Hydrodynamic Attractor in Ultracold Atoms

KF & Y. Nishida, Phys. Rev. A **98**, 063634 (2018); KF & T. Enss, Phys. Rev. Lett. **133**, 173402 (2024)

Keisuke Fujii

Dept. of Phys., Institute of Science Tokyo

Attractors and thermalization in nuclear collisions and cold quantum gases

September 2025

collaborators

Yusuke Nishida

Tilman Enss

Plan of this talk

- 1. Introduction: Realization in ultracold atoms
 - Hydrodynamics & Hydro attractor
 - Our idea: Using scattering-length driving
- 2. Time-dependent scattering length in hydrodynamics

KF & Y. Nishida, PRA 98, 063634 (2018).

3. Our proposed driving protocol and attractor

KF & T. Enss, Phys. Rev. Lett. 133, 173402 (2024)

4. Summary

Hydrodynamics

Hydrodynamics universally describes long-time and long-distance dynamics.

$$t \gg \tau_{\rm rela}$$

$$t \gg \tau_{\rm relax}$$
 $x \gg l_{\rm mfp}$

► Local thermal equilibrium assumption

Each fluid cell is described by thermodynamic densities and fluid velocities

Hydrodynamic equations are constructed based on the derivative expansion w.r.t ∂_t and ∂_x . $\sim \tau_{\rm relax}/t \sim l_{\rm mfp}/x$

For example,

Stress tensor in hydrodynamics :
$$T_{ij} = p\delta_{ij} + \rho v_i v_j + (viscous terms) + \cdots$$

Oth order

1st order

higher order

Observation in real-time dynamics

Local equilibrium (Hydrodynamics)

The emergence of the hydrodynamic attractors is expected to be a universal phenomenon, not limited to the QGP.

▶ Model calculations show the emergence of attractors in various fluid expansions.

Can we observe this attractor behavior in real-time dynamics?

Initial conditions

In heavy-ion collisions, we can only access the final-state particle momenta as observables.

Ultracold atom experiments offer well-controlled time-resolved measurements.

Proposal of "a fluid expansion" leading to the attractor, realizable in ultracold atoms

Our key idea: KF & T. Enss Phys. Rev. Lett. 133, 173402 (2024)

Realizing phenomena equivalent to fluid expansions by driving the scattering length.

Plan of this talk

1. Introduction: Realization in ultracold atoms

Proposal of "a fluid expansion" realizable in ultracold atoms leading to the attractor

Our key idea:

Realizing phenomena equivalent to fluid expansions by driving the scattering length.

2. Time-dependent scattering length in hydrodynamics

KF & Y. Nishida, PRA 98, 063634 (2018).

3. Our proposed driving protocol and attractor

KF & T. Enss, Phys. Rev. Lett. 133, 173402 (2024)

4. Summary

Time-dep. scattering length in hydrodynamics

Ultracold atomic gases:

- Their inter-particle interaction is characterized only by the (s-wave) scattering length a.
- The scattering length a can be tuned via the Feshbach resonance.
 Its spatiotemporal modulation is also possible.
- Time-dependent scattering length a(t)

Hydrodynamically, this a(t) results in the same effect as isotropic fluid expansion.

KF & Y. Nishida, PRA 98, 063634 (2018).

Isotropic expansion — Shrinking & stretching of the scattering length

Time-dep. scattering length in hydrodynamics

Ultracold atomic gases:

- Their inter-particle interaction is characterized only by the (s-wave) scattering length a.
- The scattering length *a* can be tuned via the Feshbach resonance. Its spatiotemporal modulation is also possible.
- Time-dependent scattering length a(t)

Hydrodynamically, this a(t) results in the same effect as isotropic fluid expansion.

KF & Y. Nishida, PRA 98, 063634 (2018)

In terms of Fluid Size
Scattering Length
these two phenomena are equivalent.

✓ Driving the scattering length allows us to **emulate arbitrary isotropic fluid expansion**, while the system remains uniform and at rest.

