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VIEWPOINT

Strumming a Strongly Interacting
Fermi Gas
Sound waves reveal the unique properties of the unitary Fermi gas, a model system for
describing certain superconductors and forms of nuclear matter.

by Tilman Enss1

The way a material transmits sound waves can re-
veal a lot about its properties. For instance, the
lower the compressibilty of a medium, the faster
sound waves will pass through it. In addition, a

material undergoing a phase transition may attenuate sound
more strongly, providing a signature of the change. Taking
advantage of sound’s qualities as a material probe, two inde-
pendent teams have used it to understand the properties of
the so-called unitary Fermi gas [1, 2]. This form of quantum
matter contains very strongly interacting fermions, and it is
a model system for describing some superconductors and
neutron stars. In their experiments, the researchers created
the gas from a cloud of ultracold lithium atoms and explored
the damping rate for sound waves in two regimes, show-
ing that this rate reaches a universal lower quantum limit.
The new findings may help scientists understand trans-
port mechanisms in strongly interacting fermions found in
condensed-matter or nuclear physics.

Figure 1: A sound wave passing through a strongly interacting
gas of fermions known as the unitary Fermi gas. Two research
groups have measured the damping rate of such waves to uncover
the properties of the gas [1, 2]. (APS/Alan Stonebraker)
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Quarks, electrons, neutrons, and many types of atoms are
fermions, but they have vastly different characteristics. An
electron, for instance, is a charged, fundamental particle,
while an atom like lithium-6 is a neutral, compound parti-
cle that’s more than ten thousand times heavier. However,
even seemingly different fermionic systems can exhibit sur-
prisingly similar behavior if the interactions between the
particles are sufficiently strong. That’s why, for example, a
tabletop experiment with a strongly interacting gas of atoms
can be used to understand and predict certain properties of
neutrons in a collapsed star.

The unitary Fermi gas is a special case of this general
idea. If a dilute gas of neutral fermionic atoms is cooled to
nanokelvin temperatures, then quantum effects will domi-
nate, and the fermions will spread out because they cannot
occupy the same quantum state. However, if a sufficiently
strong attractive interaction is induced between the atoms,
then they can bind into tight molecules that behave as
bosons and bunch together. For a sweet spot value of the in-
teraction, the atoms will behave neither purely as fermions
nor bosons but will instead form a new state of quantum
matter. This state is the unitary Fermi gas, and it has the
strongest interaction between fermions allowed by quantum
mechanics.

The unitary Fermi gas has very unusual transport prop-
erties. At low temperatures it can flow around obstacles
with almost no friction [3], the hallmark of a perfect fluid.
At lower temperatures still, it becomes a frictionless fluid,
or superfluid [4]. The new studies examine what happens
to sound waves as the unitary Fermi gas enters this super-
fluid phase. More specifically, they compare the observed
behavior to that seen in the fermionic and bosonic versions
of liquid helium, two traditional examples of a quantum
fluid. Liquid helium-3 is fermionic, and when it nears its
superfluid phase transition, sound waves passing through it
experience a higher rate of damping. The opposite effect is
seen in bosonic helium-4, in which the damping rate drops at
the superfluid transition. Given that the particles in the uni-
tary Fermi gas behave neither purely as fermions nor bosons,
will the gas resemble either of the helium liquids, or will it
behave as a new type of quantum fluid?

The two groups addressed this question by analyzing
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news & views

One of the most stimulating areas 
of research in ultracold atoms 
is the exploration of strongly 

interacting Fermi gases1. As reported2 
in Nature Physics, John Gaebler et al. 
make a signi!cant contribution to 
this subject by providing the !rst 
experimental evidence of an energy gap, 
called the pseudogap, owing to pairing 
correlations above the super"uid phase-
transition temperature Tc of the unitary 
Fermi gas. #eir measurement uses 
the new technique of angle-resolved 
radiofrequency (RF) spectroscopy, 
which is an analogue of angle-resolved 
photoemission spectroscopy3,4 (ARPES), 
one of the most powerful probes of 
correlated electrons in solid-state 
materials. Despite crucial di$erences, 
there are also some interesting 
similarities between the pseudogap 
above Tc in ultracold Fermi gases 
and the underdoped regime of high-
temperature superconductors.

To appreciate the signi!cance of 
these results, it is useful to recall that 
the unitary Fermi gas is in the middle of 
the crossover between two very di$erent 
limits: Bardeen–Cooper–Schrie$er 
(BCS) super"uidity of fermion pairs 
and Bose–Einstein condensation (BEC) 
of bosons. Most superconductors or 
super"uids studied in the past hundred 
years are !rmly in one or the other limit. It 
is only in the past few years that an atomic 
physics technique called the Feshbach 
resonance1 has allowed us to actually 
tune the attractive interactions between 
fermionic atoms (6Li, 40K) and span the 
entire BCS to BEC crossover shown 
in Fig. 1.

In the BCS limit, a weak attraction 
between fermions leads to the formation — 
and condensation — of Cooper pairs with 
an e$ective size much larger than the 
interparticle distance. #e normal state 
above Tc is a Fermi liquid with a Fermi 
surface of gapless excitations. In the BEC 
limit, on the other hand, strong attraction 
leads to tightly bound diatomic molecules 
that are weakly repulsive bosons. #e state 
above Tc is a normal Bose gas and only at 

very high temperatures do the molecules 
dissociate into atoms.

#e unitary regime lies between these two 
very di$erent limits. Here the interaction 
parameter between atoms, the s-wave 
scattering length, diverges and the cross-
section is limited only by unitarity, that is, 

the conservation of probability. #e ground 
state near unitarity is a strongly interacting 
super"uid of pairs, the size of which is of 
the order of the interparticle spacing of 
constituent fermions. #is also leads to a very 
high Tc, in which Tc = (0.15–0.2)EF, where EF 
is the Fermi energy5,6.

ULTRACOLD FERMI GASES

Pre-pairing for condensation
Pair formation and condensation usually occur together in Fermi superfluids. The observation of a pseudogap that 
implies pairing above the condensation temperature in a strongly interacting Fermi gas is thus an exciting development.

Mohit Randeria

Figure 1 | Phase diagram of the BCS to BEC crossover as a function of the dimensionless attraction 
1/(kFas) (where kF is the Fermi momentum and as is the scattering length) and the temperature T 
in units of EF. The pictures show schematically the evolution of the ground state from the BCS limit 
with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound molecules. The 
ground state at unitarity (1/(kFas) = 0) has strongly interacting pairs with size comparable to 1/kF. 
As a function of increasing attraction, the pair-formation crossover scale T* diverges away from Tc 
below which a condensate exists. Most Fermi superfluids and superconductors are close to the BCS 
limit where these two temperatures coincide. The experiments reported by Gaebler et al.2 probe the 
unitary regime and reveal a pairing pseudogap in the range of temperatures between Tc and T*. This 
global phase diagram is based on ref. 5; for recent quantum Monte Carlo calculations near unitarity, 
see refs 6 and 8.
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FortheweaklyinteractingBosegasof23Na,thelowdensity
presentsachallengeforthermalization.Wecircumventthis
bystartingwithaBEC,applyingcontrolledheatingviaa
parametricdrivefor360ms,andequilibratingforone
secondtoobtainalow-densitythermalcloudcloseto
equilibrium.TheFermigas,ontheotherhand,isproduced
nearaFeshbachresonance,withexcellentthermalization
rates.ForthedataintheFig.2,thefinalinteractionstrength
isη¼logðkFa2DÞ¼4.2,wherea2Disthe2Dscattering
length[40,45],relatedtothe3Dscatteringlengtha3D
viaa2D¼2.093azexpð−

ffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=2Þ

p
az=a3DÞ,whereaz¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mωz
p

isthetransverseharmonicoscillatorlength.
Sizablecorrelationpeaksandholesareobservedinthe
gð2Þcorrelationfunctionforbosonsandfermions(Fig.2).
Thegð2Þfunctionforidealbosons(ε¼þ1)andfermions
(ε¼−1)isgivenbygð2ÞðrÞ¼1þεð1=n

2
Þj
P

knkeik⃗·r⃗j2,
wherenkisthemomentumdistribution, P

k¼
R
d
2
k=ð2πÞ

2
,andn¼

P
knkthedensity.Forthe

Bosegasdata,agoodfitisachievedfortheapproximation
gð2ÞðrÞ¼1þexpð−2πr

2
=λ

2
dBÞvalidinthenondegenerate

regime[44].WeobtainathermaldeBrogliewave-
lengthλdB¼4.4μm,correspondingtoatemperatureof
T¼6.9ð3ÞnK.Afullstudyoftwo-particlecorrelationsin
thedegenerateinteracting2DBosegas[18]isanimportant
problemforfuturestudies,inparticularasthegascrosses
overintoaBerezinskii-Kosterlitz-Thoulesssuperfluid,
wheregð2ÞðrÞisexpectedtodisplayalgebraicdecay.In
thepresenceofatrap,condensateformationshouldrestore
second-ordercoherence,butstronginteratomicrepulsion
willmodifygð2ÞðrÞ[46].
TheweaklyinteractingFermigasdatacloselymatchthe

theoreticalformgð2ÞðrÞ¼1−jð2=kFrÞJ1ðkFrÞj
2

for
anoninteractingFermigasofdensityn↑intwodimensions
atzerotemperature,withmeasuredkF¼

ffiffiffiffiffiffiffiffiffiffi
4πn↑

p
¼

0.98μm−1.Thereducedgð2Þprobabilityimmediately
impliessub-PoissonianfluctuationsoftheFermigas
[47,48].Indeed,weobserveΔN2=N¼0.46ð5Þforthis
dataset.Fluctuation-dissipationthermometry[36,49]gives
atemperatureT¼6.1ð2ÞnK,andwithEF¼kB×39nK
areducedtemperatureofT=TF¼0.16.
WenowturntothestudyofstronglyinteractingFermi

gasesintwodimensions,inthecrossoverfromBose-
EinsteincondensationoftightlyboundmoleculestoBCS
superfluidityoflong-rangeCooperpairs.Followingstudies
inthreedimensions[1–3],awealthofexperimentalresults
hasalreadybeengatheredforthe2Dcase,fromthestudyof
thepairingenergy[54,55],theequationofstate[56–58],
radiofrequencyspectrarevealingthecontact[59],to
evidenceforcondensation[60].Herewedirectlyobserve
theequalspinanddensity-densitycorrelationfunction
fromouratom-resolvedmicroscopeimages,yielding
importantmicroscopicinformationaboutthisstrongly
correlatedFermisystem.

InFig.3(a),weshowimagesofthetotaldensityofthe
spin-balancedmixture.Fermionpairingisapparentinthe
pairwiseclusteringofatoms.Thepairsizeincreasesfrom
theBECtotheBCSlimitofthecrossover,asexpected.The
correspondingdensity-densitycorrelationfunctionasa
functionofdistancebetweenpairsisshowninFig.3(b).
Weobservebunchingatshortrangeduetopairing,whileat
distancesontheorderoftheinterparticlespacing,the
fermionicantibunchingduetotheFermiholebetweenlike
spinsdominates.Theequalspin(↑↑)correlationfunction
canbeobtainedbyremovingonespinstate(↓)after
pinningusingresonantlight(appliedatB¼843G).
Thistechniquewaspreviouslyusedinthestudyoflattice
gases[41]andhasbeenshowntopreservespinupatoms
eveniftheywerecotrappedwithadownspininthesame

FIG.3.Paircorrelationsofthe2DstronglyinteractingFermi
gasintheBEC-BCScrossover.(a)Fermigasmicroscopeimages
ofbothspinstatesfromtheBECtotheBCSregime
(η¼logðkFa2DÞ¼0.2,1.2,and4.2fromlefttoright).Thethin
ellipsesshowcloselyspacedpairsoffermions,asexpectedinthe
BEC-BCScrossover.(b)Thedensity-densitycorrelationmap
g
ð2Þ
nnðr⃗Þ,showinghowthepairsizeincreasesfromtheBECtothe
BCSregime.(c)Microscopeimageswithonespincomponent
removed.(d)The↑↑correlationmapforasinglespincompo-
nent.TheFermiholegrowstowardtheBCSlimit.

PHYSICALREVIEWLETTERS134,183402(2025)

183402-3

Yao, …, Zwierlein, PRL 2025



sound waves in a quantum gas

gas of 6Li atoms 

length 100μm 

density ~1μm-3

(Fig. 1A). We use an equal two-state mixture
of 6Li atoms with resonant interstate inter-
actions, confined to a cylindrical optical box
potential composed of three repulsive laser
beams: a hollow cylindrical beam providing
the radial confinement (radius 60 mm) and
two sheets of light serving as endcaps (length
L ~ 100 mm) (45). The numberN∼106 of atoms
per spin state yields a Fermi energy of EF ¼
ℏ2kF2=ð2mÞ ∼ h$ 10kHz . To inject sound
waves, we sinusoidally modulate the inten-
sity of one endcap beam, which drives the
gas at a well-defined frequency w, and a wide
range of spatial wave numbers, Fourier lim-
ited by the width ~4 mm of the endcap poten-
tial’s edge (55). At the given driving frequency,
the resonant sound response of the gas is
dominated by a specific wave number k ¼ w=c,
resulting in a traveling wave of sound. An in
situ absorption image is taken after an evolu-
tion time sufficiently short such that no re-
flections occur, and the resonant wave number
k is directly measured (Fig. 1B, ii to iv). By re-
peating this protocol for different drive fre-
quencies, we obtain the dispersion relation
wðkÞ for wave numbers k < 0:14kF (Fig. 1C).
It is linear within our measurement error,
corresponding to a constant speed of sound
c ¼ w=k as a function of wave number. We note
that at wavelengths approaching the inter-
particle spacing, and thus at momenta ℏk ap-
proaching the Fermi momentum ðk ∼ kFÞ,
deviations from linear sound dispersion are
expected for the unitary Fermi gas (56).
The precise measurement of the speed of

sound allows a sensitive test of scale invar-
iance of the unitary Fermi gas. In general,
the speed of isentropic sound propagation
c is directly tied to the equation of state by
the hydrodynamic relationmc2 ¼ ð@P=@nÞjS ¼
ðV 2=NÞð@2E=@V 2ÞjS. Here, E is the energy, S is
the entropy,V is the volume, andP¼ %ð@E=@V ÞjS
is the pressure of the gas. A notable property
of all nonrelativistic scale invariant systems
in three dimensions is that their total ener-
gy scales as EºV%2=3; this follows from the
scaling behavior E → E=l2 under dilation of
space by a factor l. This directly yieldsmc2 ¼
ð10=9ÞE=N , independent of temperature or
the phase of matter. In Fig. 1D, we show the
measured speed of sound as a function of
the energy per particle E=N , obtained from
an isoenergetic expansion of the gas from
the box into a harmonic trap (57). For both
superfluid and normal samples (blue and red,
respectively), the scale invariant prediction
(solid black line) captures the data well with
no free parameters. This demonstrates the
universality of the speed of sound and scale
invariance in the unitary Fermi gas in the
explored window of temperature.
The attenuation of sound is already appar-

ent in the spatial decay of the traveling waves
shown in Fig. 1. For a precision measurement

of the sound diffusivity, we now turn to the
steady-state response of the system to a con-
tinuous drive, which directly reveals the den-
sity response function c. The intensity of one
of the endcaps is modulated for a sufficiently
long time such that the density evolution has
reached a steady state. After an integer num-
ber of driving cycles, the spatial Fourier trans-
form of the density yields the out-of-phase
response of the system, or Im½cðw; kÞ' (55).
This quantity also gives the average power
absorbed by the system for a drive at fre-
quency w and spatial frequency k, and thus
directly reveals the poles of c as resonances.

