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What is a hydrodynamic attractor?

Convergence to universal time evolution long before equilibrium

prototypical example:
Bjorken flow pressure
anisotropy (PL/PT ),
energy density and other
ratios

interpretation:
expansion provides another
information loss
mechanism

Victor Ambrus, Lorenzo Bazzanini, Alessandro Gabbana, Daniele Simeoni, Raffaele

Tripiccione, Sauro Succi, Nature Computat.Sci. 2 (2022) 641-654
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Practical applications

even in 2+1D simulations, at early times τ ≪ R, transverse
dynamics can be neglected
→ local Bjorken flow attractor

transverse collection of
attractor curves can
predict behavior of
dynamical quantities: u⊥,
ϵ2, dE⊥/dη, ...
Victor Ambrus,, Sören Schlichting, Clemens

Werthmann, PRD 105 (2022) 014031 and PRD 107

(2023) 094013
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Practical applications

final state Multiplicity ∼ Entropy
→ attractor gives link between Multiplicity and initial energy!

Giuliano Giacalone, Aleksas Mazeliauskas, Sören Schlichting, PRL 123 (2019) 262301
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Long term goal

new effective theory for attractor behaviour,
superceding hydrodynamics
Paul Romatschke, PRL 120 (2018) 1, 012301

to arrive at this, improve understanding of emergence:
examine attractor in more generality

recent discovery: attractor in ultracold quantum gases
Keisuke Fujii, Tilman Enss, PRL 133 (2024) 173402

4



Bjorken flow vs. Cold atom attractor

Bjorken flow cold atoms

ultrarelativistic nonrelativistic
longitudinal expansion mimicked isotropic contraction
evolution of shear evolution of bulk

experimentally inaccessible directly accessible in experiment
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Attractor in cold atoms

numerical observation: bulk viscosity is of Drude form
Tilmann Enss, PRL 123 (2019) 205301

ζ(ω) =
iχ

ω + iτ−1
Π

(ζ = χτΠ)

⇒ promote Π-equation to MIS type, look for attractor
Keisuke Fujii, Tilman Enss, PRL 133 (2024) 173402

τΠΠ̇ + Π = −3ζ a−1∂ta

a(t): ”scattering length” quantifies interaction strength
simple t-dep. via unitary limit ζ

a→∞∼ a−2, power law drive a ∼ tα

But is there an early time attractor?
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Early time behaviour of bulk pressure

With τΠΠ̇ + Π = −3ζ a−1∂ta, ζ = ζ(2)a−2: no early time
attractor!
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Late time attractor behaviour: competition of

• excitation via drive (Π̇ ∼ −3τ−1
Π ζ a−1∂ta)

• relaxation (Π̇ ∼ −τ−1
Π Π)

starting at early times: timescale separation!
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How does it work in Bjorken flow?

Attractor curve transitions between early and
late time ”fixed points”
Jean-Paul Blaizot, Li Yan, Annals Phys. 412 (2020) 167993 and PRC 104 (2021) 5, 055201

for fπ = (PL − P )/E : ∂τfπ = −τ−1
int fπ

vs. ∂τfπ = τ−1(f2
π − λfπ − 64/15)
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Generally, when specific t-dep. dominates evolution equation:

∂tf = G(f, t) ⇒ hopefully in some t−range ∂tf ≈ T (t)F (f)

then we can read off attractor behaviour
F (f) = const.: f changes by const. ·

∫ t
dt′ T (t′) (no attractor)

F (f0) = 0: f0 is a fixed point that is

• attractive if F ′(f0) < 0

• repulsive if F ′(f0) > 0

• mixed if F ′(f0) = 0

8



How to get early time attractor?

idea: like in Bjorken, look at ratio Π/E
energy density evolves according to
Shina Tan, AoP 323 (2008) 2971

∂tE = −3Π a∂ta
−1 +

Ceq

4πm
∂ta

−1

⇒ ∂t(Π/E) gets extra term from evolution of E

∂t(Π/E) =
[
3(Π/E)2−3(χ/E)

]
a∂ta

−1 − τ−1
Π (Π/E)

(χ = τ−1
Π ζ)

⇒ if χ/E ∼ const., same form as in the Bjorken case!
expect early time attractor and repulsor at

Π/E = ±
√
χ/E
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1st caveat: a-dep. of χ

calculations show (close to unitarity): χ ∼ a−2

K.Dusling, T.Schäfer, PRL 111 (2013) 120603 T.Enss, PRL 123 (2019) 205301

∂t(Π/E) =
[
3(Π/E)2a−(χa2/E) a−1

]
∂ta

−1 − τ−1
Π (Π/E)

⇒ terms compete if a ∼ O(1), but no ”fixed point”: ∂t(Π/E) ̸= 0

Early attractor behaviour independent of form of a−1(t):
u = a−1(t), X(t) = X̃[u(t)], dropping τ−1

Π (Π/e):

∂u(Π̃/Ẽ) = 3(Π̃/Ẽ)2u−1−(χa2/Ẽ) u
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attractor is a 2D surface in (Π, E , t)-space!
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2nd caveat: E-dep. of χ

χ/E ∼ E−5/2 (T ≫ TF ) ⇒ nontrivial coupling of two equations

∂t(Π/E) =
[
3(Π/E)2a−χ0a

−1E5/2
]
∂ta

−1−τ−1
Π (Π/e)

∂tE = −3Πa∂ta
−1
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⇒ attractor is a curved 2D surface in (Π, E , t)-space!
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What about the Bjorken case?

(fπ = (PL − P )/E)

τ∂τfπ +

(
δππ
τπ

+
τππ
3τπ

− 4

3
+

τ

τπ
+

τ

τπ
ϕ7efπ − fπ

)
fπ +

16

45
= 0

In (conformal) Bjorken flow, coefficients also depend on E , but:

1. all coefficients are either constant or ∝ τT

2. variable transformation w̃ = const. · τT
comes with Jacobian τ∂τ = (2/3− fπ/4)w̃∂w̃,
which does not introduce another E-dep.

neither statement holds in the cold atom case!

0 = (2/3− fπ/4)w̃∂w̃Mn + a(n)Mn + b(n)Mn−1 + c(n)Mn+1

kinetic theory: also coupled equations, but ratios of moments
Mn = Mn/Mn,eq fixed on attractor, while E is not.
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Recovering attractor behaviour

Consider curves in 2D state
space: contract to 1D curve!
⇒ to track convergence
& attractor evolution:
Principal component analysis
Micha l P. Heller, Ro Jefferson, Micha l Spaliński, Viktor Svensson,

PRL 125 (2020) 132301

t = t0

t = 3t0 t = τΠ
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Principal component variance ratio
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recover all expected behaviour (squared because of variance):

E) expansion driven convergence, same as in absence of interaction

T) thermalization driven convergence ∼ [exp(−t/τΠ)]
2

H) hydrodynamic Navier-Stokes tail ∼ [a−1(t)∂ta
−1(t)]2
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Conclusion

• early time attractor in ultracold quantum gases by including
evolution of energy density

• problem 1: balance between expansion terms depends on time
⇒ no early time fixed point

• problem 2: nontrivial coupling of evolution equations for E & Π

⇒ no 1D attractor curve

Solution

1.Pick a ∼ O(1). 2.All expected attractor behaviour can
be recovered via PCA in higher dimensional state space!

15