Dynamics with time-dep. scattering length

Focusing on two-component Fermi gases in the normal phase (uniform, 3-dim)

► Energy density production (Dynamic sweep theorem) S. Tan, Ann. Phys. (2008)

$$\frac{d}{dt}\mathcal{E}(t) = \frac{C(t)}{4\pi m a^2(t)} \frac{d}{dt} a(t)$$

$$\mathcal{E}(t) : \text{Energy density}$$

$$C(t) : \text{Contact density}$$

► Contact density (conjugate quantity to the scattering length)

$$C(t) = C_{\text{eq}}[a(t)] + 12\pi m a(t)\pi(t)$$

 $\pi(t)$ represents **the pressure deviation** from its equilibrium value.

Dissipative correction

cf. Pressure relation $P = \frac{2}{3}\mathcal{E} + \frac{C}{12\pi ma}$

▶ Hydrodynamic relaxation dynamics for $\pi(t)$

$$\tau_{\text{relax}} \partial_t \pi(t) + \pi(t) = -\zeta[a(t)] V_a(t) \quad \text{with} \quad V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$$

Bulk viscosity at a(t)

The bulk viscosity is given by the contact-contact correlation **☑**Tilman's talk

Bulk strain rate tensor

In general situation with fluid velocity $\vec{v}(t, \vec{x})$

$$V_a(t, \vec{x}) = \nabla \cdot \vec{v}(t, \vec{x}) - 3 \left[\frac{\partial_t a(t, \vec{x})}{a(t, \vec{x})} + \vec{v}(t, \vec{x}) \cdot \frac{\nabla a(t, \vec{x})}{a(t, \vec{x})} \right]$$

KF & Y. Nishida, PRA 98, 063634 (2018).

√ The consequence of the equivalence

Dynamics of the pressure deviation

▶ Hydrodynamic relaxation dynamics for $\pi(t)$

$$\tau_{\text{relax}} \partial_t \pi(t) + \pi(t) = -\zeta[a(t)] V_a(t) \quad \text{with} \quad V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$$

- cf. Muller-Israel-Stewart theory in relativistic hydrodynamics
- One can derive this equation from the linear-response theory with exponential relaxation.

$$\delta C(t) = \int_{-\infty}^{t} dt' \frac{\partial C(t)}{\partial a^{-1}(t')} \delta a^{-1}(t') \qquad \text{with} \quad \frac{\partial C(t)}{\partial a^{-1}(t)} \simeq \left(\frac{\partial C}{\partial a^{-1}}\right)_{\text{eq}} e^{-(t-t')/\tau_{\text{relax}}} \qquad \Longleftrightarrow \quad \zeta(\omega) = \frac{i\chi}{\omega + i\tau_{\text{relax}}^{-1}} \quad \text{(valid for long times)}$$

Effectively capture hydrodynamic corrections up to infinite order

Since the equation explicitly contains $\tau_{\rm relax}$, its solution can be directly expanded w.r.t. $\tau_{\rm relax}$.

The gradient expansion w.r.t. $\tau_{\rm relax}/t$ underlying hydrodynamics

$$\pi(t) = -\zeta V_a(t) + O(\tau_{\text{relax}}/t)$$

Navier-Stokes hydro. Result

► Higher-order hydrodynamic corrections can be obtained from the expansion as needed.

Plan of this talk

1. Introduction: Realization in ultracold atoms

Proposal of "a fluid expansion" realizable in ultracold atoms leading to the attractor

Our key idea:

Realizing phenomena equivalent to fluid expansions by driving the scattering length.

2. Time-dependent scattering length in hydrodynamics

KF & Y. Nishida, PRA 98, 063634 (2018).

▶ Hydrodynamic relaxation dynamics for the pressure deviation $\pi(t)$

$$\tau_{\text{relax}} \partial_t \pi(t) + \pi(t) = -\zeta[a(t)] V_a(t) \quad \text{with} \quad V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$$

3. Our proposed driving protocol and attractor

KF & T. Enss, Phys. Rev. Lett. 133, 173402 (2024)

4. Summary

Power-law driving for hydro attractor

▶ Hydrodynamic relaxation dynamics for $\pi(t)$

$$\tau_{\text{relax}} \partial_t \pi(t) + \pi(t) = -\zeta[a(t)] V_a(t)$$
 with $V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$

$$V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$$

Protocol for driving the scattering length:

Initially push the system out of equilibrium, then let it gradually approach thermal equilibrium

► Example for two-comp. Fermi gases close to the unitary limit

$$a^{-1}(t) = \begin{cases} a_k^{-1} & (t < t_k) \\ a_k^{-1}(t/t_k)^{-\alpha} & (t > t_k) \end{cases}$$

Keep the scattering length fixed at a value a_k until $t = t_k$, then start the power-law driving, i.e., $a(t) \propto t^{\alpha}$.