The measurements are summarized in Fig. 2.
Each row of pixels in Fig. 2B shows the frac-
tional density modulation at a particular
drive frequency after integration along the
radial axis. This “sonogram” reveals discrete
normal modes, the first five of which are
shown in Fig. 2A. The spatial Fourier trans-
form, giving the out-of-phase response func-
tion, is shown in Fig. 2C. For each normal
mode in the box, it features a peak at w ¼ ck.
The sound attenuation rate can be seen to
increase with k, revealed in both a broadened
frequency response as well as a reduced peak
height.
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Fig. 1. Sound waves in a homogeneous unitary Fermi gas. (A) Fermionic 6Li atoms are trapped in a
three-dimensional cylindrical box made from green laser beams. Sound is excited by modulating the intensity
of one of the laser walls. (B) The resulting density wave is observed via an in situ absorption image, shown
as optical density (OD) for both an unperturbed (i) and modulated (ii) sample. Here, the modulation
frequency is 2p × 600 Hz. Taking their difference (iii) and integrating along the homogeneous radial trap
axis reveals (iv) a perturbation in the fractional density difference Dn=n, propagating along the axial
direction z and exhibiting a well-defined wave number k corresponding to the applied modulation
frequency w. (C) Dispersion of sound wðkÞ. The fitted slope (black line) provides the speed of sound.
The insets display sound waves observed at w = 2p × 600 Hz and w = 2p × 850 Hz. Errors in the
measured k are smaller than the point size. (D) Measurement of the universal relation between the
measured speed of sound and the energy-per-particle E=N (see text). The black solid line shows
the predicted linear dependence for any nonrelativistic scale invariant system in three dimensions;
mc2 ¼ 10

9 E=N. Data are shown for both the normal (red) and the superfluid (blue) phase.
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(Fig. 1A). We use an equal two-state mixture
of 6Li atoms with resonant interstate inter-
actions, confined to a cylindrical optical box
potential composed of three repulsive laser
beams: a hollow cylindrical beam providing
the radial confinement (radius 60 mm) and
two sheets of light serving as endcaps (length
L ~ 100 mm) (45). The numberN∼106 of atoms
per spin state yields a Fermi energy of EF ¼
ℏ2kF2=ð2mÞ ∼ h$ 10kHz . To inject sound
waves, we sinusoidally modulate the inten-
sity of one endcap beam, which drives the
gas at a well-defined frequency w, and a wide
range of spatial wave numbers, Fourier lim-
ited by the width ~4 mm of the endcap poten-
tial’s edge (55). At the given driving frequency,
the resonant sound response of the gas is
dominated by a specific wave number k ¼ w=c,
resulting in a traveling wave of sound. An in
situ absorption image is taken after an evolu-
tion time sufficiently short such that no re-
flections occur, and the resonant wave number
k is directly measured (Fig. 1B, ii to iv). By re-
peating this protocol for different drive fre-
quencies, we obtain the dispersion relation
wðkÞ for wave numbers k < 0:14kF (Fig. 1C).
It is linear within our measurement error,
corresponding to a constant speed of sound
c ¼ w=k as a function of wave number. We note
that at wavelengths approaching the inter-
particle spacing, and thus at momenta ℏk ap-
proaching the Fermi momentum ðk ∼ kFÞ,
deviations from linear sound dispersion are
expected for the unitary Fermi gas (56).
The precise measurement of the speed of

sound allows a sensitive test of scale invar-
iance of the unitary Fermi gas. In general,
the speed of isentropic sound propagation
c is directly tied to the equation of state by
the hydrodynamic relationmc2 ¼ ð@P=@nÞjS ¼
ðV 2=NÞð@2E=@V 2ÞjS. Here, E is the energy, S is
the entropy,V is the volume, andP¼ %ð@E=@V ÞjS
is the pressure of the gas. A notable property
of all nonrelativistic scale invariant systems
in three dimensions is that their total ener-
gy scales as EºV%2=3; this follows from the
scaling behavior E → E=l2 under dilation of
space by a factor l. This directly yieldsmc2 ¼
ð10=9ÞE=N , independent of temperature or
the phase of matter. In Fig. 1D, we show the
measured speed of sound as a function of
the energy per particle E=N , obtained from
an isoenergetic expansion of the gas from
the box into a harmonic trap (57). For both
superfluid and normal samples (blue and red,
respectively), the scale invariant prediction
(solid black line) captures the data well with
no free parameters. This demonstrates the
universality of the speed of sound and scale
invariance in the unitary Fermi gas in the
explored window of temperature.
The attenuation of sound is already appar-

ent in the spatial decay of the traveling waves
shown in Fig. 1. For a precision measurement

of the sound diffusivity, we now turn to the
steady-state response of the system to a con-
tinuous drive, which directly reveals the den-
sity response function c. The intensity of one
of the endcaps is modulated for a sufficiently
long time such that the density evolution has
reached a steady state. After an integer num-
ber of driving cycles, the spatial Fourier trans-
form of the density yields the out-of-phase
response of the system, or Im½cðw; kÞ' (55).
This quantity also gives the average power
absorbed by the system for a drive at fre-
quency w and spatial frequency k, and thus
directly reveals the poles of c as resonances.

The measurements are summarized in Fig. 2.
Each row of pixels in Fig. 2B shows the frac-
tional density modulation at a particular
drive frequency after integration along the
radial axis. This “sonogram” reveals discrete
normal modes, the first five of which are
shown in Fig. 2A. The spatial Fourier trans-
form, giving the out-of-phase response func-
tion, is shown in Fig. 2C. For each normal
mode in the box, it features a peak at w ¼ ck.
The sound attenuation rate can be seen to
increase with k, revealed in both a broadened
frequency response as well as a reduced peak
height.
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Fig. 1. Sound waves in a homogeneous unitary Fermi gas. (A) Fermionic 6Li atoms are trapped in a
three-dimensional cylindrical box made from green laser beams. Sound is excited by modulating the intensity
of one of the laser walls. (B) The resulting density wave is observed via an in situ absorption image, shown
as optical density (OD) for both an unperturbed (i) and modulated (ii) sample. Here, the modulation
frequency is 2p × 600 Hz. Taking their difference (iii) and integrating along the homogeneous radial trap
axis reveals (iv) a perturbation in the fractional density difference Dn=n, propagating along the axial
direction z and exhibiting a well-defined wave number k corresponding to the applied modulation
frequency w. (C) Dispersion of sound wðkÞ. The fitted slope (black line) provides the speed of sound.
The insets display sound waves observed at w = 2p × 600 Hz and w = 2p × 850 Hz. Errors in the
measured k are smaller than the point size. (D) Measurement of the universal relation between the
measured speed of sound and the energy-per-particle E=N (see text). The black solid line shows
the predicted linear dependence for any nonrelativistic scale invariant system in three dimensions;
mc2 ¼ 10

9 E=N. Data are shown for both the normal (red) and the superfluid (blue) phase.
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how quickly does sound propagate?
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(Fig. 1A). We use an equal two-state mixture
of 6Li atoms with resonant interstate inter-
actions, confined to a cylindrical optical box
potential composed of three repulsive laser
beams: a hollow cylindrical beam providing
the radial confinement (radius 60 mm) and
two sheets of light serving as endcaps (length
L ~ 100 mm) (45). The numberN∼106 of atoms
per spin state yields a Fermi energy of EF ¼
ℏ2kF2=ð2mÞ ∼ h$ 10kHz . To inject sound
waves, we sinusoidally modulate the inten-
sity of one endcap beam, which drives the
gas at a well-defined frequency w, and a wide
range of spatial wave numbers, Fourier lim-
ited by the width ~4 mm of the endcap poten-
tial’s edge (55). At the given driving frequency,
the resonant sound response of the gas is
dominated by a specific wave number k ¼ w=c,
resulting in a traveling wave of sound. An in
situ absorption image is taken after an evolu-
tion time sufficiently short such that no re-
flections occur, and the resonant wave number
k is directly measured (Fig. 1B, ii to iv). By re-
peating this protocol for different drive fre-
quencies, we obtain the dispersion relation
wðkÞ for wave numbers k < 0:14kF (Fig. 1C).
It is linear within our measurement error,
corresponding to a constant speed of sound
c ¼ w=k as a function of wave number. We note
that at wavelengths approaching the inter-
particle spacing, and thus at momenta ℏk ap-
proaching the Fermi momentum ðk ∼ kFÞ,
deviations from linear sound dispersion are
expected for the unitary Fermi gas (56).
The precise measurement of the speed of

sound allows a sensitive test of scale invar-
iance of the unitary Fermi gas. In general,
the speed of isentropic sound propagation
c is directly tied to the equation of state by
the hydrodynamic relationmc2 ¼ ð@P=@nÞjS ¼
ðV 2=NÞð@2E=@V 2ÞjS. Here, E is the energy, S is
the entropy,V is the volume, andP¼ %ð@E=@V ÞjS
is the pressure of the gas. A notable property
of all nonrelativistic scale invariant systems
in three dimensions is that their total ener-
gy scales as EºV%2=3; this follows from the
scaling behavior E → E=l2 under dilation of
space by a factor l. This directly yieldsmc2 ¼
ð10=9ÞE=N , independent of temperature or
the phase of matter. In Fig. 1D, we show the
measured speed of sound as a function of
the energy per particle E=N , obtained from
an isoenergetic expansion of the gas from
the box into a harmonic trap (57). For both
superfluid and normal samples (blue and red,
respectively), the scale invariant prediction
(solid black line) captures the data well with
no free parameters. This demonstrates the
universality of the speed of sound and scale
invariance in the unitary Fermi gas in the
explored window of temperature.
The attenuation of sound is already appar-

ent in the spatial decay of the traveling waves
shown in Fig. 1. For a precision measurement

of the sound diffusivity, we now turn to the
steady-state response of the system to a con-
tinuous drive, which directly reveals the den-
sity response function c. The intensity of one
of the endcaps is modulated for a sufficiently
long time such that the density evolution has
reached a steady state. After an integer num-
ber of driving cycles, the spatial Fourier trans-
form of the density yields the out-of-phase
response of the system, or Im½cðw; kÞ' (55).
This quantity also gives the average power
absorbed by the system for a drive at fre-
quency w and spatial frequency k, and thus
directly reveals the poles of c as resonances.

The measurements are summarized in Fig. 2.
Each row of pixels in Fig. 2B shows the frac-
tional density modulation at a particular
drive frequency after integration along the
radial axis. This “sonogram” reveals discrete
normal modes, the first five of which are
shown in Fig. 2A. The spatial Fourier trans-
form, giving the out-of-phase response func-
tion, is shown in Fig. 2C. For each normal
mode in the box, it features a peak at w ¼ ck.
The sound attenuation rate can be seen to
increase with k, revealed in both a broadened
frequency response as well as a reduced peak
height.
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Fig. 1. Sound waves in a homogeneous unitary Fermi gas. (A) Fermionic 6Li atoms are trapped in a
three-dimensional cylindrical box made from green laser beams. Sound is excited by modulating the intensity
of one of the laser walls. (B) The resulting density wave is observed via an in situ absorption image, shown
as optical density (OD) for both an unperturbed (i) and modulated (ii) sample. Here, the modulation
frequency is 2p × 600 Hz. Taking their difference (iii) and integrating along the homogeneous radial trap
axis reveals (iv) a perturbation in the fractional density difference Dn=n, propagating along the axial
direction z and exhibiting a well-defined wave number k corresponding to the applied modulation
frequency w. (C) Dispersion of sound wðkÞ. The fitted slope (black line) provides the speed of sound.
The insets display sound waves observed at w = 2p × 600 Hz and w = 2p × 850 Hz. Errors in the
measured k are smaller than the point size. (D) Measurement of the universal relation between the
measured speed of sound and the energy-per-particle E=N (see text). The black solid line shows
the predicted linear dependence for any nonrelativistic scale invariant system in three dimensions;
mc2 ¼ 10

9 E=N. Data are shown for both the normal (red) and the superfluid (blue) phase.
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serves as both an indicator of superfluidity
and a robust thermometer in the superfluid
phase (15). Despite the definitive onset of pair
condensation, we observe nomeasurable sharp
feature in the diffusivity, which remains ap-
proximately constant as the temperature is re-
duced. Our nonvanishing diffusivity therefore
contrasts previous measurements of a vanish-
ing viscosity in the low-temperature limit (24).
This behavior can qualitatively be understood

as follows. In the superfluid phase, viscosity
arises entirely from the normal component,
giving a diffusivity D ∼ ðnn=nÞlv where l ¼
1=ðnnsÞ is the mean free path of a typical ex-
citation with scattering cross section s , ve-
locityv, and densitynn (30, 64). The dependence
on the (strongly temperature-dependent) nn

therefore cancels, giving D ∼ v=ðsnÞ. At the
temperatures studied here, the normal com-
ponent is dominated by brokenpairs (15), whose
velocity and cross section are only weakly

temperature-dependent. Broken pairs are pri-
marily formed at the Fermi surface, which is
broadened by the pairing gap D. This results
in a typical velocity v ∼ ℏkF=mandcross section
s ∼ kF$2ðD=EFÞ2, where the ðD=EFÞ2 accounts
for the restriction of phase space available for
scattering arising from Pauli blocking. In the
unitary Fermi gas, D ∼ 0:4EF (41, 65), giving a
diffusivityD ∼ ℏ=m, consistent with our obser-
vations. By contrast, the pairing gap in 3He is
D ∼ 10$3EF, leading to a much larger value of
D ∼ 5000ℏ=m (60, 66).
We have measured the sound diffusivity

of the unitary Fermi gas. The diffusivity ap-

proaches a Heisenberg-limited value of ℏ=m
at low temperatures, similar to the strongly
interacting, bosonic quantum fluid 4He. In con-
trast to Fermi liquid behavior seen in weakly
interacting fermionic systems, the diffusivity
monotonically increases with increasing tem-
peratures and eventually follows the high-
temperature behaviorD ∼ ℏ=mðT=TFÞ3=2. The
measured sound diffusivity constrains the
shear viscosity and thermal conductivity of
the unitary Fermi gas. In particular, combined
with the calculated shear viscosity in (23),
we find a Prandtl number strictly lower than
unity for all explored temperatures (55). This
excludes the existence of a relativistic con-
formal gravity dual of the unitary Fermi gas
(67), because this would requirePr ¼ 1. Thanks
to the scale invariance of the unitary Fermi
gas, the results obtained here apply broadly to
other strongly interacting forms of fermionic
matter, from hydrodynamic electron flow to
nuclei and neutron matter.
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Fig. 3. Spectral response of sound and its
attenuation rate. (A) The imaginary part of the
density response function at each normal mode
wave number kj displays a well-defined peak
in frequency, whose full-width at half-maximum
yields the mode damping rate G. This is obtained
from a Lorentzian fit, shown by solid lines.
(B) Damping rate GðkÞ for gas temperatures
T=TF ¼ 0:36ð5Þ (red circles), T=TF ¼ 0:21ð3Þ
(green squares), and T=TF ¼ 0:13ð2Þ (blue
triangles). For all temperatures, GðkÞ displays a
quadratic scaling at low momenta characteristic
of diffusive damping. For our coldest samples,
as k increases, we observe a deviation from this
behavior, revealed by a crossover to linear scaling.
At all temperatures and wave numbers, our data
are well captured by the model of (59)
(solid lines), which accounts for the finite
relaxation rate of the fluid. Error bars represent
1s statistical uncertainty.

