Early time hydrodynamic attractor
in a nearly-unitary Fermi gas
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What is a hydrodynamic attractor?

Convergence to universal time evolution long before equilibrium

prototypical example:
Bjorken flow pressure
anisotropy (Pr/Pr),
energy density and other
ratios

interpretation:

expansion provides another
information loss
mechanism
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Practical applications

even in 2+1D simulations, at early times 7 < R, transverse
dynamics can be neglected
— local Bjorken flow attractor

transverse collection of
attractor curves can
predict behavior of
dynamical quantities: u |,
€9, dEJ_/dT],

Victor Ambrus, Séren Schlichting, Clemens
Werthmann, PRD 105 (2022) 014031 and PRD 107
(2023) 094013
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Practical applications

final state Multiplicity ~ Entropy
— attractor gives link between Multiplicity and initial energy!
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Long term goal

new effective theory for attractor behaviour,
superceding hydrodynamics

Paul Romatschke, PRL 120 (2018) 1, 012301
to arrive at this, improve understanding of emergence:
examine attractor in more generality

recent discovery: attractor in ultracold quantum gases

Keisuke Fujii, Tilman Enss, PRL 133 (2024) 173402
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Bjorken flow vs. Cold atom attractor

Bjorken flow cold atoms
ultrarelativistic nonrelativistic
longitudinal expansion mimicked isotropic contraction
evolution of shear evolution of bulk

experimentally inaccessible | directly accessible in experiment



Attractor in cold atoms

numerical observation: bulk viscosity is of Drude form

Tilmann Enss, PRL 123 (2019) 205301
(W)= —"—= (C=xm)

= promote II-equation to MIS type, look for attractor

Keisuke Fujii, Tilman Enss, PRL 133 (2024) 173402
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a(t): "scattering length” quantifies interaction strength
simple t-dep. via unitary limit ¢ “X° a=2, power law drive a ~ t*



Attractor in cold atoms

numerical observation: bulk viscosity is of Drude form

Tilmann Enss, PRL 123 (2019) 205301
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= promote II-equation to MIS type, look for attractor
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a(t): "scattering length” quantifies interaction strength
simple t-dep. via unitary limit ¢ “X° a=2, power law drive a ~ t*
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But is there an early time attractor?



Early time behaviour of bulk pressure

With 7T + I = =3¢ o '9sa, ¢ = (Pa2: no early time
attractor!
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Late time attractor behaviour: competition of

e excitation via drive (Il ~ —37;'¢ a~'9a)
o relaxation (IT ~ —7;;'11)

starting at early times: timescale separation!



How does it work in Bjorken flow?

Attractor curve transitions between early and 08
S " & 06t
late time "fixed points =)
Jean-Paul Blaizot, Li Yan, Annals Phys. 412 (2020) 167993 and PRC 104 (2021) 5, 055201 & 04
. _ —1 L i
for f7r = (PL - Fi)/‘g anTr = ~Tint J7 02
vs.  Orfn =7 "(ff — Afx — 64/15) 1072 101 10° 10! 102
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Generally, when specific t-dep. dominates evolution equation:
Of = G(f,t) = hopefully in some t—range O f ~ T(t)F(f)
then we can read off attractor behaviour
F(f) = const.: f changes by const. - ft dt’ T(¢') (no attractor)
F(fo) = 0: fy is a fixed point that is

e attractive if F'(fy) <0

e repulsive if F'(fp) >0
e mixed if F'(fo) =0



How to get early time attractor?

idea: like in Bjorken, look at ratio I1/&
energy density evolves according to

Shina Tan, AoP 323 (2008) 2971

Ceq .
0 E = —3M adpa™ ' + 1—'10,0, 1

4mm

= 0y(I1/E€) gets extra term from evolution of £
(/€)= [3(T1/€)*~3(x/E)| ada™' — 7 (TI/E)

(x=m'¢)

= if x/& ~const., same form as in the Bjorken case!
expect early time attractor and repulsor at

/€ = £/ x/€E



1st caveat: a-dep. of x

calculations show (close to unitarity): y ~ a2
K.Dusling, T.Schafer, PRL 111 (2013) 120603 T.Enss, PRL 123 (2019) 205301
O(11/€) = [3(11/€)2a~(xa?/€) a™"| ra™" — 77" (W/E)
= terms compete if a ~ O(1), but no "fixed point”: 9;(II/E) # 0
Early attractor behaviour independent of form of a=1(t):
u=a"'(t), X(t) = X[u(t)], dropping " (II/e):
Ou(TI/€) = 3(T1/E)*ut—(xa®/E) u
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2nd caveat: £-dep. of x

x/E ~ E75/2 (T > Tr) = nontrivial coupling of two equations
H(I1/€) = {3(H/5)2a7)(0a7155/2} a~t—1 1 (I1/e)
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= attractor is a curved 2D surface in (II, £, t)-space!
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What about the Bjorken case?

(fx = (PL—P)/€)

O Ton 4 16
Tanﬂ+<7_+37_ﬂ_3+ﬂ+ ¢7€f7r—f7r>f7r+45—0

In (conformal) Bjorken flow, coefficients also depend on &, but:

1. all coefficients are either constant or oc 71T

2. variable transformation w = const. - 77T
comes with Jacobian 70, = (2/3 — f/4)w0y
which does not introduce another £-dep.

neither statement holds in the cold atom case!

0= (2/3 — fr/D) 00 My + a(n) My + b(n)My_1 + c(n) My

kinetic theory: also coupled equations, but ratios of moments
M,, = M,, /M, o fixed on attractor, while & is not.



Recovering attractor behaviour

t=1t
Consider curves in 2D state 04 .
space: contract to 1D curve! 03' ®
= to track convergence = | ‘-»
& attractor evolution: g 02
Principal component analysis oal
Michat P. Heller, Ro Jefferson, Michat Spaliriski, Viktor Svensson,
PRL 125 (2020) 132301 [ .
0.0t = —— - 5
0.4 0.5 0.6 0.7 0.8 0.9
EI(EEN)
t = 3to t =
05 >~ 0010
0af y' 0008 \
g 03 g
= P & ‘ = 0004
0.2 ] S~y —
o1l ] 0.002
0.0 L 0.000 5

3.0 35 4.0 45 5.0 55
EI(EFN)

15 20 Y
EI(EEN)



Principal component variance ratio

PC variance ratio
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recover all expected behaviour (squared because of variance):

E) expansion driven convergence, same as in absence of interaction
T) thermalization driven convergence ~ [exp(—t /)]
H) hydrodynamic Navier-Stokes tail ~ [a~!()9a=1()]?



Conclusion

e early time attractor in ultracold quantum gases by including
evolution of energy density

e problem 1: balance between expansion terms depends on time
= no early time fixed point

e problem 2: nontrivial coupling of evolution equations for £ & 11
= no 1D attractor curve

1.Pick a ~ O(1). 2.All expected attractor behaviour can
be recovered via PCA in higher dimensional state space!




