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IFT Basics

e \We are only considering 2D Ising model.

HIsing = —ZJO’,‘O}—I—ZHO’;. o+ 1.
(if) i

The Ising model at the critical points T = T, and h = 0 could be described by the
minimal CFT M4 3).

The relevant primary fields are: /(x) (0,0), o(x) (15, 1), and €(x) (3, 3).
The IFT by definition is

Arrr = A@gay + T/e(x) d’x + h/a(x) d*x

2/37



® 7 and h are related to in T and H through.
7=CAT (1+ O(AT,H?)) h=GCyH (1+ O(AT,H?),

AT=1-T./T.
® By the simple fact of dimensional analysis, the theory space is parameterized by
_ __h
§= Bl
e Our goal is to study the analytic structure of M({) and G(¢&).
m

2
log m? + m*G(€)

F(O) = o
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The Yang-Lee edge singularity

® The Yang-Lee critical point at £2 = —58 = —0.03583- - -, is described by the
effective minimal model [Cardy, 1985].

A= Aps) + &) / B)Px+ Y () / O:dx

e Both M({) and G(&) have branch cuts at £ = i&p.

G(£2) = Greg(€2) + (€2 +€3)%/°Ga(€?) + - -
M(£2) = (€2 + €2) T Ma(€2) + - - -

Discussed By Haolan
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Free fermion regime

® h=0,7#0 (£ =0), IFT could be described by free Majorana Fermions
[McCoy and Wu, 1978].

Airr = Afe + h/U(X)d2X

Arr = o / (W3 + TG + impd),  m = 2mr,

® For the High temperature regime (7 > 0), it is possible to do perturbation analysis.

Grigh(62) = Go&? + Go&* + Go&® + - -

Gy, -1.8452280 G, 8.33370
Gs -95.1689(4) Gg 1457.55(11) [Fonseca and Zamolodchikov, 2001]
Gio -25884.(13) Gip 5.03(1)x10°
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® |n the In the low-T domain, the perturbative analysis cannot work because of
confinement.

® There is a Essential singularity at £ = 0 For low T. i.e. Fisher-Langer singularity
[Langer, 1967].
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Bethe-Salpeter equation

® For h=0, IFT is free fermion. We define its creation and annihilation operators

{a(p), a'(p")} = 278(p— p'), {a(p), a(p')} = {a'(p), a'(p')} = 0.

® We can view the full IFT as Free fermion + a perturbation in o.
o0

H=Ho+hV, Hy= /00 g—f: w(p)al(p)a(p), V= —/ o(x)dx.

— 00 —00
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® |nstated taking the finite size limit, take 2-particle approximation instead: The

Hilbert space is: |W(?)) 3/ ‘;’;1 ‘é’f\ll (p1;p2)| 1, p2)-.

® The Bethe-Salpeter equation.

00 dqq d
(w(p1)+w(p2)+AE)W(p1,p2)=fo [Z2 6(p1+P2—a1—a2)G(p1,P21q1,92) W (q1,G2) S+ 52,

1/4 w(pp)+w(qy) w(pa)+w(gr)
Glprpelanae)= 7o P2)W(q1)w(q2)[ ma oo
w(py)+w(gp) wpp)+w(qr) P1—P2 91— }
P1—a2 P2—a1 w(p1)tw(p2) wlar)t+w(az)
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¢ In the infinite momentum frame, define u = 2p/P.
qb(u) = limp_s \UP(UP/2)[Fonseca and Zamolodchikov, 2006].

2 2 +1 y

(s [ o
1 2(1—uv) uv

Fol) = == v~ 4]

® |n important part is that F ~ ﬁ singularity gives linear forces at large distance.
(Confinement)

® Pros: Works very well with analytic continuation of fy (< £). Cons: Only an
approximation for small h.
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Intro to the ‘t Hooft model

e The ‘t Hooft model is 1 + 1D QCD, fundamental matter, N — oo with gN?
fixed. 1
L= Zter,F’“’ — g (IIZ) — ma) %, a=1,---m.
® We can choose a gauge such that £ = —%tr (0_AL ) +---
The Feynman rules are:

— - - Gluon propagator

Fermion propagator

a
i
—p—/ igy— Gluon-quark interaction
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® In the large N limit, only planar graphs contribut

€.