Fig. 4. Temperature dependence of the sound
diffusivity. For temperatures comparable to
the Fermi temperature, the sound diffusivity
(D, normalized by ℏ=m; blue circles) approaches
the expected high-temperature scaling of T3=2

(solid black line). As the temperature is lowered,
D decreases monotonically and attains a quantum-
limited value close to ℏ=m. Below the superfluid
transition [vertical red line, from (20)], D is
observed to be almost independent of temper-
ature and condensate fraction (nC=n, red circles
in inset). From the transition temperature
(nC=n ¼ 0) to the coldest temperatures
(nC=n ∼ 0:8), the changes in D are within the
standard error of the measurements. Theoretical
predictions for D are as follows: The dashed
orange line is from the sound attenuation length
calculated in the framework of kinetic theory
(25), and the dashed green line is from a
calculation of shear viscosity (23), assuming a
Prandtl number of 2/3. Bars denote statistical
error arising from the uncertainty in G. Addition-
ally, the dominant systematic uncertainty in D is
an error of 13% arising from the nonzero width
of the endcaps. The red shaded regions represent
the uncertainty in the superfluid transition
temperature (20).
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FIG. 4. The speed and diffusivity of second sound. (A) Speed of
second sound, normalized by the Fermi velocity, as a function of
temperature, determined by fitting the steady state response func-
tions (blue circles), and the free evolution of second sound after
resonant gradient excitation (yellow squares) or after local heating
(red diamonds). The first sound speed measured from the response
functions (gray circles) is also shown. Dot-dashed line: Nozières-
Schmitt-Rink theory [39]. (B) The superfluid fraction of the unitary
Fermi gas obtained from the speed of second sound (symbols as in
A). The blue shaded area indicates the uncertainty from the equa-
tion of state. Solid green circles: superfluid fraction obtained from
quasi-1D experiments via the MIT equation of state [21]. (C) Pair
condensate fraction measured via the rapid ramp technique to de-
tect fermion pair condensates [13]. (D) Second sound diffusivity ob-
tained from various methods (symbols as in A). The vertical gray
area indicates the critical temperature of the superfluid phase transi-
tion Tc = 0.167(13)TF [12].

With the local heating method (red diamonds) we are able
to observe the continuous evolution of c2 and ⇢S from a fi-
nite value in the superfluid phase to zero in the normal phase.
The phase transition temperature Tc obtained from this mea-
surement is consistent with the equilibrium thermodynamic

measurement [12] (the vertical gray area) and the onset of
pair condensation [7, 13], which we have measured here as
well (Fig. 4C). As is expected, there is a clear quantitative
difference between the superfluid fraction, which saturates to
unity at temperatures T . 0.1TF, and the pair condensate
fraction, which remains less than ⇠ 0.75. The superfluid den-
sity quantifies the portion of the fluid that flows without fric-
tion. Formally it measures the rigidity against phase twists,
while the condensate fraction is a measure for the number of
fermion pairs at zero center of mass momentum. In the zero-
temperature limit, the entire system is superfluid, but only a
fraction of fermion pairs are condensed, due to quantum de-
pletion and Pauli blocking [6, 7, 9].

A further dramatic signature of the superfluid transition is
seen in the temperature dependence of the second sound dif-
fusivity D2 in the superfluid state, and thermal diffusion in
the normal state, shown in Fig. 4D. We observe a striking
peak in this transport coefficient within a range �T ⇡ 0.1Tc

around the critical temperature of superfluidity, rising above
a background minimum value of about 2~/m up to nearly
three times this value. This behavior echoes that found in liq-
uid 4He [35, 41] near its superfluid transition, associated with
classical criticality. Indeed, the order parameters of both the
Fermi superfluid and liquid helium belong to the same 3D XY
universality class, dictating a behavior D2 / |Tc � T |�⌫/2

near the transition, with critical exponent ⌫ ⇡ 0.672, as ob-
served in 4He [41, 42]. Related critical behavior for the speed
of second sound c2 / (Tc�T )⌫/2 and ⇢s / (Tc�T )⌫ is qual-
itatively consistent with the steep slopes we observe close to
Tc in these quantities. For the unitary Fermi gas, the width of
the region governed by criticality is not known [43]. A quanti-
tative analysis of critical behavior, such as the measurement of
critical exponents, is prevented by the residual inhomogeneity
of the gas density, giving a variation of �(T/Tc) ⇠ 5⇥10

�3,
and by the finite size of our system. Indeed, even for the low-
est spatial mode m = 1, second sound becomes overdamped
(� & 2!) within 3% of Tc. At low temperatures T/Tc < 0.6,
D2 is again seen to rise significantly, which we attribute to the
diverging mean-free path of phonons, the only remaining con-
tribution at low temperatures once pair-breaking excitations
are frozen out.

Above the transition temperature, the heat diffusivity recov-
ers the low value on the order of ⇠ 2~/m. Here, heat dif-
fusivity is directly given by thermal conductivity : D2 =

/ncp [20, 44, 45]. We therefore find quantum limited ther-
mal diffusion, similar to prior results for spin [30, 31], mo-
mentum [32] and first sound diffusion [33] in the unitary gas.
However, the non-monotonous behavior of second sound dif-
fusivity, with steep rise at low temperatures and around Tc has
not been observed in other transport coefficients.

The second sound diffusivity D2 was independently mea-
sured via Bragg scattering [27], and a small rise in the sec-
ond sound damping rate approaching Tc was observed. How-
ever, a peak in D2 near Tc could not be resolved, presumably
since Bragg scattering as a density probe becomes insensitive
to heat propagation above Tc. Away from Tc, the values for

D =
4
3

η
mn

+
ζ

mn
+

cp − cv

cv

κ
cp

almost perfect fluidity 

 
η
s

≃ 0.5
ℏ
kB

(Fig. 1A). We use an equal two-state mixture
of 6Li atoms with resonant interstate inter-
actions, confined to a cylindrical optical box
potential composed of three repulsive laser
beams: a hollow cylindrical beam providing
the radial confinement (radius 60 mm) and
two sheets of light serving as endcaps (length
L ~ 100 mm) (45). The numberN∼106 of atoms
per spin state yields a Fermi energy of EF ¼
ℏ2kF2=ð2mÞ ∼ h$ 10kHz . To inject sound
waves, we sinusoidally modulate the inten-
sity of one endcap beam, which drives the
gas at a well-defined frequency w, and a wide
range of spatial wave numbers, Fourier lim-
ited by the width ~4 mm of the endcap poten-
tial’s edge (55). At the given driving frequency,
the resonant sound response of the gas is
dominated by a specific wave number k ¼ w=c,
resulting in a traveling wave of sound. An in
situ absorption image is taken after an evolu-
tion time sufficiently short such that no re-
flections occur, and the resonant wave number
k is directly measured (Fig. 1B, ii to iv). By re-
peating this protocol for different drive fre-
quencies, we obtain the dispersion relation
wðkÞ for wave numbers k < 0:14kF (Fig. 1C).
It is linear within our measurement error,
corresponding to a constant speed of sound
c ¼ w=k as a function of wave number. We note
that at wavelengths approaching the inter-
particle spacing, and thus at momenta ℏk ap-
proaching the Fermi momentum ðk ∼ kFÞ,
deviations from linear sound dispersion are
expected for the unitary Fermi gas (56).
The precise measurement of the speed of

sound allows a sensitive test of scale invar-
iance of the unitary Fermi gas. In general,
the speed of isentropic sound propagation
c is directly tied to the equation of state by
the hydrodynamic relationmc2 ¼ ð@P=@nÞjS ¼
ðV 2=NÞð@2E=@V 2ÞjS. Here, E is the energy, S is
the entropy,V is the volume, andP¼ %ð@E=@V ÞjS
is the pressure of the gas. A notable property
of all nonrelativistic scale invariant systems
in three dimensions is that their total ener-
gy scales as EºV%2=3; this follows from the
scaling behavior E → E=l2 under dilation of
space by a factor l. This directly yieldsmc2 ¼
ð10=9ÞE=N , independent of temperature or
the phase of matter. In Fig. 1D, we show the
measured speed of sound as a function of
the energy per particle E=N , obtained from
an isoenergetic expansion of the gas from
the box into a harmonic trap (57). For both
superfluid and normal samples (blue and red,
respectively), the scale invariant prediction
(solid black line) captures the data well with
no free parameters. This demonstrates the
universality of the speed of sound and scale
invariance in the unitary Fermi gas in the
explored window of temperature.
The attenuation of sound is already appar-

ent in the spatial decay of the traveling waves
shown in Fig. 1. For a precision measurement

of the sound diffusivity, we now turn to the
steady-state response of the system to a con-
tinuous drive, which directly reveals the den-
sity response function c. The intensity of one
of the endcaps is modulated for a sufficiently
long time such that the density evolution has
reached a steady state. After an integer num-
ber of driving cycles, the spatial Fourier trans-
form of the density yields the out-of-phase
response of the system, or Im½cðw; kÞ' (55).
This quantity also gives the average power
absorbed by the system for a drive at fre-
quency w and spatial frequency k, and thus
directly reveals the poles of c as resonances.

The measurements are summarized in Fig. 2.
Each row of pixels in Fig. 2B shows the frac-
tional density modulation at a particular
drive frequency after integration along the
radial axis. This “sonogram” reveals discrete
normal modes, the first five of which are
shown in Fig. 2A. The spatial Fourier trans-
form, giving the out-of-phase response func-
tion, is shown in Fig. 2C. For each normal
mode in the box, it features a peak at w ¼ ck.
The sound attenuation rate can be seen to
increase with k, revealed in both a broadened
frequency response as well as a reduced peak
height.
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Fig. 1. Sound waves in a homogeneous unitary Fermi gas. (A) Fermionic 6Li atoms are trapped in a
three-dimensional cylindrical box made from green laser beams. Sound is excited by modulating the intensity
of one of the laser walls. (B) The resulting density wave is observed via an in situ absorption image, shown
as optical density (OD) for both an unperturbed (i) and modulated (ii) sample. Here, the modulation
frequency is 2p × 600 Hz. Taking their difference (iii) and integrating along the homogeneous radial trap
axis reveals (iv) a perturbation in the fractional density difference Dn=n, propagating along the axial
direction z and exhibiting a well-defined wave number k corresponding to the applied modulation
frequency w. (C) Dispersion of sound wðkÞ. The fitted slope (black line) provides the speed of sound.
The insets display sound waves observed at w = 2p × 600 Hz and w = 2p × 850 Hz. Errors in the
measured k are smaller than the point size. (D) Measurement of the universal relation between the
measured speed of sound and the energy-per-particle E=N (see text). The black solid line shows
the predicted linear dependence for any nonrelativistic scale invariant system in three dimensions;
mc2 ¼ 10

9 E=N. Data are shown for both the normal (red) and the superfluid (blue) phase.
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(ns, nn) and velocities (vs, vn). In the nearly incompressible
liquid helium, the first sound is an in-phase oscillation of the
two coupled components, while the second sound is an out-
of-phase oscillation that corresponds to a pure temperature or
entropy per particle wave δs̃ ∝ vn − vs. On the other hand,
in a strongly compressible gas the two components largely
decouple. As illustrated in Fig. 1(a), in this regime the first
and second sound, respectively, are predominantly vn and vs
modes [8,19].
Generally (see the Supplemental Material [20] for details),

one can write an eigenvalue equation [3,34] for the sound
speed c in the basis of total density n ¼ nn þ ns and entropy
per particle s̃:

b2
!
J2=K2 J

J 1

" δn
n
δs̃
s̃

!
¼ c2

!
1 0

0 nn
ns

" δn
n
δs̃
s̃

!
; ð1Þ

where K2 ≡ ð1 − cV=cPÞ [35], J ≡ −ðn=s̃Þ½ð∂s̃Þ=ð∂nÞ&T;V ,
and b2 ≡ nTs̃2=ðmcVÞ, with heat capacities cV;P per volume
V, temperature T, and atom mass m. For an incompressible
gas, K → 0 and J ∼ 1 for any T < Tc, so the two modes are
oscillations of n and s̃ [8]. In the opposite, ideal-gas limit
[37], K; J → 1, the n and s̃ modes maximally hybridize;
here the eigenmodes correspond to motion of either the
normal or the superfluid component. In general, the cross-
over between the two regimes is primarily controlled by the
value of K, which can vary between zero and one.
In a weakly interacting Bose gas, where thermodynamic

quantities can be calculated from first principles, K
changes smoothly from zero to almost one as the temper-
ature is varied from zero to Tc [8]. Here we explore the

compressible regime, kBT ≫ gn, where g ¼ 4πℏ2a=m and
a is the s-wave scattering length. In Hartree–Fock mean-
field theory, K ¼ 1 − gn2=½2χðzÞnnkBT& and the sound
speeds are [20,38]

cðHFÞI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðzÞ kBT

m
þ 2

gnn
m

r
; cðHFÞII ¼

ffiffiffiffiffiffiffi
gns
m

r
; ð2Þ

where χðzÞ ¼ 5g5=2ðzÞ=½3g3=2ðzÞ&, gαðzÞ are polylogar-
ithms, and z ¼ eμ

'=ðkBTÞ is evaluated using μ' ¼ −gns below
Tc [39]. While cðHFÞII depends strongly on interactions, cðHFÞI
is to leading order set by just the temperature.
Our experiments start with a partially condensed Bose gas

of 39K atoms in the lowest hyperfine state, confined in a
cylindrical box trap [40–42] of length L ¼ 70ð2Þ μm and
radius R ¼ 9.2ð5Þ μm. To create hydrodynamic conditions
we tune a to a relatively high 480(20) a0 using the magnetic
Feshbach resonance at 402.7 G [43]. This enhances three-
body losses and heating, but within 200 ms the gas reaches a
trap-depth–limited T ¼ 97ð3Þ nK (see the Supplemental
Material [20]), at which point the atom number is
N ¼ 105ð3Þ × 103, corresponding to T=Tc¼0.77ð3Þ [44],
lmfp ¼ ð8πna2Þ−1 ¼ 0.15ð1ÞL, K ¼ 0.75ð5Þ, J ¼ 1.20ð4Þ,
and b ¼ 3.2ð2Þ mms−1.
After tuning a, we start weakly exciting the lowest sound

mode(s), with wave vector kL ¼ π=L, using a spatially
uniform force of magnitude F ¼ F0 sinðωtÞ, with
F0L=kB ¼ 7.7 nK [45], generated by an axial magnetic
gradient [46]. After a variable time t, we turn off both F and
the trap, and measure the axial 1D momentum distribution

FIG. 2. Observation of first and second sound. (a) Center-of-mass velocity v versus shaking time t at several frequencies ω=ð2πÞ
reaching quasisteady state after 200 ms. (b) jσðωÞj2, where jσðωÞj is proportional to the amplitude of the total current NvðtÞ. The two
peaks correspond to the two sound modes. We show spectra for different N at approximately constant T ¼ 97ð3Þ nK (measured at
t ¼ 200 ms). The solid lines are fits using the sum of two resonances [20]. The diamonds correspond to the data shown in (a). (c) First
(red) and second (blue) sound speeds, normalized by the Bogoliubov speed c0ðNÞ, versus T=Tc. The diamonds correspond to data
shown in (b). The solid lines are the fit-free predictions of the two-fluid model [Eq. (2)] at fixed T ¼ 97 nK and varying N, with ns
calculated using Popov mean-field theory. Near Tc mean-field theory is not valid, which we represent by fading of the lines. The dotted
lines show cI of a noninteracting gas and cII calculated by equating ns with condensate density nBEC, and calculating nBEC in the ideal-
gas approximation.
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The two-fluid model is fundamental for the description of superfluidity. In the nearly incompressible liquid
regime, it successfully describes first and second sound, corresponding, respectively, to density and entropy
waves, in both liquid helium and unitary Fermi gases. Here, we study the two sounds in the opposite regime
of a highly compressible fluid, using an ultracold 39K Bose gas in a three-dimensional box trap. We excite the
longest-wavelength mode of our homogeneous gas, and observe two distinct resonant oscillations below the
critical temperature, of which only one persists above it. In a microscopic mode-structure analysis, we find
agreement with the hydrodynamic theory, where first and second sound involve density oscillations
dominated by, respectively, thermal and condensed atoms. Varying the interaction strength, we explore the
crossover from hydrodynamic to collisionless behavior in a normal gas.

