Hydrodynamic transport in ultracold atoms probing the boundaries of hydrodynamics

Tilman Enss (Heidelberg University)

Attractor workshop, ECT* Trento, 22 September 2025

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Aleksas Mazeliauskas

strongly interacting Fermi gas

dilute gas of 1 and 4 fermions with contact interaction

te gas of
$$\blacksquare$$
 and \blacksquare fermions with contact interaction
$$\mathcal{H} = \int d\mathbf{x} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \Big(-\frac{\hbar^2 \nabla^2}{2m} - \mu_{\sigma} \Big) \psi_{\sigma} + g_0 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$$

sound waves in a quantum gas

how quickly does sound propagate?

find linear dispersion relation

$$\omega = ck$$

speed of sound in ultracold gas:

$$c \approx 15 \, \text{mm/s}$$

$$mc^2 = \left(\frac{\partial P}{\partial n}\right)_S = \frac{V^2}{N} \left(\frac{\partial^2 E}{\partial V^2}\right)_S$$

density response: sound attenuation

larger damping for higher momenta

 $\Gamma = Dk^2$ at low momenta: hydrodynamic regime, D sound diffusion

dissipative hydrodynamics: quantum limited diffusion

Patel et al., Science 2020; Li et al., Science 2022; Yan et al., Science 2024

superfluid hydrodynamics in a Bose gas

• first and second sound: two-fluid hydro Hilker, ..., Hadzibabic, PRL 2022

how does friction arise?

shear viscosity measures momentum transport

diffusion
$$D \simeq \frac{\bar{p}}{m} \ell_{\mathsf{mfp}}$$

Fermi gas:
$$D \simeq \frac{\hbar}{m} \frac{\ell_{\mathrm{mfp}}}{\ell} \gtrsim \frac{\hbar}{m}$$

Boltzmann kinetic theory

• single-particle distribution f(r, p, t):

$$\frac{\partial f}{\partial t} + \boldsymbol{v_p} \cdot \nabla_{\boldsymbol{r}} f + \boldsymbol{F} \cdot \nabla_{\boldsymbol{p}} f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

collision integral

$$\left(\frac{\partial f_1}{\partial t}\right)_{\text{coll}} \simeq -\int d\mathbf{p}_2 d\Omega \frac{d\sigma}{d\Omega} |\mathbf{v}_1 - \mathbf{v}_2| [f_1 f_2 (1 - f_{1'})(1 - f_{2'}) - (1 - f_1)(1 - f_2) f_{1'} f_{2'}]$$

2-body scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2 + \frac{1}{a^2}} + \text{medium corr.}$$

assumes molecular chaos

strong fermion correlations: contact

pair correlation
$$g^{(2)}(r)=\langle\hat{n}_\uparrow(r)\hat{n}_\downarrow(0)\rangle\simeq\mathbf{C}\left(\frac{1}{r}-\frac{1}{a}\right)^2+\dots$$
 $r_0\lesssim r\lesssim\ell$

contact operator:
$$\hat{C}(x) = g_0^2 \, \hat{n}_\uparrow(x) \, \hat{n}_\downarrow(x) = \hat{\Delta}^\dagger(x) \hat{\Delta}(x)$$

local pair
$$\hat{\Delta}(x) = g_0 \hat{\psi}_{\downarrow}(x) \hat{\psi}_{\uparrow}(x)$$

Hamiltonian
$$\hat{H} = \hat{H}_{kin} + \frac{\hat{C}}{g_0} = \hat{H}_{unitary} + \frac{\hat{C}}{4\pi ma}$$
 breaks scale invariance for $\frac{1}{a} \neq 0$

quantum many-body theory

Luttinger-Ward approach (2PI)

repeated scattering between particles

fermion spectra in medium

Keldysh computation in real frequency (avoid analytical continuation of num. data)

Haussmann et al. 2009; Johansen+ 2024; Enss 2024; Dizer+ 2024 Enss, Haussmann & Zwerger 2011, 2012, 2019

transport in linear response

 no assumption of "molecular chaos" inelastic scattering

shear viscosity from stress response function (Kubo formula)

$$\eta(\omega) = \int d^d x dt \frac{e^{i(\omega+i0)t} - 1}{i(\omega+i0)} i\theta(t) \langle [\hat{\Pi}_{xy}(\mathbf{x}, t), \hat{\Pi}_{xy}(0, 0)] \rangle$$

physical ingredients:

transport via fermions and pairs (superfluid fluctuations)

dynamical stress correlations (shear viscosity)

Shear viscosity/entropy of the unitary Fermi gas

Enss, Haussmann & Zwerger 2011

bulk viscosity probes scaling violation

Kubo formula: pressure correlation function cf. Fujii & Nishida PRA 2020

$$\zeta(\omega) = \int d^d x dt \frac{e^{i(\omega + i0)t} - 1}{i(\omega + i0)} i\theta(t) \langle [\delta \hat{p}(\mathbf{x}, t), \delta \hat{p}(0, 0)] \rangle$$

dilute quantum gas: pressure fluctuations

$$\delta \hat{p} = \frac{2}{3}\hat{H} + \frac{\hat{C}}{12\pi ma} - \left(\frac{\partial p}{\partial E}\right)_n \hat{H} - \left(\frac{\partial p}{\partial n}\right)_E \hat{n} \qquad (\beta \text{ function } \frac{\partial H_{\text{int}}}{\partial \ln |a|})$$

$$(\beta \text{ function } \frac{\partial H_{\text{int}}}{\partial \ln |a|})$$

bulk viscosity probes contact correlation (local pair 0.4

$$\zeta(\omega > 0) = \int dx \, dt \, \frac{e^{i\omega t} - 1}{i\omega} \, i\theta(t) \left\langle \left[\frac{\hat{C}(x, t)}{12\pi ma}, \frac{\hat{C}(0, 0)}{12\pi ma} \right] \right\rangle \right|_{0.2}^{0.3}$$