® The 4-point quart propagator could be exactly resummed. =- Bethe-Salpeter

equation.

P v
! = +
r—p r—p

® The ‘t Hooft equation

[ﬁ] dr(u) + ][_11 % dv = pidr(x).

u=2p Jr, v=2p /r,
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® Take the following integral transformation on the wave function ¢(u).

L du 14w\ ™2
v = [ 2w (T2

® The Bethe-Salpeter equation for Ising model becomes.

ch (7ru/2)w

® The Bethe-Salpeter equation for ‘t Hooft model becomes.

A~

(V)h(v) = 2 Kip(v).

where

fi(v)=1+Avtanh( Z£)
fu(v)=1+X\ l/COth(%)

=/ dvch(';rTy), Ryw)=[dv' md’(l’) {
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The analytic properties of wave function

® ¢)(v) has infinite number of simple poles.
® ¢)(v) has simple poles at f;(v) = 0.

e If f(v) has poles has poles at v,, Kf has poles at
Vs+2i,vs+4i,--- for Imv,; > 0, Kf has poles at
Vy—2i,v3—4i,--- for Imv, <O0.

fv)
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Im

® The minimal consistent poles are .
. . of A=-0.4-0.41 ol
Unk(A) = £(vk(A) + 2ni), £vy is the root of R
fi(v). (Primary poles). , gt
® The poles and residues characterized expansion . R
in large transverse momentum. g
Re
r 2\
P(v)~ —— —  P(u) ~ r(l — v .
V — Vg .
® How the poles behave in A-plane also determine .
H H oty pole x primary poles
the analyticity properties of M?()\). * e
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Pinching singularities

Trajectories of the roots in the Complex Plane

Im

e Consider \ = ]/\|ei9, v1 and —u; exchanged. i.e.

a branch cut at A = 0.
® More generally, we could see that the point Asel? D
where two poles collide is a square root
singularity. D
T .
i) =0, £()=0 S e
or T
., (p)
7ry(p)—|—sinh 7ry(p) =0, and )\(p) = _M ————————————————— Y e
v(P) sinh %V(P)
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Pinching singularities

Al Al Al
W@ C ~~~~~ O Cr _/\NV\%\\O c
ﬂ V1 - ﬂ V1 ﬂ vy

123 %) v
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Pinching singularities

For the Ising model:

x x
x VP x x
v
5 — !
2 v, x x
s
3
06 -04 02 ’ 02 0. 06 4 2 2 4
35: % xv,®
T B
MPx 70‘ x %-v,?)
x x
(a) The critical points of A\. We can see that there is (b) The critical points of v. The gray dashed line
an accumulation point at A = 0. denotes boundaries Imy = 2n.
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Pinching singularities

For the ‘t Hooft model:

The critical points inside A plar
10

(a) The critical points of A\. We can see that there is (b) The critical points of v. The gray dashed line
an accumulation point at A = 0. denotes boundaries Imy = 2n.
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Poles trajectory

Figure: The trajectories of the poles v,, when X evolves along the red circle in A-space, where |\| = 0.7.
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Poles trajectory

Figure: The trajectories of poles passed through the first branching point. |[A| = 0.595065.
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Poles trajectory

A v
Im Im
,,,,,,,,,,,,,,,,,,,,,,, {),,,,,,,,,,,,,,,,,,,,,,,
x x
,,,,,,,,,,,,,,,,,,,,,,, e
x x

Figure: |A\| = 0.5. The second pair of poles exchange instead.
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FL’s branch cut Re €

®-’\/\/\MAANVV\/WWW
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A2 ®
A1 ®./VWWVVWWW

Figure: The branch structure of M?(&), i.e. The Lasagne.
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Figure: The branch points in the extended n-plane.
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Deformed Beth-Salpeter Equation

e Consider analytic continuation of A. \(6) = \ge'.

o For sufficiently small A\, 1 and —v4, exchanged while all other poles return is its
origin.

® The Bethe-Salpeter equation is deformed.