DOI: 10.1103/PhysRevLett.128.223601

One of the hallmarks of superfluidity is the existence of
two distinct sound modes with the same wavelength,
corresponding to two different sound speeds. This remark-
able property is the key prediction of the hydrodynamic two-
fluid model, which was conceptualized by Tisza [1] and
London [2], and established by Landau using quantum
hydrodynamics [3,4]. In this model, the two fluids are the
superfluid and the normal component of a system below its
critical temperature Tc. Originally inspired by superfluid
4He, Landau’s theory successfully predicts properties of this
strongly interacting, essentially incompressible fluid. More
recently, two sound modes have been observed in ultracold
atomic Fermi gases near unitarity [5–7], which are also
nearly incompressible.
Ultracold Bose gases provide a versatile platform to test

the same general framework for highly compressible super-
fluids, including the hybridization of the two modes [8]
[see Fig. 1(a)]. However, a challenge in these systems is
reaching hydrodynamic conditions for the normal fluid,
which requires the collisional mean free path lmfp to be
significantly shorter than the excitation wavelength. In
harmonically trapped gases, following first studies of colli-
sionless excitations [9–11], a pioneering study [12] revealed
the analogs of first and second sound in two collective modes
with frequencies between the hydrodynamic and collision-
less predictions. Further studies have explored the effects of
interactions on the first sound above Tc [13,14] and on the
second sound and related thermodynamics below it [15–17].
Recently, simultaneous observation of first and second sound
has been used to characterize the superfluid transition in two
dimensions (2D) [18].
Here, we realize the compressible-fluid regime of the two-

fluid model in the textbook setting of a 3D homogeneous

Bose gas, using tuneable interactions between 39K atoms to
attain hydrodynamic conditions. Below Tc, we observe both
first and second sound, with speeds in agreement with
Landau’s theory. Using momentum-resolved measurements,
which give access to the motion of the spatially overlapping
superfluid and normal components, we reveal the structure
of the two sound modes. For gases above Tc, where only the
first sound remains, we also investigate the effects of viscous
damping by reducing the interaction strength and crossing
from the hydrodynamic to the collisionless regime.
In the hydrodynamic two-fluid model, the superfluid

and normal components are characterized by their densities

(a) (b)

FIG. 1. First and second sound in dilute Bose gases. (a) Mode
structure and speeds of sound in a weakly interacting Bose gas
based on the two-fluid model. Both modes involve motion of both
fluids (vs, vn), but for kBT ≫ gns, where g is the interaction
strength and the first (second) sound is mainly an oscillation of
the normal (superfluid) component. (b) In a box-trapped gas of
39K atoms, we excite the kL ¼ π=L mode of both sounds by
sinusoidal forcing using a magnetic gradient ∇B. To attain
hydrodynamic conditions, we reduce the mean free path lmfp

below the box length L by tuning g.

PHYSICAL REVIEW LETTERS 128, 223601 (2022)

0031-9007=22=128(22)=223601(6) 223601-1 © 2022 American Physical Society

These observations demonstrate all the key features of the
two-fluid theory for a highly compressible gas. Additional
information is contained in the damping of the modes, seen
in their nonzero widths [see Fig. 2(b)]; zero hydrodynamic
damping would require the collision rate to be infinite, to
ensure instantaneous local equilibration, which is not the
case even in gases with infinite scattering length [49–51].
For the second sound we deduce an amplitude-damping

coefficient γII ¼ 2π × 2.7ð4Þ Hz, with no clear N depend-
ence. This is compatible with the Landau–Khalatnikov
hydrodynamic prediction [20,52,53] γII ≈ 2π × 2.2 Hz. It
also coincides with the Landau-damping prediction [54]
3πakLkBT=ð8ℏÞ ¼ 2π × 2.7ð2Þ Hz, but this is likely fortu-
itous since that theory assumes a collisionless normal
component. Note that in the experiment additional broad-
ening may arise due to nonlinear effects [55] and the
temporal variation of the gas density caused by losses; in
the future it would be interesting to study the damping of the
second sound further.

For the first sound, we systematically explore the cross-
over from the hydrodynamic to the collisionless regime in
gases above Tc, where hydrodynamic behavior relies
entirely on scattering. The parameter separating the two
regimes is the Knudsen number, which in our case is given
by lmfp=L.
We prepare gases at T ≈ 1.3Tc and vary lmfp=L both by

tuning a and using two different box lengths (50 μm and
70 μm). We initiate a COM velocity oscillation by shaking
at 55 Hz with F0 ¼ kB × 0.55 nK μm−1, then stop the drive
and observe decaying free oscillations [see Fig. 4(a)]. We
extract the sound speed cI and damping γI by fitting vðtÞ
with the harmonic-oscillator form v ∝ cosðωItþ ϕÞe−γIt,
with ωI ¼

!!!!!!!!!!!!!!!!!!!!!!!!
ðcIkLÞ2 − γ2I

p
. We normalize cI by its predic-

tion in the hydrodynamic limit cðHFÞI [Eq. (2)], and γI by the
angular frequency cIkL.
Theoretically, to linear order in lmfp=L, the sound speed

retains its hydrodynamic value, but the nonzero heat
conductivity κ and viscosity η result in a nonzero γI.
The predicted damping, or equivalently the diffusivity
DI ¼ 2γI=k2, is given by the Stokes–Kirchhoff relation
DSK ¼ ½4η=ð3mnÞ þ κðc−1V − c−1P Þ& [56], ignoring the bulk
viscosity ζ in our monatomic gas. In kinetic gas theory
η=ðmnÞ ∼ κ=cP ∼ lmfpcI. For a weakly interacting gas,
cI ∼

!!!!!!!!!!!!!!
kBT=m

p
, so DI ∼ ðlmfp=λTÞðℏ=mÞ, where λT is the

thermal wavelength, and one can write γI=ðcIkÞ ¼ rklmfp,
where the dimensionless r depends on the degeneracy; for
our T=Tc we get r ≈ 0.44 [20,57]. This theory, without free
parameters, is shown in Figs. 4(b) and 4(c) as the dashed
line, and it agrees with our data for L=lmfp ≳ 3.
For L=lmfp < 3 the measured cI decreases, while γI

keeps growing albeit less than predicted. Using the classical
sound equations, we calculate the effects of η and κ on cI
and γI beyond linear order (see solid lines in Figs. 4(b) and
4(c), and the Supplemental Material [20,58] for details).
The higher-order effects depend on the Prandtl number, Pr,
which measures the relative weights of momentum and
thermal diffusivities. For our system Pr ≈ 2=3 [20,57], and
the prediction is for cI to decrease, in agreement with our
data. The predicted damping is also reduced, but not
significantly.
In the collisionless regime L=lmfp → 0, where the hydro-

dynamic theory does not apply, the measured damping is
finite and the oscillations are still well described by an
exponential damping. Note that, unlike for the shape
oscillations in harmonic traps [8,14], a nonzero damping
is expected even at a ¼ 0 due to the dispersion of momen-
tum modes.
Finally, we note the distinction between cI and the phase

velocity ω=k. While cI is a material property, the effect of
viscous damping on ω=k depends on the boundary con-
ditions; for our fixed-wavelength case ω=k decreases with
damping, whereas it increases in the fixed-frequency
case [20,58].

FIG. 4. From collisionless dynamics to hydrodynamic sound in a
normal gas. (a) For scattering lengths from a ¼ 10 a0 to 1000 a0,
we measure the COM velocity v for a free oscillation after shaking
the cloud for 3 (gray circles) and 3.25 (brown circles) periods at
55 Hz. (b) Measured speed of sound cI normalized to the speed
cðHFÞI predicted for dissipationless hydrodynamics. (c) Damping
per period. In both (b) and (c), the data for L ¼ 70 μm (purple
squares) coalesce with the data taken using an additional box
geometry (L ¼ 50 μm, red circles), when plotted against the
inverse Knudsen number L=lmfp ∼ na2=kL. The dashed lines
show theoretical predictions to linear order in lmfp=L, while the
solid lines show the results of the full hydrodynamic calculation
(see text and the Supplemental Material [20]). The latter captures
the observed drop of the normalized sound speed below unity. The
relative damping also agrees with this fit-free theory at
L=lmfp > 3, while for L=lmfp → 0 it decreases but remains
nonzero (see enlargement in the inset).
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gases in recent years. Noteworthy examples include (i) dilute clouds of opposite spin bounce o!
one another and create shock waves before they eventually merge di!usively [1]; (ii) the unitary
Fermi gas exhibits extremely low friction, given by the ratio of shear viscosity to entropy density
ω/s ↭ 0.5→/kB , and thereby constitutes a nearly perfect fluid [2–4]; (iii) a quantum lower bound
on di!usivity D ↭→/m is observed for spin di!usion (i) [1, 5–9] and momentum di!usion (ii) but
also for thermal and sound di!usion [10–17]; (iv) several transport relaxation rates ε↑1 ↓ kB T /→
scale proportional to temperature in the normal state above the superfluid critical temperature
Tc , reminiscent of quantum critical scaling [9, 13, 18, 19].

Important questions include how this collective behavior arises from the microscopic Hamil-
tonian and how to derive an e!ective description at large scales. Near equilibrium, hydrodynam-
ics works well as an e!ective description in the strongly correlated regime that is dominated by
frequent collisions. However, dissipative hydrodynamics requires the equation of state and the
transport co˝cients as input, and their computation from first principles remains a challeng-
ing task. Explicit computations have shown quantum limited di!usion in many instances, but
a universal many-body mechanism for di!erent microscopic models has not yet emerged. Be-
yond hydrodynamics, the short-time behavior and the approach to equilibrium can exhibit re-
laxation phenomena on di!erent scales, for instance attractor behavior beyond a Navier–Stokes
description [20, 21].

2. Boltzmann kinetic theory

The dilute two-component Fermi gas is described by the Hamiltonian [22]

Ĥ =
∫

dd
x

∑

ϑ=↔,↗
ϖ†
ϑ(x)

(
↑→2↘2

2m
↑µϑ

)
ϖϑ(x)+ g0

∫
dd

xϖ†
↔(x)ϖ†

↗(x)ϖ↗(x)ϖ↔(x) (1)

for nonrelativistic fermions of mass m with an attractive short-range (contact) interaction. The
bare coupling strength g0 = [(4ω→2

a/m)↑1↑mω/(2ω2→2)]↑1 in three dimensions is given in terms
of the low-energy s-wave scattering length a and a large-wavenumber cuto! ω. In the following
we set →= 1.

The first approach to transport in a Fermi gas is by Boltzmann kinetic theory [23]. The single-
particle distribution function f (r,p, t ) evolves according to the Boltzmann equation

ϱ f

ϱt
+vp ·↘r f +F ·↘p f =

(
ϱ f

ϱt

)

coll
, (2)

where the left-hand side is the streaming term that includes mean-field interactions, while the
right-hand side denotes the collision integral

(
ϱ f1

ϱt

)

coll
≃↑

∫
dp2 dε

dϑ
dε

|v1 ↑v2|[ f1 f2(1↑ f1⇐ )(1↑ f2⇐ )↑ (1↑ f1)(1↑ f2) f1⇐ f2⇐ ]. (3)

The collision integral describes how scattering between two particles 1, 2 into new states 1⇐, 2⇐

leads to a loss (first term) or gain (second term) of particles in state 1. At high temperatures above
the Fermi temperature (T ⇒ TF ) the resonant cross section dϑ/dε = 4→2/|p1 ↑p2|2 is so simple
that the collision integral can be computed analytically. In the degenerate Fermi gas (T ↫ TF )
Pauli blocking of final states reduces the Fermi distribution factors in the collision integral. At
the same time, however, Pauli blocking of the intermediate virtual states between scatterings
enhances the cross section dϑ/dε [19, 24]. Near the scattering resonance, remarkably these
two competing e!ects cancel almost perfectly and the resulting collision rate ε↑1 follows nearly
classical scaling [13, 25]. The relaxation time ε is then combined with thermodynamics (in the
case of shear viscosity, the pressure p) to yield the frequency dependent transport coe˝cient,
for instance the complex shear viscosity ω(ς) = pεω/(1 ↑ iςεω) as follows from the memory
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FIG. 3. Luttinger-Ward self-energies and spectral functions at unitarity 1/a = 0 and temperature T/TF = 0.16 (βµ = 2.5). (a) Fermion
self-energy. (b) The fermion spectral function shows a band splitting around the Fermi level ε = 0 and a slight suppression of spectral weight
also near kF . (c) Pair self-energy. (d) The pair spectral function weighted by the Bose factor (Keldysh component) is positive and strongly
peaked at the threshold of the scattering continuum. Pair functions are given in units of the zero-temperature density of states ρ0 = g(0)

σ =
mkF /2π 2.

states, the substantial broadening of the fermions shifts the
threshold of the scattering continuum to lower frequency
with respect to the non-self-consistent solution. Finally, the
full pair spectrum in Fig. 3(d) shows the clear threshold of
the scattering continuum as well as an additional downward
branch that arises from the dressed fermions.

B. Particle and pair spectra in the BEC regime

In the BEC regime the fermion line spectra in Figs. 4 and
5 show many of the same qualitative features, such as upward
and downward branches, as in the unitary regime; however,
the splitting between the two branches in the fermionic spec-
trum is now much larger, approximately equal to 2|µ| > 0,
and grows with momentum, as in the strong-binding limit of
the BCS dispersion relation [27]. The pair self-energy is dom-
inated by the scattering continuum but has again significant
weight at negative frequency that arises from the downward
branch of the dressed fermions. Finally, the pair spectral func-
tion (Keldysh component) in Figs. 4(d) and 5(d) exhibits a
three-peak structure: The large bound-state peak near ω = 0
becomes broader for lower temperature, the scattering contin-
uum is separated from the bound state by a gap comparable

to the binding energy Eb, and in addition there is a downward
branch at negative frequencies.