0.5 0.1 -2 -1

Enss PRL 2019, Nishida AoP 2019, Hofmann PRA 2020; cf. Fujii

dynamical bulk viscosity (Luttinger-Ward theory)

cf. Bulgac et al. PRR 2024: unitary Fermi gas has no (semi-)classical limit, thermalizes 1000x slower than predicted by ETH

quantum degenerate regime (Luttinger-Ward theory)

strong enhancement in quantum degenerate regime ($\zeta > \eta$)

larger than kinetic theory prediction for $T < T_F$

$$\frac{\zeta}{\eta} \simeq \left(\frac{P - 2E/3}{P}\right)^2 \simeq \left(\frac{C/a}{P}\right)^2$$

novel transport measurement technique

Fujii & Nishida PRA 2018

measuring bulk viscosity

response of contact to change of scattering length:

$$\frac{\partial \langle C(t) \rangle}{\partial a^{-1}(t')} \simeq i\theta(t-t') \left\langle [C(t), C(t')] \right\rangle \quad \stackrel{\text{lin.resp.}}{\sim} \quad a^2 \zeta \ e^{-(t-t')/\tau_{\zeta}} \ \theta(t-t')$$

lin.resp.
$$a^2 \zeta e^{-(t-t')/\tau_{\zeta}} \theta(t-t')$$

microscopic derivation of MIS!

$$\delta C(t) = \int_{-\infty}^{t} dt' \frac{\partial C(t)}{\partial a^{-1}(t')} \delta a^{-1}(t')$$

new, fast measurement of contact: Xie, ..., Enss, Julienne, Yu, Thywissen, 2506.13707

Outlook

- perfect fluidity at strong scattering:
 slowest dissipation/diffusion consistent with QM
- cold atom experiment can probe local dissipation, hydrodynamics beyond Navier-Stokes in real time
- theory: quantum transport of correlated particles $\tau^{-1} \sim T$, kinetic theory for fermions + pairs Fujii & Enss, Ann. Phys. 2023 slow modes (symmetries, critical fluct.)
- · dynamical response in real time, far from equilibrium

boundaries of hydrodynamics

does fluid dynamics work for **very small systems?**5 1 + 5 4 fermions in 2D (Jochim group, Heidelberg)

theory beyond hydro: SLDA (*Uri Sharell*) -> wave fcts: quantum, small, full EOS

new perspectives article: 2509.05049

Brandstetter et al., Nature Phys. 2025

Extra material

solving the Luttinger-Ward equations in real frequency

$$H = \sum_{\sigma} \int d\mathbf{r} \, \psi_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^{2} \nabla^{2}}{2m} - \mu_{\sigma} \right) \psi_{\sigma}(\mathbf{r})$$

$$= \int d\mathbf{r} \int_{0}^{\beta} d\tau \left[\sum_{\sigma} \psi_{\sigma}^{*} \left(\partial_{\tau} - \frac{\nabla^{2}}{2m} - \mu_{\sigma} \right) \psi_{\sigma} \right]$$

$$+ g_{0} \int d\mathbf{r} \, \psi_{\uparrow}^{\dagger}(\mathbf{r}) \psi_{\downarrow}^{\dagger}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \psi_{\uparrow}(\mathbf{r})$$

$$- \frac{1}{g_{0}} |\Delta|^{2} - \psi_{\uparrow}^{*} \psi_{\downarrow}^{*} \Delta - \Delta^{*} \psi_{\downarrow} \psi_{\uparrow} \right],$$

imaginary frequency: continue analytically (=> E. Gull, ERG 2022) directly in real frequency (Keldysh in equilibrium):

$$\operatorname{Im} \Sigma_{\sigma}^{R}(\boldsymbol{p}, \varepsilon) = -\pi \int_{\boldsymbol{p}', \varepsilon'} [f(\varepsilon') + b(\varepsilon + \varepsilon')] \times A_{p}(\boldsymbol{p} + \boldsymbol{p}', \varepsilon + \varepsilon') A_{\bar{\sigma}}(\boldsymbol{p}', \varepsilon').$$

$$\operatorname{Im} \Sigma_{p}^{R}(\boldsymbol{q}, \omega) = -\pi \int_{\boldsymbol{p}, \varepsilon} [1 - 2f(\varepsilon)] A_{\uparrow}(\boldsymbol{p}, \varepsilon) \times A_{\downarrow}(\boldsymbol{q} - \boldsymbol{p}, \omega - \varepsilon).$$

Johansen+ 2024; Enss 2024; Dizer+ 2024

pair spectrum

sharp peaks in real frequency:

- convolution by Fourier transform
 Johansen, Frank, Lang 2024
- adaptive mesh to resolve peak
 Dizer, Horak, Pawlowski 2024
- linearize inverse propagator between grid points Enss 2024

Fermions and pairs at unitarity
Enss PRA 2024

Fermions and pairs at strong binding (BEC side)
Enss PRA 2024