PP mm, Ru(v) = Ky(v) = 2min K (v, v),

® The deformed equation

f(v)(v) — A ym, <1/1 - 27Tir1d:71,,1> = M? [Rd)(u) —27inK(v,11)| .
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Deformed Beth-Salpeter Equation.

/ w1

-1

v

v

Figure: The contour deformed after a pole goes to the lower half plane.
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Numerical spectrum

The deformed Bethe-Salpeter equation could be solved numerically in the region
where only one pole crosses the real line.

The discretized 1(x;) and the residue ry is the unknown in:

)60)- 3 e (9-2in g ) =M RU) - 2nink(a)]

hTV
2

We are essentially solving a generalized eigenvalue systems for vV = (9;Ax 52 ).

A-V=MB.V.
where
Azy; I r1/(2mi) Axip; r1/(2mi)
' A T v |
zj f(Ll)5LJ - /\(:1.(7” 72) ch(rz;/2) ! 8 ch(ra;/2) ('h(m/ll/Z) x; K(T“ TJ) ! _K(I/l, -T¢)
""""""""""""" T B = i
A @, v L fn) v ° i -

Vi ¥§ch(1r;t7]/2) ch(mv1/2) , 17rL1 + (ch(7ru1/2)> Y1 _K(Vl7 T]) : K (1/17 J/l)
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Real spectrum

M The Masses and Deformed Masses for Real A The Difference between Deformed and Ordinary Mass

— AMy
— AM,
— AM,
— AM,
— AMy
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Complex spectrum

Trajectory of Ain the Complex Plane Trajectory of M,? in the Complex Plane
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Trajectory of Ain the Complex Plane Trajectory of M,? in the Complex Plane
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Massless Points

® For ‘t Hooft model, the pinching singularity A(P) also correspond to the massless
points \(?) where at lest one mass vanishes M(A(?)) = 0.

e For the Ising model, these two points don’t coincide Because of the ¢ term.

® The consistency condition

A0 = 76 T 10

2
where F()) = [>, (W) v
® When vy passes the real line, one needs to add a residue term

. 4 ? 1
FA) = F(A) — 4ni (ch (w;k/2)> (i)
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Figure: Plotted in the & = 1/ plane.

Crticial Points and Massless Points
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Remarks

We found an infinite number of square root branching points. With the
accumulation at A = 0. (Lasagna structure)

The first branching point is very close to the Yang-Lee singularity.

Numerical observation find that \ = A(lp), I\/l12 is very small.

e Cojecture: \ = /\(1p) correspond to the Yang-Lee singularity. While other pinching
points correspond to unknown critical non-unitary CFTs.

® A more sophisticated method is needed to probe critical points beyond Yang Lee.
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Thank you for listening
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Low temperature Analyticity

® Giow(€) has only one branch cut in (—o0, 0]

® There is a essential singularity at £ = 0. The
physical interpretation: Nucleation process
of metastable states.

® This branch cut could be estimated by Langer’s Branch cut
Langers's theory of nucleation.
Im Glow(é:) ~ %6_57 [Langer, 1967].

The dispersion relation [Fonseca and Zamolodchikov, 2001].

. % Im Giow(—t + i0) d
Glow(g) = G1£_£2/0 n t12(£+t§‘)i" )7:
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High temperature Analyticity

® Ghigh(£) is an even function of & it has I€—2
branch cuts at £ € (—o0, 3]
£€3 ~ 0.18930.

® The branching point corresponds to the
Yang-Lee singularity. Described by
non-unitary A 5y minimal model.

-

The dispersion relation:

% 2Im Gpign(—t + i0) dt
Ghigh(€%) = —52/0 n télt%hi &) I )W.
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Extended Analyticity

® The low temperature phase and the high temperature phase are connected by
analytic continuation.

: : . : 8
® The continuation become explicit when expressed in terms of n = (27w7)/his.

v B 772 Glow(nils/g) n>0
(n) = 26 ((—p)-15/8 :
1° Ghign((—7) ) n<o.

® Three distinct domains in the n—plane.
1. Low-T domain: 1571' < Argn < 157r
2. High-T domain: 1571' <Arg—n<
3. The shadow domain: 7r < Argn <

?r’i

=T ——w < Argn < ¢
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