The fermion dispersion exhibits qualitative differences be-
tween the unitary regime, where it resembles the BCS-type
dispersion relation with minimum gap at nonzero wave vector
k∗ ≈ kF , and the BEC regime, where the gap is present at all
k and reaches a minimum at k = 0. This qualitative change
between the two regimes is also apparent in the density of
states (DOS). While at unitarity the density of states is only
slightly suppressed near the Fermi level ε = 0 above Tc [cf.
Fig. 3(b)], in the BEC regime the gap is clearly developed
already in the normal state (cf. Fig. 6), but instead it becomes
narrower (in units of εF ) toward lower temperature.

V. DISCUSSION

The real-frequency solver presented in this work circum-
vents the long-standing problem of analytical continuation by
computing a self-consistent solution directly in the Keldysh
spectral representation. This gives access to the dynamical
properties of single particles, which agree with previous re-
sults where available [28]. At strong coupling they show a
substantial renormalization of spectra compared to the virial
expansion, and in particular the self-consistent algorithm
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the fermionic and bosonic self-energies are local in real
space. Hence, the coupled equations are solved efficiently
by going back and forth between real and Fourier space.

In the second step GXX′ and ΓXX′ are used as input
for the self-consistent equations (5.21)–(5.26) to calculate
the viscosity response functions T̃!, S̃!. Again, the inte-
gral equations (5.21) and (5.25) become algebraic and are
solved in Fourier space, while the other equations remain
local in real space. Note that the spatial Fourier trans-
form between radial distances r and radial wavenumber
k for the partial-wave component ! is given by

T!(k) = 4π(−i)!

∫ ∞

0
dr r2 j!(kr)T!(r) , (5.27)

T!(r) =
i!

2π2

∫ ∞

0
dk k2 j!(kr)T!(k) . (5.28)

In the third step the correlation function χ!(iωm) is com-
puted from (5.15). It is continued analytically from the
discrete imaginary Matsubara frequencies iωm to the con-
tinuous real frequencies ω via both the Padé method and
a model fit function (cf. section VII). We thus obtain the
retarded correlation function χret

! (ω) = χ′
!(ω) + iχ′′

! (ω).
Finally, the real parts of the viscosities η and ζ are ob-
tained from the correlation functions for ! = 2 and ! = 0
according to (cf. equations (3.2) and (3.3))

Re η(ω) =
Imχret

!=2(ω)

15ω
, (5.29)

Re ζ(ω) =
Imχret

!=0(ω)

9ω
, (5.30)

where the prefactor of η comes from the angular integra-
tion of the spherical harmonics [Y!=2(p̂)]2. Alternatively,
one may solve the integral equation directly for real fre-
quencies where the limit ω → 0 can be taken analytically.
In practice, this approach is useful at high temperatures,
where self-consistency no longer plays a role.

VI. BOLTZMANN-EQUATION LIMIT

In the high-temperature limit T # TF the integral
equations (5.21)–(5.26) can be solved by expanding in
powers of the fugacity

z = eβµ =
4

3
√

π
θ−3/2 + O(θ−3) . (6.1)

To leading order in z, the pair propagator and on-shell
self-energy are given by

Γret(k,Ω) = −i
4πh̄3m−3/2

√

h̄Ω+ 2µ − εk/2
+ O(z) (6.2)

Σret(p, ε = εp − µ) = i
8εF

3π

erf(
√

πp/pT )

p/pF
+ O(z) .

(6.3)

  

FIG. 3: [color online] Diagrammatic contributions to the vis-
cosity correlation function χ!(ω) at first order in the pair
fluctuations: Self-energy (S), Maki-Thompson (MT) and
Aslamazov-Larkin (AL) diagrams.

In the case of on-shell fermions with k = p1 + p2,
h̄Ω + 2µ = εp1

+ εp2
the pair propagator reduces to the

well-known scattering amplitude f(q) = i/q at infinite
scattering length of two particles in vacuum, with rel-
ative momentum q. Note that the exact leading-order
result for the on-shell fermionic self-energy contains a
non-trivial error-function dependence on the ratio of the
momentum p to its thermal value pT that was missing in
previous studies [53]. It is due to the square-root tail in
the pair propagator and gives a noticeable correction at
thermal momenta p % pT . Moreover, this form is indeed
crucial to fulfill the condition of scale invariance, as will
be discussed below.

The fermionic spectral function in the low fugacity,
high temperature limit has most of the spectral weight
concentrated in the coherent peak at ε = εp−µ. The peak
width γp = ImΣret(p, ε) vanishes like εF pF /p ∼ T−1/2

for typical momenta p ≈ pT , consistent with the assump-
tion for the temperature dependence of the relaxation
time introduced by Bruun and Smith [24]. This implies,
in particular, that the fermionic quasiparticles become
well-defined and thus a Boltzmann equation description
is valid in the regime θ # 1.

From a numerical, iterative solution of the integral
equations (5.21)–(5.26) in the high-temperature limit we
obtain η/(h̄n) = 2.80(1) (T/TF )3/2. This fixes the con-
stant in the asymptotic behavior α(θ) = const θ3/2 at
large values of θ of the universal function introduced in
(4.1). Within the error bars, the numerical value agrees
with that obtained from a variational solution of the full
Boltzmann equation, using higher Sonine polynomials
[24, appendix]. The prediction of a simple power-law de-
pendence of the shear viscosity η(T ) ∼ T 3/2 has recently
been verified experimentally in a temperature range be-
tween θ % 1.5 and θ % 7 by measuring the expansion
dynamics of a unitary gas released from an optical trap
[54]. Very good agreement has been found also with the
expected prefactor.

Remarkably, the solution of the transport integral
equation at high temperatures and small frequencies can
also be obtained by a completely analytical approach.
In fact, in the low fugacity limit, one can terminate the
iterative procedure after the first iteration step (correla-
tion function to first order in the pair propagator) and
resum via a memory function approach, a method that
was developed in the context of electrical conductivi-
ties by Götze and Wölfle [55]. The first-order correla-

 η(ω) = (resummed to 
 infinite order)

Enss, Haussmann & Zwerger, Annals Physics 2011 
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function formalism [13, 26]. The Boltzmann prediction for sound attenuation is found to agree
with experimental data [11] for the degenerate unitary gas down to T → 2Tc , which constitutes
a remarkable success of kinetic theory in the strongly correlated regime. While finite-range
corrections to transport are subleading for s-wave interactions, they can give rise to prominent
e!ects such as quasi-bound states for p-wave interactions [27].

In the collision integral (3) the two-particle distribution function has been factorized into the
product of two separate distribution functions for particles 1 and 2. This factorization is based
on the assumption of molecular chaos and does not capture the strong local pair correlations
g

(2)
↑↓ (r ) ↔ C /r

2 +O (1/r ) at short distance, where C denotes the expectation value of the contact
operator (see below). In the following we will see how these short-range correlations a!ect
transport.

3. Kubo formula and bulk viscosity

A more general approach to transport, which makes no quasiparticle assumption, is derived in
linear response theory. The transport coe˝cients are related by Kubo formulas to equilibrium
expectation values; for instance the frequency dependent shear viscosity is given in terms of the
transverse stress response function [4, 28],

ω(ε) =
∫

dd
x dt

ei(ε+i0)t ↗1
i(ε+ i0)

iϑ(t )↘[ω̂x y (x, t ),ω̂x y (0,0)]≃. (4)

The microscopic expression for the shear stress operator is ω̂x y (x) = (1/2m)
∑
ϖ[ϱxς̂

†
ϖ(x)ϱy ς̂ϖ(x)+

ϱy ς̂
†
ϖ(x)ϱxς̂ϖ(x)] ↗

∫
d3

r (rx ry /r ) ((ϱv(r ))/ϱr )ς̂†
↑(x + r/2)ς̂†

↓(x ↗ r/2)ς̂↓(x ↗ r/2)ς̂↑(x + r/2) for
short-range potential v(r ) [29]. It has two contributions: the first, quadratic term gives the main
contribution for gases, while the second, quartic term dominates in fluids [4]. Furthermore,
the bulk viscosity ϕ characterizes friction during isotropic expansion and contributes to sound
attenuation. In constrast to the shear viscosity, however, the bulk viscosity is constrained by
symmetry and vanishes identically for a scale invariant gas such as the ideal gas but also for the
unitary Fermi gas [30, 31]. It can be computed by the Kubo formula [32]

ϕ(ε) =
∫

dd
x dt

ei(ε+i0)t ↗1
i(ε+ i0)

iϑ(t )↘[δp̂(x, t ),δp̂(0,0)]≃ (5)

in terms of the operator δp̂ that measures pressure fluctuations. The pressure p = ↗ϱE/ϱV

is obtained by performing a scale transformation, and specifically for the dilute gas in three
dimensions one obtains the pressure operator

p̂ = 2
3
Ĥ + Ĉ

12ωma
, (6)

where Ĥ denotes the Hamiltonian density and a the scattering length. The last term involves on
the contact operator

Ĉ = m
2

g
2
0 n̂↑(x)n̂↓(x) = ε̂†(x)ε̂(x), (7)

which is the continuum version of the doublon or pair density regularized by the bare coupling
g0 ↔ ↗r0 such that its zero-range limit r0 ⇐ 0 is well defined [33]. Equivalently, the contact
operator can be expressed in terms of the local pair operator ε̂= mg0ς̂↓ς̂↑, such that the contact
measures the density of local pairs. At the scattering resonance 1/a = 0 the scale invariant
pressure relation p = (2/3)E is recovered, while the contact term quantifies the deviation from
scale invariance due to pairing fluctuations. The pressure fluctuations are now given as the
component of the pressure orthogonal to density and energy fluctuations [32],

δp̂ = p̂ ↗ (ϱp/ϱn)E n̂ ↗ (ϱp/ϱE )nĤ . (8)
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Measures of Perfection

Viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx

∂y

Dimensionless measure of shear stress: Reynolds number

Re =
n

η
× mvr

fluid flow
property property

• [η/n] = !

• Relativistic systems Re =
s

η
× τT



bulk viscosity probes scaling violation

Kubo formula: pressure correlation function cf. Fujii & Nishida PRA 2020 
 

dilute quantum gas: pressure fluctuations 

                (  function ) 

bulk viscosity probes contact correlation (local pair fluctuations): 

  

 
Enss PRL 2019, Nishida AoP 2019, Hofmann PRA 2020; cf. Fujii & Nishida PRA 2018

δ ̂p =
2
3

Ĥ +
Ĉ

12πma
− ( ∂p

∂E )nĤ − (∂p
∂n )E ̂n β

∂Hint
∂ ln |a |

ζ(ω > 0) = ∫ dx dt
eiωt − 1

iω
iθ(t)⟨[ Ĉ(x, t)

12πma
,

Ĉ(0,0)
12πma ]⟩ ∼ ⟨[Δ†Δ(x, t), Δ†Δ(0,0)]⟩
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function formalism [13, 26]. The Boltzmann prediction for sound attenuation is found to agree
with experimental data [11] for the degenerate unitary gas down to T → 2Tc , which constitutes
a remarkable success of kinetic theory in the strongly correlated regime. While finite-range
corrections to transport are subleading for s-wave interactions, they can give rise to prominent
e!ects such as quasi-bound states for p-wave interactions [27].

In the collision integral (3) the two-particle distribution function has been factorized into the
product of two separate distribution functions for particles 1 and 2. This factorization is based
on the assumption of molecular chaos and does not capture the strong local pair correlations
g

(2)
↑↓ (r ) ↔ C /r

2 +O (1/r ) at short distance, where C denotes the expectation value of the contact
operator (see below). In the following we will see how these short-range correlations a!ect
transport.

3. Kubo formula and bulk viscosity

A more general approach to transport, which makes no quasiparticle assumption, is derived in
linear response theory. The transport coe˝cients are related by Kubo formulas to equilibrium
expectation values; for instance the frequency dependent shear viscosity is given in terms of the
transverse stress response function [4, 28],

ω(ε) =
∫

dd
x dt

ei(ε+i0)t ↗1
i(ε+ i0)

iϑ(t )↘[ω̂x y (x, t ),ω̂x y (0,0)]≃. (4)

The microscopic expression for the shear stress operator is ω̂x y (x) = (1/2m)
∑
ϖ[ϱxς̂

†
ϖ(x)ϱy ς̂ϖ(x)+

ϱy ς̂
†
ϖ(x)ϱxς̂ϖ(x)] ↗

∫
d3

r (rx ry /r ) ((ϱv(r ))/ϱr )ς̂†
↑(x + r/2)ς̂†

↓(x ↗ r/2)ς̂↓(x ↗ r/2)ς̂↑(x + r/2) for
short-range potential v(r ) [29]. It has two contributions: the first, quadratic term gives the main
contribution for gases, while the second, quartic term dominates in fluids [4]. Furthermore,
the bulk viscosity ϕ characterizes friction during isotropic expansion and contributes to sound
attenuation. In constrast to the shear viscosity, however, the bulk viscosity is constrained by
symmetry and vanishes identically for a scale invariant gas such as the ideal gas but also for the
unitary Fermi gas [30, 31]. It can be computed by the Kubo formula [32]

ϕ(ε) =
∫

dd
x dt

ei(ε+i0)t ↗1
i(ε+ i0)

iϑ(t )↘[δp̂(x, t ),δp̂(0,0)]≃ (5)

in terms of the operator δp̂ that measures pressure fluctuations. The pressure p = ↗ϱE/ϱV

is obtained by performing a scale transformation, and specifically for the dilute gas in three
dimensions one obtains the pressure operator

p̂ = 2
3
Ĥ + Ĉ

12ωma
, (6)

where Ĥ denotes the Hamiltonian density and a the scattering length. The last term involves on
the contact operator

Ĉ = m
2

g
2
0 n̂↑(x)n̂↓(x) = ε̂†(x)ε̂(x), (7)

which is the continuum version of the doublon or pair density regularized by the bare coupling
g0 ↔ ↗r0 such that its zero-range limit r0 ⇐ 0 is well defined [33]. Equivalently, the contact
operator can be expressed in terms of the local pair operator ε̂= mg0ς̂↓ς̂↑, such that the contact
measures the density of local pairs. At the scattering resonance 1/a = 0 the scale invariant
pressure relation p = (2/3)E is recovered, while the contact term quantifies the deviation from
scale invariance due to pairing fluctuations. The pressure fluctuations are now given as the
component of the pressure orthogonal to density and energy fluctuations [32],

δp̂ = p̂ ↗ (ϱp/ϱn)E n̂ ↗ (ϱp/ϱE )nĤ . (8)
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dynamical bulk viscosity (Luttinger-Ward theory)

transport peak (Drude form) 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quantum degenerate regime (Luttinger-Ward theory)
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novel transport measurement technique
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Fujii & Nishida PRA 2018

vary cloud size vary scattering length a



measuring bulk viscosity

response of contact to change of scattering length: 
 
      

                                                                         microscopic derivation of MIS! 

∂⟨C(t)⟩
∂a−1(t′￼)

≃ iθ(t − t′￼) ⟨[C(t), C(t′￼)]⟩ lin.resp.∼ a2ζ e−(t−t′￼)/τζ θ(t − t′￼)

new, fast measurement of contact: 
Xie, …, Enss, Julienne, Yu, Thywissen, 2506.13707

δC(t) = ∫
t

−∞
dt′￼

∂C(t)
∂a−1(t′￼)

δa−1(t′￼)



Outlook

• perfect fluidity at strong scattering: 
slowest dissipation/diffusion consistent with QM 

• cold atom experiment can probe local dissipation, 
hydrodynamics beyond Navier-Stokes in real time 

• theory: quantum transport of correlated particles ,  
kinetic theory for fermions + pairs  Fujii & Enss, Ann. Phys. 2023 
slow modes (symmetries, critical fluct.) 

