emergence of non-perturbative terms

General summation procedures $S_{\theta}y_{k}$ for each series

Stokes phenomena:

May appear/grow to become $\mathcal{O}(1)$

em: $y \sim y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} y_1 + \sigma_2 e^{-\frac{A(x)}{\varepsilon}}$

Full description of the system:

Transseries

Local solution:

$$y_0 \sim \sum_{n=0}^{\infty} a_n(x) \, \varepsilon^n \quad x, \, \varepsilon \in \mathbb{C}$$

Integral transform \mathcal{B} (Borel)

Analysis of singularity structure:

• Emergence of non-perturbative terms

$$S_{\theta}y(\varepsilon, x, \sigma_i) = S_{\theta}y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} S_{\theta}y_1 + \cdots$$

General summation procedures $S_{\theta}y_k$ for each series

Stokes phenomena:

May appear/grow to become O(1)

Full description of the system: $y \sim y_0 + \sigma_1 e^{-\frac{A(x)}{\varepsilon}} y_1 + \sigma_2 e^{-\frac{A(x)}{\varepsilon}}$ Transseries

NON-HYDRO MODES AS SINGULARITIES

ASYMPTOTICS IN MIS

MIS HYDRODYNAMICS

Non-linear ODE describing the energy density/anisotropy:

$$w C_{\tau\Pi} f f' + 4 C_{\tau\Pi} f^2 + \left(w - \frac{16 C_{\tau\Pi}}{3}\right) f - \frac{4 C_{\eta}}{9} + \frac{16 C_{\tau\Pi}}{9} - \frac{2w}{3} = 0$$
 phenomenological parameters

 $w = \tau T$ dimensionless parameter

Attractor solution: stable solution, converging to a finite value at early times

Generic solution: divergent at early times, decays rapidly towards the attractor solution

[Heller, Spalinski '15; Basar, Dunne '15; IA, Spalinski '15]

MIS HYDRODYNAMICS

Early time: convergent series

Finite: attractor

$$f_{\text{Att}}(w) = \frac{2}{3} + \frac{1}{3} \sqrt{\frac{C_{\eta}}{C_{\tau\Pi}}} + \mathcal{O}(w)$$

Generic: I-parameter family

$$f_C(w) = \frac{2C}{3w^4} + \frac{4}{3} + \mathcal{O}(w)$$

Map $\sigma \leftrightarrow C$

 $\operatorname{Re}\left(\sigma_{\operatorname{Attr}}\right) \sim -0.3493$

[IA, Hasenbichler, Olde Daalhuis '22]

Late time: asymptotic series

$$f(w,\sigma) = \sum_{n=0}^{+\infty} \left(\sigma w^{-\beta} e^{-Aw}\right)^n \Phi_n(w)$$

$$\Phi_n(w) \simeq \sum_{k=0}^{+\infty} a_k^{(n)} w^{-k}$$

transseries with single, decaying non-hydro mode

BOLTZMANN RTA ATTRACTOR

Boltzmann equation RTA (Bjorken flow)

$$\frac{\partial f}{\partial \tau} = \frac{f_{\text{eq}} - f}{\tau_R}, \quad \tau_R = \gamma T(\tau)^{-1}$$

Study the early time attractor using dimensionless moments:

$$\mathcal{M}_n \equiv \frac{\mathcal{L}_n}{\mathcal{L}_0}$$
, $n \ge 1$, where $\mathcal{L}_n \equiv \int \frac{d^3p}{(2\pi)^3\tau} p_0 \ P_{2n}(\cos\psi) \ f(\tau, p_0, p_{\varsigma})$

Analysis of moments via generating function:

$$G_{\mathcal{M}} = \sum_{n \ge 0} x^n \, \mathcal{M}_n(w)$$

- Obeys a PDE in x, w
- Very efficient calculation at early late 'times' $w \sim \tau/\tau_R$

CONTINUATION FROM EARLY TO LATE TIMES

Pressure anisotropy at early times: $\mathscr{A} = -\frac{\mathscr{M}_1}{3} = \sum_{n \geq 0} a_n w^n$

Convergent series: Analytically continue to late times

$$P\mathcal{A}_{(70,71)} \sim \frac{1.60004}{w} + \frac{0.27348}{w^2}$$

Padé approximant: excellent agreement with hydrodynamic behaviour!

Predicts value of shear viscosity for RTA Kinetic theory

$$\mathscr{A}_{w\gg 1} \sim \frac{8\eta/s}{w} = \frac{8/5}{w}$$

SUMMARY/OUTLOOK

Hydrodynamic gradient expansion

- accurate description after decay of non-hydro modes
- asymptotics encodes all "lost" information of nonhydrodynamic modes

Analytic continuation

- interpolation between initial conditions and hydrodynamic regime
- can be done for convergent and asymptotic series

Further analytic behaviour in parameter space:

- summation of non-hydro modes: analytic structures in parameter space (branch points, zeros...)
- evidence of phase transitions (transient modes dominating)

Applications to other (non) hydrodynamic attractors?

THANK YOU!

$$\sum_{n=0}^{\infty} E_n g^n$$

$$e^{-A/g}$$