• The system approaches equilibrium because of $V_a(t) = -3\alpha/t$.

By varying $a_k \& t_k$, various initial states can be realized.

To make the late-time driving the same, we fix $\tilde{a} := a_k (t_k / \tau_{\zeta})^{\alpha}$.

The driven scattering length follows a single curve.

Resulting attractor behavior

▶ Hydrodynamic relaxation dynamics for $\pi(t)$

$$au_{
m relax} \partial_t \pi(t) + \pi(t) = -\underline{\zeta[a(t)]} V_a(t)$$
 with $V_a(t) = -3 \frac{\partial_t a(t)}{a(t)}$

Protocol for driving the scattering length:

Initially push the system out of equilibrium, then let it gradually approach thermal equilibrium

► Example for two-comp. Fermi gases close to the unitary limit

Dimensionless $\pi(t)$

- ► Solutions first converge to the attractor.
- ► Afterwards, the attractor approaches the hydrodynamic behavior.

 $\pi(t)/(\tau_{\text{relax}}^{-1}\zeta[a(t)])$ for $\alpha=1/2$ Solutions from different initial conditions

1.0

0.8

--- ideal hydro (0th)

--- Navier-Stokes (1st)

0.4

0.2

0.0

10

15

(Assuming $\zeta[a] \propto a^{-2}$ around the unitary limit)

Analytic results: divergence of the expansion 12/13

► Analytical solution

$$\pi(t) = \pi_{\text{ini}} e^{-(t - t_{\text{ini}})/\tau_{\text{relax}}} + \pi_{\text{att}}(t)$$

Non-hydrodynamic mode

- Depend on initial conditions a_k & t_k
- Cannot be expanded w.r.t $\tau_{\rm relax}/t$

Attractor solution $\pi_{\text{att}}(t) = \frac{3\alpha \zeta[\tilde{a}]}{\tau_{\text{relax}}} (-1)^{2\alpha+1} e^{-t/\tau_{\text{relax}}} \Gamma(-2\alpha, -t/\tau_{\text{relax}})$

- Does NOT depend on a_k & t_k separately Universal!!
- Can be expanded with respect to $\tau_{\rm relax}/t$.

$$\pi_{\rm att}(t) \sim (\tau_{\rm relax}/t)^{2\alpha+1} \left[1 + (2\alpha+1)(\tau_{\rm relax}/t) + \cdots \right]$$
 : divergent series 2nd-order hydro

n th-order coefficient $\propto (n+2\alpha)!$ factorial divergent (Borel summable)

In the attractor solution, the gradient expansion is an asymptotic, divergent series.

- ▶ The attractor solution cannot be obtained even if higher-order fluid corrections are summed up.
- ► Origin of time-scale separation: non-hydro → attractor, attractor → hydro.

KF & T. Enss, Phys. Rev. Lett. 133, 173402 (2024)

Our key idea:

Equivalence between isotropic expansion and contraction of the scattering length

-

Emulating fluid expansion that exhibits a hydro attractor, using scattering-length driving

- For example, in a two-component Fermi gas of 40 K, the time window $t/\tau_{\rm relax}\sim 5-10$ will be visible.
 - Contact dynamics was measured with 0.1ms time resolution. ($E_F \sim h \times 20 \text{ kHz}$, $T/T_F \sim 0.25 \longrightarrow \tau_{\text{relax}} \sim 0.15 \text{ ms}$)

 Thywissen group, Science (2014), PRL (2017)

√ Future directions

- Further analysis under the same driving, including details such as the energy density dynamics.
- Exploration of other exciting developments in nuclear physics with ultracold atoms

Thank you!!