• dynamical response in real time, far from equilibrium

τ−1 ∼ T

a2D

d

a2D

d

PARTICLE AND PAIR SPECTRA FOR STRONGLY … PHYSICAL REVIEW A 109, 023325 (2024)

(a) (b)

(c) (d)

FIG. 5. Luttinger-Ward self-energies and spectra in the BEC regime 1/kF a = 1 at T/TF = 0.26 (βµ = −3.5) slightly above Tc. (a) The
fermion self-energy "σ (p, ε) shows two branches and fermions scatter most strongly on the lower branch. (b) The fermion spectral function
Aσ (p, ε) shows a clear gap between the two branches around the Fermi level ε = 0 and has most spectral weight concentrated on the
upper branch. (c) The pair self-energy "p(q, ω) shows the two-particle scattering continuum. (d) The weighted pair spectral function
Ap(q,ω) coth(ω/2T ) = iGK

p (the pair Keldysh function) shows a strong bound-state branch separated by the binding energy Eb = 2EF from
the pair continuum, as well as a weak branch bending down.

and spin diffusivity [42,43]. As the frequency-dependent
transport coefficients depend on the slope in frequency
of a bosonic spectral function, the real-frequency solver

D
O
S

FIG. 6. Fermionic density of states gσ (ε) vs frequency ε on the
BEC side βEb = 8 (1/kF a " 1). The DOS is strongly suppressed in
a region of width 2|µ| around the chemical potential. The DOS is
given in units of the ideal Fermi gas DOS at zero temperature, ρ0 =
g(0)

σ = mkF /2π 2.

should yield improved self-consistent predictions at both
zero and finite frequency. Finally, the Keldysh formulation
can describe genuine out-of-equilibrium dynamics where the
fluctuation-dissipation relation (10) is no longer satisfied [20],
and it will be interesting to find self-consistent solutions for
the transient evolution after a quantum quench.

Note added. Recently, two other studies appeared which
compute spectral functions in real frequency using Fourier
transforms [26] and spectral representations [44].
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(dashed black line). In the strongly interacting region
near Tc, however, the fermions cease to be well-defined
quasiparticles [17,18] and the Boltzmann theory is not
applicable. Therefore, we employ the strong coupling
Luttinger-Ward theory to compute spin transport. The
Luttinger-Ward (or 2PI) formalism [19,20] is based on
the self-consistent T matrix for repeated particle-particle
scattering and becomes exact at high temperatures. In the
most interesting regime near Tc and unitarity there is no
small parameter to estimate its accuracy. Instead, a com-
parison with experiment shows that it accurately describes
both the normal and the superfluid phase of the BEC-BCS
crossover problem [21]: the values for Tc=TF ¼ 0:16ð1Þ
and the Bertsch parameter ! ¼ 0:36ð1Þ agree within error
bounds with precision experimental [13] and diagrammatic
Monte Carlo [22] results. We have devised a framework
which includes all diagrams needed to exactly fulfill the
conservation laws including scale invariance [9] and the
Tan relations [11].

The Luttinger-Ward theory has recently been extended to
compute transport coefficients in linear response using the
Kubo formula: this gives access to the frequency-dependent
shear viscosity of the unitary Fermi gas, which was found
to satisfy the exact viscosity sum rule [9,23].We now extend
this work to the case of spin transport in order to explain the
recent experiment by Sommer et al. [4], and we proceed as
follows: first we compute the frequency-dependent spin
conductivity "sð!Þ of the unitary Fermi gas. The dc value
"s ¼ "sð! ¼ 0Þ determines the spin drag rate !sd ¼
n=m"s at density n, which is the rate of momentum transfer
between atoms of opposite spin. We then compute the spin
susceptibility #s ¼ @ðn" $ n#Þ=@ð$" $$#Þ which charac-
terizes the magnetic properties of the system [14,24].
Finally, we determine the spin diffusivity shown in Fig. 1
by the Einstein relation Ds ¼ "s=#s.

The strongly interacting two-component Fermi gas is
described by the grand canonical Hamiltonian

H ¼
X

k;"

ð"k $$"Þcyk"ck" þ g0
V

X

k;k0;q

cyk"c
y
k0#ck0$q#ckþq"

where "k ¼ k2=2m (@ & 1) is the free particle dispersion
and$" the chemical potential for the" ¼" , # components.
The s-wave contact interaction g0 acts only between differ-
ent fermion species at low temperatures. The bare interac-
tion is singular in the ultraviolet [2] and needs to be
regularized; the renormalized coupling g ¼ 4%@2a=m
determines the s-wave scattering length a.
The transport coefficients are obtained from the micro-

scopic model via the retarded number-current or spin-
current correlation function

#jn=jsðq; !Þ ¼ i@ Z 1

0
dt

Z
d3xeið!t$q'xÞ

( h½ðjz" * jz# Þðx; tÞ; ðjz" * jz# Þð0; 0Þ+i: (1)

The spin selective current operators in Fourier representa-
tion are given by j"ðqÞ ¼ V$1P

kð@k=mÞcyk$q=2;"ckþq=2;".

The correlation function determines the conductivity

"n=sð!Þ ¼ lim
q!0

Im#jn=jsðq; !Þ
!

(2)

which measures the relaxation of a global number or spin
current at frequency !. The total response integrated over
all frequencies is proportional to the particle density by the
number or spin f-sum rule [25,26]

Z 1

$1

d!

%
"n=sð!Þ ¼ n

m
: (3)

For a momentum-conserving interaction the particle cur-
rent cannot decay and "nð!Þ ¼ %n&ð!Þ=m. In contrast,
scattering transfers momentum between " and # particles so
that the spin current relaxes and "sð!Þ has a nontrivial
structure.
We compute the current correlation function (1) using

field theoretical methods and Feynman diagrams in the
Matsubara formalism [25]. The current operator jz ¼ jz" *
jz# implies a current response vertex J""0 ¼ J0""0 þ JMT

""0 þ
JAL""0 in the Feynman diagrams which splits into three con-
tributions [9,20] (","0 are the spin indices of incoming and
outgoing fermion lines). The first term is the bare number
(spin) current vertex J0""0nðpÞ ¼ pz'

0
""0 [J0""0sðpÞ ¼

pz'
3
""0] with the ‘ ¼ 1 partial wave component of the

momentum p and Pauli matrices 'j. The other two terms
are current vertex corrections which are required to fulfill
the conservation laws. The Maki-Thompson (MT) contri-
bution describes direct scattering between quasiparticles
while the Aslamazov-Larkin (AL) term captures the in-
duced current of fermion pairs, or molecules (for details
see Ref. [9]). For a mass current both " and # fermions move
in the same direction and induce a current of pairs, leading
to a sizeable AL term. In contrast, for a spin current " and #
atoms move in opposite directions [4] and no pair current is

m
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− h

T/TF

su
pe

rf
lu

id

Sommer et al. (2011)
Luttinger-Ward theory

kinetic theory

 1

 10

Tc 0.1  1  10

FIG. 1 (color online). Spin diffusivity Ds vs reduced tempera-
ture T=TF (solid red line) in the normal phase, T > Tc ’ 0:16TF.
The experimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the effect of
the trapping potential. The dashed black line is the result from
kinetic theory, Ds ¼ 1:1ðT=TFÞ3=2@=m.
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boundaries of hydrodynamics

does fluid dynamics work for very small systems? 
5 ⬆ + 5 ⬇ fermions in 2D (Jochim group, Heidelberg) 
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new perspectives article: 2509.05049 Brandstetter et al., Nature Phys. 2025
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FIG. 1. Hydrodynamic expansion. We prepare 5+5 strongly interacting spin up and down atoms (black/white dots) in
the ground state of an elliptically shaped trap. We measure their positions (a-c) or momenta (e-g). The two dimensional
histograms show the density distribution, obtained from averaging over many experimental realizations of the same quantum
state. The initial system has an elliptic density distribution in real space and a round Fermi surface in momentum space (see
a and e). We study the expansion after switching off the trap (b-c, f-g) and observe the inversion of the inital aspect ratio in
real space and the build up of momentum anisotropy. The dashed black circle in e-g shows the Fermi momentum calculated
from the real space peak density. d Root mean square of the atom positions �rx, �ry as a function of tint. The expectation
assuming ideal hydrodynamic evolution of the corresponding many-body system with the same initial density is shown as a
reference (red lines). h Root mean square value �px, �py of the momenta of the atoms as a function of tint. The triangles show
the Fermi momentum k̃F, rescaled to the geometric mean of �px, �py at initial time tint = 0 µs. The connecting lines serve as a
guide to the eye. In the inset, the difference of �p2x and �p2y shows the build up of momentum anisotropy during the interacting
expansion. The ideal hydrodynamic expansion (red line) and the asymptotic long term limit derived from the real space data
(red dashed line) provide a reference. The error bars of the long term limit are shown by the shaded region. All error bars
show the 95% confidence interval, determined using a bootstrapping technique.

Methods). We prepare a discrete many-body quantum
state, composed of N spin up and N spin down atoms
(denoted N+N) in the ground state, utilizing a technique
developed in previous works [22, 23].

The typical length scales of our system are on the or-
der of the harmonic oscillator length, which is given by
lx,y
HO =

p
~/m!x,y ⇡ (1.1, 0.7)µm, where m is the mass of

a 6Li atom. We estimate the typical interparticle spac-
ing from the peak density n0 = (k0F)

2/(4⇡) of the non-
interacting system, with the Fermi wave vector defined
as k0

F =
p
2mEF/~. Here EF is the Fermi energy of the

non-interacting system, determined by the highest filled
energy level of the OT (see Methods). The mean inter-
particle spacing is 1/

p
n0 ⇡ 1.3 µm. These length scales

are estimated for the non-interacting system, but are on
the same order of magnitude in the interacting case. The
unitary limit constrains the minimum mean free path to
be on the order of the interparticle spacing.

The strength of the attractive interactions can be
tuned using the magnetic Feshbach resonance [24]. It

is quantified by the dimensionless interaction parameter
ln(k0

Fa2D), that relates the initial interparticle spacing
(proportional to the inverse of the Fermi wave vector k0

F)
to the 2D scattering length a2D [25, 26].

After preparing the system, we remove the horizontal
confinement, while keeping the vertical 2D confinement.
We let the atoms expand for an interacting expansion
time tint. At tint, we instantaneously switch off inter-
actions by a two-photon Raman transition [27]. Subse-
quently, we apply matterwave magnification techniques,
to image either the momenta [27] or the positions [28] of
the atoms at tint. For the longest interacting expansion
time (tint = 9ms), the system has expanded enough for
the atoms to be resolvable without matterwave magnifi-
cation.

We make use of a fluorescence imaging scheme to ob-
tain single atom and spin resolved images [29]. Each im-
age represents a projection of the wave function on N+N
positions or momenta. We obtain the 2D density from
approximately 1000 images for each setting (see Meth-
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Figure 12: Frontiers of hydrodynamic (in)applicability as a function of the system size, closeness
to equilibrium, and interaction strength. The RRTF report summarizes the latest developments in
experimental and theoretical research on the quantitative determination of the applicability region
of hydrodynamics and other e!ective theories.

hydrodynamic and macroscopic descriptions. They should help answer questions such as how
many atoms are needed to form a condensate or whether one can test for superfluidity in a small
system by detecting angular momentum upon rotation (Section 2.3.1). One potential way is to
incorporate higher-order gradient corrections that are expected to play a sizable role in small
systems (Sections 2.3.2 and 2.3.4). On the experimental side, continued exploration of few-atom
gases, including mixed-species Fermi gases (Section 2.2.4), will be crucial. Composite degrees
of freedom provide an extension of the cold-atom toolbox that could help model aspects of the
QGP such as specific mass ratios and cluster bound states and access new, subdi!usive transport
regimes (Section 2.2.5). In high-energy physics, legacy data from ep and e + e collisions have
been re-analyzed to place bounds on the requirements for the emergence of collective behavior
(Section 3.2.1). Experiments using light-ion species in both collider and fixed-target modes at the
LHC o!er new platforms for testing models of collectivity with varying system sizes and geometries
(Section 3.2.2). In such cases, corrections associated with system size and lifetime become especially
significant, and must be carefully accounted for in hydrodynamic modeling (Section 3.3.1).

4.2 Equilibrium frontier: short time scales and hydrodynamization

Hydrodynamics is conventionally formulated to describe the long-time, low-frequency behavior of a
system, capturing only modes near equilibrium. In contrast, nuclear collisions produce QCD matter
that is both highly excited and extremely short-lived, existing for only about 100 yoctoseconds (or
10→22 s for the largest systems). It is therefore a nontrivial and striking feature of QCD that
such systems appear to reach local thermal equilibrium quickly enough for a fluid description to
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solving the Luttinger-Ward equations in real frequency

imaginary frequency: continue analytically (=> E. Gull, ERG 2022) 
directly in real frequency (Keldysh in equilibrium):
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The strongly attractive Fermi gas in the BCS-BEC crossover is efficiently described in terms of coupled
fermions and fermion pairs, or molecules. We compute the spectral functions of both fermions and pairs in the
normal state near the superfluid transition using a Keldysh formulation in real frequency. The mutual influence
between fermions and pairs is captured by solving the self-consistent Luttinger-Ward equations: These include
both the damping of fermions by scattering off dressed pairs and the decay of pair states by dissociation into
two dressed fermions. The pair spectra encode contact correlations between fermions and form the basis for
computing dynamical response functions and transport properties.
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I. INTRODUCTION

Strongly correlated Fermi gases are ubiquitous in nature
and appear in very diverse physical realizations ranging from
ultracold atomic gases [1,2] to dilute nuclear matter [3]. In
their theoretical description, however, universality provides a
framework to reveal the common features of these systems.
Recent experimental advances in atomic spectroscopy have
brought the dynamical properties and even transport within
reach of high-precision measurements [4].

In dilute yet strongly attractive Fermi gases, pair fluctua-
tions play a dominant role throughout the BCS-BEC crossover
[5]. Not only do they describe the condensation of fermion
pairs in the low-temperature superfluid state, but virtual pair
fluctuations also strongly renormalize the properties of the
normal state above the superfluid transition temperature Tc

[6–8]. Pair fluctuations alone, however, are not sufficient,
and density (particle-hole) fluctuations lead to a substantial
reduction of Tc at weak coupling [9]. Also at resonant scat-
tering in the unitary regime [1], the value of Tc ! 0.16TF

from experiment [10] and quantum Monte Carlo [11] is
very well reproduced in field-theoretic approaches based on
the self-consistent T -matrix approximation or Luttinger-Ward
theory [12–15] (for related self-consistent GW approaches
see [16]). This approach includes particle-hole fluctuations in
the fermion and pair self-energies, which are computed self-
consistently at one-loop order with fully dressed propagator
lines. Diagrammatic Monte Carlo results confirm that further
multiloop contributions modify the density equation of state
by less than 10% even at Tc [17].

In these approaches, the coupled self-consistent equa-
tions for fermions and pairs have been solved numerically
in imaginary (Matsubara) frequency or time. This is com-
putationally convenient because convergence properties are
well understood. However, real-frequency spectra can only
be obtained by analytical continuation, which is mathe-
matically ill-defined and requires exponential precision in
imaginary frequency to obtain reliable real-frequency data.
Exponential precision, however, is not achievable in numer-
ical self-consistent solutions. We therefore propose to solve

the self-consistent equations directly in real frequency, which
circumvents analytical continuation. We present an algorithm
that computes fermion spectra and self-consistent pair spec-
tra reliably even with standard numerical precision. As we
explain below, the main idea is to represent the fermion and
pair self-energies as slowly varying functions interpolated on
a real-frequency and momentum grid and then use analytical
integration between grid points to obtain highly accurate spec-
tra that capture also sharp spectral features much narrower
than the grid spacing.

This paper is structured as follows. In Sec. II we intro-
duce the Keldysh formulation of the strongly correlated Fermi
gas in equilibrium. The self-consistent solution in real fre-
quency is developed in Sec. III. In Sec. IV we present the
resulting fermion and pair spectra for the strongly correlated
three-dimensional Fermi gas in the BCS-BEC crossover. We
conclude in Sec. V and discuss how these results can form
the basis for future self-consistent computations of dynamical
response functions and transport directly in real frequency.

II. FERMI GAS MODEL IN THE KELDYSH
FORMULATION

A. Attractive Fermi gas

We consider a two-component Fermi gas in three dimen-
sions, which is described by the Hamiltonian

H =
∑

σ

∫
dr ψ†

σ (r)
(

− h̄2∇2

2m
− µσ

)
ψσ (r)

+ g0

∫
dr ψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r). (1)

Here ψσ (r) denotes the field operator for a fermion of species
σ =↑,↓ and mass m at chemical potential µσ . The second
term represents an attractive contact interaction between un-
like fermions of bare strength g0 < 0. The contact interaction
needs to be regularized at short distance in two and higher
dimensions, and in three dimensions it is related to the low-
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FIG. 1. Feynman diagrams for the fermionic and pair self-energies in Keldysh formulation, with GR (retarded), GA (advanced), and GK

(Keldysh) propagators. All propagator lines are bold and represent fully dressed fermions (single) and pairs (double lines).

energy s-wave scattering length a via

1
g0

= m

4π h̄2a
− m"

2π2h̄2 (2)

in the presence of a large-wave-number cutoff ". The at-
tractive interaction tends to form pairs of fermions, and for
positive scattering length a > 0 there exists a bound state of
two fermions at a binding energy of

Eb = h̄2

ma2
> 0. (3)

Even when the attraction is too weak to form a bound state at
negative scattering length a < 0, virtual pair fluctuations play
an important role. It is therefore natural to introduce a local
pair field

#(r) = g0ψ↓(r)ψ↑(r), #q = g0

∫

k
ψq−k↓ψk↑ (4)

in real or momentum space, respectively [the shorthand
notation

∫
k ≡

∫
dk/(2π )d ]. After a Hubbard-Stratonovich

transformation, one obtains the Fermi-Bose action in terms
of both fermion and pair degrees of freedom [7,18,19],

S =
∫

dr
∫ β

0
dτ

[
∑

σ

ψ∗
σ

(
∂τ − ∇2

2m
− µσ

)
ψσ

− 1
g0

|#|2 − ψ∗
↑ψ∗

↓# − #∗ψ↓ψ↑

]

, (5)

where τ denotes imaginary time (we use units where h̄ = 1
from now on). Alternatively, one can start from a two-channel
Hamiltonian for fermions and molecules in the broad reso-
nance limit [1].

B. Keldysh technique in equilibrium

The model of coupled fermions and pairs leads to a dress-
ing of both, which is reflected in their renormalized spectra.
We will use the Keldysh formulation [20] in equilibrium in
order to compute these spectra in real frequency. Although
in principle the equilibrium spectra could be obtained from
Matsubara Green’s functions [21] by analytical continuation,
this procedure is mathematically ill-defined and error prone
for noisy numerical data. By using the Keldysh formulation,
we avoid the need for analytical continuation and obtain reli-
able spectra directly in real frequency.

The bare retarded fermion Green’s function of spin com-
ponent σ ,

GR
σ0(p, ε) = 1

ε + i0 + µσ − εp
, (6)

encodes noninteracting particles with dispersion relation
εp = p2/2m and a bare spectral function Aσ0(p, ε) =
−(1/π )ImGR

σ0(p, ε) = δ(ε + µσ − εp). In the presence of
interactions the bare Green’s function turns into the fully
dressed Green’s function with self-energy +R

σ (p, ε) via the
Dyson equation

GR
σ (p, ε) = 1

ε + i0 + µσ − εp − +R
σ (p, ε)

= −i
∫ ∞

0
dt ei(ε+i0)t 〈{ψpσ (t ),ψ†

pσ (0)}〉. (7)

The bosonic Green’s function that represents fermion pairs is
analogously given by (with subscript p for pairs)

GR
p (q,ω) = 1

g−1
0 − +R

p (q,ω)

= −i
∫ ∞

0
dt ei(ω+i0)t 〈[#q(t ),#†

q(0)]〉, (8)

with bare coupling g0 and bosonic self-energy +R
p (q,ω).

In our model fermions can scatter off real or virtual pairs
and acquire a fermionic self-energy that is given by [20,22]
(here σ̄ = −σ denotes the other fermion species)

+R
σ (p, ε) = − i

2

∫

p′,ε′

[
GR

p (p + p′, ε + ε′)GK
σ̄ (p′, ε′)

+ GK
p (p + p′, ε + ε′)GA

σ̄ (p′, ε′)
]

(9)

(see Fig. 1). While the retarded and advanced Green’s func-
tions GR(p, ε) = [GA(p, ε)]∗ represent only the spectrum, the
Keldysh components GK (p, ε) represent both the spectrum
and the occupation number with the statistical factor in equi-
librium,

GK
σ (p, ε) = −i tanh(βε/2)Aσ (p, ε), (10)

GK
p (q,ω) = −i coth(βω/2)Ap(q,ω), (11)

with full spectral functions Aσ (p, ε) = −(1/π )ImGR
σ (p, ε)

and Ap(q,ω) = −(1/π )ImGR
p (q,ω). The occupation factors
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, (5)

where τ denotes imaginary time (we use units where h̄ = 1
from now on). Alternatively, one can start from a two-channel
Hamiltonian for fermions and molecules in the broad reso-
nance limit [1].

B. Keldysh technique in equilibrium

The model of coupled fermions and pairs leads to a dress-
ing of both, which is reflected in their renormalized spectra.
We will use the Keldysh formulation [20] in equilibrium in
order to compute these spectra in real frequency. Although
in principle the equilibrium spectra could be obtained from
Matsubara Green’s functions [21] by analytical continuation,
this procedure is mathematically ill-defined and error prone
for noisy numerical data. By using the Keldysh formulation,
we avoid the need for analytical continuation and obtain reli-
able spectra directly in real frequency.

The bare retarded fermion Green’s function of spin com-
ponent σ ,

GR
σ0(p, ε) = 1

ε + i0 + µσ − εp
, (6)

encodes noninteracting particles with dispersion relation
εp = p2/2m and a bare spectral function Aσ0(p, ε) =
−(1/π )ImGR

σ0(p, ε) = δ(ε + µσ − εp). In the presence of
interactions the bare Green’s function turns into the fully
dressed Green’s function with self-energy +R

σ (p, ε) via the
Dyson equation

GR
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ε + i0 + µσ − εp − +R
σ (p, ε)

= −i
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0
dt ei(ε+i0)t 〈{ψpσ (t ),ψ†

pσ (0)}〉. (7)

The bosonic Green’s function that represents fermion pairs is
analogously given by (with subscript p for pairs)

GR
p (q,ω) = 1

g−1
0 − +R

p (q,ω)

= −i
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0
dt ei(ω+i0)t 〈[#q(t ),#†

q(0)]〉, (8)

with bare coupling g0 and bosonic self-energy +R
p (q,ω).

In our model fermions can scatter off real or virtual pairs
and acquire a fermionic self-energy that is given by [20,22]
(here σ̄ = −σ denotes the other fermion species)

+R
σ (p, ε) = − i

2

∫

p′,ε′

[
GR

p (p + p′, ε + ε′)GK
σ̄ (p′, ε′)

+ GK
p (p + p′, ε + ε′)GA

σ̄ (p′, ε′)
]

(9)

(see Fig. 1). While the retarded and advanced Green’s func-
tions GR(p, ε) = [GA(p, ε)]∗ represent only the spectrum, the
Keldysh components GK (p, ε) represent both the spectrum
and the occupation number with the statistical factor in equi-
librium,

GK
σ (p, ε) = −i tanh(βε/2)Aσ (p, ε), (10)

GK
p (q,ω) = −i coth(βω/2)Ap(q,ω), (11)

with full spectral functions Aσ (p, ε) = −(1/π )ImGR
σ (p, ε)

and Ap(q,ω) = −(1/π )ImGR
p (q,ω). The occupation factors
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can be rewritten in terms of the Fermi and Bose functions
as tanh(βx/2) = 1 − 2 f (x) with f (x) = 1

2 [1 − tanh(βx/2)]
and as coth(βx/2) = 1 + 2b(x) with b(x) = 1

2 [coth(βx/2) −
1]. In this way, the retarded fermionic self-energy is
expressed as

"R
σ (p, ε) =

∫

p′,ε′

[
GR

p (p + p′, ε + ε′) f (ε′)Aσ̄ (p′, ε′)

− b(ε + ε′)Ap(p + p′, ε + ε′)GA
σ̄ (p′, ε′)

]
, (12)

where a contribution independent of occupation vanishes by
analyticity. For the imaginary part of the self-energy, the
occupation factors are combined with a product of spectral
functions as

Im"R
σ (p, ε) = − π

∫

p′,ε′
[ f (ε′) + b(ε + ε′)]

× Ap(p + p′, ε + ε′)Aσ̄ (p′, ε′). (13)

Once the imaginary part has been computed, the real part can
be obtained by the Kramers-Kronig relation

Re"R(p, ε) =
∫

dε′

π
P

Im"R(p, ε′)
ε′ − ε

, (14)

which involves an integral over the principal value P .
The bosonic self-energy in turn arises from dissociation of

a pair into individual fermions and is computed as the particle-
particle bubble diagram (see Fig. 1),

"R
p (q,ω) = i

2

∫

p,ε
[GR

↑(q − p,ω − ε)GK
↓ (p, ε)

+ GK
↑ (q − p,ω − ε)GR

↓(p, ε)]

=
∫

p,ε

{
GR

↑(q − p,ω − ε)
[ 1

2 − f (ε)
]
A↓(p, ε)

+
[ 1

2 − f (ω − ε)
]
A↑(q − p,ω − ε)GR

↓(p, ε)
}
.

(15)

Both terms can be combined after a change of variables to
yield

Im"R
p (q,ω) = − π

∫

p,ε
[1 − 2 f (ε)]A↑(p, ε)

× A↓(q − p,ω − ε). (16)

Causality implies that the imaginary part of the fermionic
Green’s function is always negative, ImGR

σ (p, ε) < 0 ∀ ε,
while the imaginary part of the bosonic Green’s function
changes sign at ω = 0, ImGR

p (q,ω)sgn(ω) < 0. The same
holds for the sign of the imaginary parts of the fermionic
and bosonic self-energies, which follows from their defi-
nitions (12) and (16). Equations (7), (8), (12), and (16)
form a closed set of coupled integral equations for the
fermion and pair Green’s functions. This particular set of
equations corresponds to the self-consistent Luttinger-Ward
approach [12,23,24]. In the following we present a method
for their numerical solution in real frequency.

The Keldysh technique introduced so far applies to general
polarized Fermi gas with µ↑ '= µ↓. In this work we will start

by presenting the solution for the case of a balanced (unpolar-
ized) gas with µ↑ = µ↓ = µ and G↑ = G↓ ≡ Gσ .

C. Quantum virial expansion

Since we are interested in the strongly correlated Fermi gas
at large scattering length |a|, the interaction strength is not a
good expansion parameter. Instead, in the high-temperature
normal state one can perform a quantum virial expansion in
the fermionic fugacity

z = exp(βµ) (17)

as the small parameter, where β = 1/kBT denotes the inverse
temperature and we work henceforth in units where kB ≡ 1. In
the high-temperature virial expansion we can already identify
spectral features that will be important reference points in
the discussion of the low-temperature spectra below. When
pairing is important the pair fugacity

zp = exp(βµp) = exp[β(2µ + Eb)] = z2eβEb (18)

controls the strength of pair contributions with pair chemical
potential µp = 2µ + Eb. One can distinguish the fermion-
dominated regime zp < z from the pair-dominated regime
zp > z [25]. In the expressions for the self-energy (12) and
(16), the Fermi function is expanded for small fugacity as
f (x − µ) = ze−βx + O(z2) and the Bose function as b(x −
µp) = zpe−βx + O(z2

p) = z2eβEbe−βx + O(z4).
To zeroth order in fugacity, i.e., in vacuum, the fermion

self-energy vanishes and the bosonic self-energy is known
analytically as

"R
p0(q,ω) =

∫ '

p
GR

σ0(q − p,ω + µ − εp) (19)

= m
4π

√
−m(ω + 2µ − 1

2εq + i0) − m'

2π2

for large cutoff ' → ∞. The cutoff term in the definition of
the bare coupling g0 (2) cancels that in the self-energy to yield
the cutoff-independent pair Green’s function [6]

GR
p0(q,ω) = 4π/m

a−1 −
√

−m
(
ω + 2µ − 1

2εq + i0
) . (20)

The corresponding pair spectral function reads

Ap0(q,ω) = 4π

m3/2

(
2
√

Ebδ(sp + Eb))(a)

+ 1
π

√sp)(sp)

sp + 1/ma2

)

sp=ω+2µ−εq/2
(21)

in terms of the pair spectral parameter sp = ω + 2µ − εq/2,
which measures the energy from the onset of the scattering
continuum at sp = 0. The pair spectrum exhibits a scattering
continuum for sp > 0 from the square root branch cut, and for
positive a > 0 there is additionally the pair bound state at sp =
−Eb with pair dispersion ωq = q2/2M at twice the fermion
mass M = 2m. Note that the pair spectrum in vacuum is still
Galilean invariant, i.e., it depends only on the combination sp
and not on ω or q separately. This will no longer be the case
at finite density, as we will see below.
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2 [coth(βx/2) −
1]. In this way, the retarded fermionic self-energy is
expressed as

"R
σ (p, ε) =

∫

p′,ε′

[
GR

p (p + p′, ε + ε′) f (ε′)Aσ̄ (p′, ε′)

− b(ε + ε′)Ap(p + p′, ε + ε′)GA
σ̄ (p′, ε′)

]
, (12)

where a contribution independent of occupation vanishes by
analyticity. For the imaginary part of the self-energy, the
occupation factors are combined with a product of spectral
functions as

Im"R
σ (p, ε) = − π

∫

p′,ε′
[ f (ε′) + b(ε + ε′)]

× Ap(p + p′, ε + ε′)Aσ̄ (p′, ε′). (13)

Once the imaginary part has been computed, the real part can
be obtained by the Kramers-Kronig relation

Re"R(p, ε) =
∫

dε′

π
P

Im"R(p, ε′)
ε′ − ε

, (14)

which involves an integral over the principal value P .
The bosonic self-energy in turn arises from dissociation of

a pair into individual fermions and is computed as the particle-
particle bubble diagram (see Fig. 1),

"R
p (q,ω) = i

2

∫

p,ε
[GR

↑(q − p,ω − ε)GK
↓ (p, ε)

+ GK
↑ (q − p,ω − ε)GR

↓(p, ε)]

=
∫

p,ε

{
GR

↑(q − p,ω − ε)
[ 1

2 − f (ε)
]
A↓(p, ε)

+
[ 1

2 − f (ω − ε)
]
A↑(q − p,ω − ε)GR

↓(p, ε)
}
.

(15)

Both terms can be combined after a change of variables to
yield

Im"R
p (q,ω) = − π

∫

p,ε
[1 − 2 f (ε)]A↑(p, ε)

× A↓(q − p,ω − ε). (16)

Causality implies that the imaginary part of the fermionic
Green’s function is always negative, ImGR

σ (p, ε) < 0 ∀ ε,
while the imaginary part of the bosonic Green’s function
changes sign at ω = 0, ImGR

p (q,ω)sgn(ω) < 0. The same
holds for the sign of the imaginary parts of the fermionic
and bosonic self-energies, which follows from their defi-
nitions (12) and (16). Equations (7), (8), (12), and (16)
form a closed set of coupled integral equations for the
fermion and pair Green’s functions. This particular set of
equations corresponds to the self-consistent Luttinger-Ward
approach [12,23,24]. In the following we present a method
for their numerical solution in real frequency.

The Keldysh technique introduced so far applies to general
polarized Fermi gas with µ↑ '= µ↓. In this work we will start

by presenting the solution for the case of a balanced (unpolar-
ized) gas with µ↑ = µ↓ = µ and G↑ = G↓ ≡ Gσ .

C. Quantum virial expansion

Since we are interested in the strongly correlated Fermi gas
at large scattering length |a|, the interaction strength is not a
good expansion parameter. Instead, in the high-temperature
normal state one can perform a quantum virial expansion in
the fermionic fugacity

z = exp(βµ) (17)

as the small parameter, where β = 1/kBT denotes the inverse
temperature and we work henceforth in units where kB ≡ 1. In
the high-temperature virial expansion we can already identify
spectral features that will be important reference points in
the discussion of the low-temperature spectra below. When
pairing is important the pair fugacity

zp = exp(βµp) = exp[β(2µ + Eb)] = z2eβEb (18)

controls the strength of pair contributions with pair chemical
potential µp = 2µ + Eb. One can distinguish the fermion-
dominated regime zp < z from the pair-dominated regime
zp > z [25]. In the expressions for the self-energy (12) and
(16), the Fermi function is expanded for small fugacity as
f (x − µ) = ze−βx + O(z2) and the Bose function as b(x −
µp) = zpe−βx + O(z2

p) = z2eβEbe−βx + O(z4).
To zeroth order in fugacity, i.e., in vacuum, the fermion

self-energy vanishes and the bosonic self-energy is known
analytically as

"R
p0(q,ω) =

∫ '

p
GR

σ0(q − p,ω + µ − εp) (19)

= m
4π

√
−m(ω + 2µ − 1

2εq + i0) − m'

2π2

for large cutoff ' → ∞. The cutoff term in the definition of
the bare coupling g0 (2) cancels that in the self-energy to yield
the cutoff-independent pair Green’s function [6]

GR
p0(q,ω) = 4π/m

a−1 −
√

−m
(
ω + 2µ − 1

2εq + i0
) . (20)

The corresponding pair spectral function reads

Ap0(q,ω) = 4π

m3/2

(
2
√

Ebδ(sp + Eb))(a)

+ 1
π

√sp)(sp)

sp + 1/ma2

)

sp=ω+2µ−εq/2
(21)

in terms of the pair spectral parameter sp = ω + 2µ − εq/2,
which measures the energy from the onset of the scattering
continuum at sp = 0. The pair spectrum exhibits a scattering
continuum for sp > 0 from the square root branch cut, and for
positive a > 0 there is additionally the pair bound state at sp =
−Eb with pair dispersion ωq = q2/2M at twice the fermion
mass M = 2m. Note that the pair spectrum in vacuum is still
Galilean invariant, i.e., it depends only on the combination sp
and not on ω or q separately. This will no longer be the case
at finite density, as we will see below.
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FIG. 2. Line spectra of fermions and pairs at unitarity: real frequency dependence at zero momentum. Temperatures are in the normal
state approaching Tc: T/TF = 0.31 (βµ = 1.0, brown), T/TF = 0.24 (βµ = 1.5, red), T/TF = 0.19 (βµ = 2.0, magenta), and T/TF = 0.16
(βµ = 2.5, blue). (a) The fermion self-energy shows a single peak in the virial expansion (dashed line) and a renormalized single peak in the
first LW iteration " (1)

σ (thin line); instead, the fully converged self-energy "(∞)
σ (thick line) develops a two-peak structure which grows more

prominent as the temperature is lowered. (b) The fermion spectrum shows a two-peak structure as a precursor to the Bogoliubov spectrum.
The comparison with spectral data of Ref. [26] (dotted line) shows good agreement. (c) The pair self-energy has a zero crossing at ω = 0 by
causality (dashed line); the spectral weight at negative frequencies is enhanced at lower temperature. The Keldysh component −Im"p(q =
0, ω) coth(ω/2T ) (solid line) remains positive at all frequencies and regular around ω = 0. (d) The pair spectrum has a single asymmetric peak
near threshold that becomes broader and more pronounced at lower temperature.

develops a two-peak structure as a precursor to the Bogoli-
ubov spectrum as the temperature is lowered.

The imaginary part of the pair self-energy in Fig. 2(c)
arises from dissociation of pairs into individual fermions;
it has a square-root branch cut representing the scattering
continuum for large frequencies. As a bosonic function it
must change sign at ω = 0 (dashed curves). When weighted
with the Bose factor, −Im"p(ω) coth(ω/2T ) > 0 is regular at
ω = 0 and positive for all frequencies (solid curves). Note that
the fully converged self-consistent solution (thick lines) con-
tains substantially more spectral weight at smaller frequencies
ω < 0 than the first iteration (thin line), in particular at lower
temperature (blue curves). Finally, the pair spectral function
in Fig. 2(d) weighted with the Bose factor [the Keldysh com-
ponent (10)] is positive and exhibits a single large peak for
the onset of the scattering continuum, which decays for large
frequencies as ω−1/2. This slow decay in turn determines
also the decay of the fermionic self-energy as ε−1/2 for large
frequencies.

The full spectra at T = 0.16TF slightly above Tc are
shown in Fig. 3. The fermion self-energy has a broad upward
branch starting at ε ∼ εp/2, which arises from combin-
ing with another low-momentum fermion into a pair state
(molecule-hole continuum), and a steeper downward branch
ε ∼ −εp, which arises from combining with another fermion
into a low-momentum pair. The imaginary part of the self-
energy determines the decay rate (inverse lifetime) of the
corresponding fermion states, which near Tc is substantial
(comparable to εF ). These spectral features are reflected in
the fermion spectral function Fig. 3(b), which shows a band
splitting around the Fermi level ε = 0 and the appearance of
Bogoliubov shadow bands already above Tc. Note that the
fermionic self-energy and spectral function clearly do not
follow a single-parameter scaling in terms of the spectral
parameter s = ε + µ − εp alone.

The pair self-energy in Fig. 3(c) clearly exhibits the scat-
tering continuum for ω ! εq/2 − 2µ. In the self-consistent
solution, where a pair can dissociate into dressed fermion
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shown in Fig. 3. The fermion self-energy has a broad upward
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(molecule-hole continuum), and a steeper downward branch
ε ∼ −εp, which arises from combining with another fermion
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corresponding fermion states, which near Tc is substantial
(comparable to εF ). These spectral features are reflected in
the fermion spectral function Fig. 3(b), which shows a band
splitting around the Fermi level ε = 0 and the appearance of
Bogoliubov shadow bands already above Tc. Note that the
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(a) (b)

(c) (d)

FIG. 3. Luttinger-Ward self-energies and spectral functions at unitarity 1/a = 0 and temperature T/TF = 0.16 (βµ = 2.5). (a) Fermion
self-energy. (b) The fermion spectral function shows a band splitting around the Fermi level ε = 0 and a slight suppression of spectral weight
also near kF . (c) Pair self-energy. (d) The pair spectral function weighted by the Bose factor (Keldysh component) is positive and strongly
peaked at the threshold of the scattering continuum. Pair functions are given in units of the zero-temperature density of states ρ0 = g(0)

σ =
mkF /2π 2.

states, the substantial broadening of the fermions shifts the
threshold of the scattering continuum to lower frequency
with respect to the non-self-consistent solution. Finally, the
full pair spectrum in Fig. 3(d) shows the clear threshold of
the scattering continuum as well as an additional downward
branch that arises from the dressed fermions.

B. Particle and pair spectra in the BEC regime

In the BEC regime the fermion line spectra in Figs. 4 and
5 show many of the same qualitative features, such as upward
and downward branches, as in the unitary regime; however,
the splitting between the two branches in the fermionic spec-
trum is now much larger, approximately equal to 2|µ| > 0,
and grows with momentum, as in the strong-binding limit of
the BCS dispersion relation [27]. The pair self-energy is dom-
inated by the scattering continuum but has again significant
weight at negative frequency that arises from the downward
branch of the dressed fermions. Finally, the pair spectral func-
tion (Keldysh component) in Figs. 4(d) and 5(d) exhibits a
three-peak structure: The large bound-state peak near ω = 0
becomes broader for lower temperature, the scattering contin-
uum is separated from the bound state by a gap comparable

to the binding energy Eb, and in addition there is a downward
branch at negative frequencies.

The fermion dispersion exhibits qualitative differences be-
tween the unitary regime, where it resembles the BCS-type
dispersion relation with minimum gap at nonzero wave vector
k∗ ≈ kF , and the BEC regime, where the gap is present at all
k and reaches a minimum at k = 0. This qualitative change
between the two regimes is also apparent in the density of
states (DOS). While at unitarity the density of states is only
slightly suppressed near the Fermi level ε = 0 above Tc [cf.
Fig. 3(b)], in the BEC regime the gap is clearly developed
already in the normal state (cf. Fig. 6), but instead it becomes
narrower (in units of εF ) toward lower temperature.

V. DISCUSSION

The real-frequency solver presented in this work circum-
vents the long-standing problem of analytical continuation by
computing a self-consistent solution directly in the Keldysh
spectral representation. This gives access to the dynamical
properties of single particles, which agree with previous re-
sults where available [28]. At strong coupling they show a
substantial renormalization of spectra compared to the virial
expansion, and in particular the self-consistent algorithm
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(a) (b)

(c) (d)

FIG. 5. Luttinger-Ward self-energies and spectra in the BEC regime 1/kF a = 1 at T/TF = 0.26 (βµ = −3.5) slightly above Tc. (a) The
fermion self-energy "σ (p, ε) shows two branches and fermions scatter most strongly on the lower branch. (b) The fermion spectral function
Aσ (p, ε) shows a clear gap between the two branches around the Fermi level ε = 0 and has most spectral weight concentrated on the
upper branch. (c) The pair self-energy "p(q, ω) shows the two-particle scattering continuum. (d) The weighted pair spectral function
Ap(q,ω) coth(ω/2T ) = iGK

p (the pair Keldysh function) shows a strong bound-state branch separated by the binding energy Eb = 2EF from
the pair continuum, as well as a weak branch bending down.

and spin diffusivity [42,43]. As the frequency-dependent
transport coefficients depend on the slope in frequency
of a bosonic spectral function, the real-frequency solver

D
O
S

FIG. 6. Fermionic density of states gσ (ε) vs frequency ε on the
BEC side βEb = 8 (1/kF a " 1). The DOS is strongly suppressed in
a region of width 2|µ| around the chemical potential. The DOS is
given in units of the ideal Fermi gas DOS at zero temperature, ρ0 =
g(0)

σ = mkF /2π 2.

should yield improved self-consistent predictions at both
zero and finite frequency. Finally, the Keldysh formulation
can describe genuine out-of-equilibrium dynamics where the
fluctuation-dissipation relation (10) is no longer satisfied [20],
and it will be interesting to find self-consistent solutions for
the transient evolution after a quantum quench.

Note added. Recently, two other studies appeared which
compute spectral functions in real frequency using Fourier
transforms [26] and spectral representations [44].
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(a) (b)

(c) (d)

FIG. 4. Line spectra of fermions and pairs in the BEC regime (βEb = 8): real frequency dependence at zero momentum. Temperatures
are in the normal state approaching Tc: T/TF = 0.52 (βµ = −4, red), T/TF = 0.37 (βµ = −3.75, magenta), and T/TF = 0.26 (βµ = −3.5,
blue). (a) The fermion self-energy shows a much more pronounced two-peak structure than at unitarity. (b) The fermion spectrum similarly
shows a two-peak structure as a precursor to the Bogoliubov spectrum. (c) The pair self-energy has a zero crossing at ω = 0 by causality (dashed
line); the spectral weight at negative frequencies is enhanced at lower temperature. The Keldysh component −Im#p(q = 0, ω) coth(ω/2T )
(solid) remains positive at all frequencies and regular around ω = 0. (d) The pair spectrum has a triple-peak structure: a large bound-state peak
near ω = 0, the scattering continuum for positive ω separated by a gap from the bound state, and a small peak at negative frequency.

allows us to access the low-temperature regime βµ > 1.5 at
unitarity, which is unattainable in bare perturbation theory.
The self-consistent solution in the Luttinger-Ward framework
ensures thermodynamic consistency and the exact fulfillment
of Tan relations, as well as scale invariance in the uni-
tary case even for approximate solutions [19]. In particular,
existing thermodynamic results [e.g., µ(n)] obtained in imag-
inary frequency can be used as input for the real-frequency
computation. On the technical level, in the Keldysh for-
mulation the divergence of the bosonic occupation at zero
frequency is compensated by the smallness of the bosonic
spectral function to yield a well-defined frequency integral,
but it can still have sharp peaks from long-lived excitations.
Our algorithm treats these efficiently by interpolation of the
self-energy, which is a slowly varying function between grid
points. The accuracy of the spectra is confirmed by comparing
with results for finer grids ($ε = 0.25T ) and with the spectral
data of Ref. [26]. By construction, the resulting Green’s func-
tions satisfy the requirements of analyticity and causality. The
Luttinger-Ward spectra with their subtle three-peak structure
(Fig. 4) can serve as a benchmark and as a prior for the

numerical reconstruction of imaginary-time quantum Monte
Carlo data.

The real-frequency solver can immediately be applied to
imbalanced (polarized) Fermi gases with µ↑ #= µ↓; in fact,
the equations in Sec. II are already written for this general
case. This will allow one to extend self-consistent ground-
state polaron spectra [29] to finite temperature. Furthermore,
the self-consistent thermodynamics in the symmetry-broken
superfluid state has been found in the balanced [12] and im-
balanced Fermi gas [14], and it will be worthwhile to extend
the real-frequency solver to this case in order to obtain the cor-
responding excitation spectra. Another important extension
will be to the two-dimensional Fermi gas [30], which always
admits a pair bound state with Eb > 0 and is therefore covered
by our algorithm for the BEC regime; this will allow for a
self-consistent computation of pairing spectra [27,31] and the
dynamical quantum scale anomaly [32,33].

Another very interesting extension is to compute dy-
namical correlation and response functions, which define,
e.g., transport coefficients such as shear viscosity [34,35],
bulk viscosity [25,36–39], thermal conductivity [40,41],
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