On the analytic structure of Bethe-Salpeter equation for 't Hooft and Ising model

ECT* Workshop - Analytic structure of QCD and Yang-Lee edge singularity

Yu-Ping Wang

C. N. Yang Institute for Theoretical Physics.
Stony Brook University

September 11, 2025

IFT Basics

• We are only considering **2D** Ising model.

$$H_{\mathrm{Ising}} = -\sum_{\langle ij \rangle} J\sigma_i \sigma_j + \sum_i H\sigma_i. \quad \sigma_i \pm 1.$$

- The Ising model at the critical points $T = T_c$ and h = 0 could be described by the minimal CFT $\mathcal{M}_{(4,3)}$.
- The **relevant** primary fields are: I(x) (0,0), $\sigma(x)$ $(\frac{1}{16},\frac{1}{16})$, and $\epsilon(x)$ $(\frac{1}{2},\frac{1}{2})$.
- The IFT by definition is

$$A_{\rm IFT} = A_{(3,4)} + \tau \int \epsilon(x) d^2x + h \int \sigma(x) d^2x$$

• τ and h are related to in T and H through.

$$\tau = \textit{C}_{\tau} \Delta \textit{T} \left(1 + \textit{O}(\Delta \textit{T}, \textit{H}^2) \right) \quad \textit{h} = \textit{C}_{\textit{h}} \textit{H} \left(1 + \textit{O}(\Delta \textit{T}, \textit{H}^2) \right),$$

$$\Delta T = 1 - T_c/T$$
.

- By the simple fact of dimensional analysis, the theory space is parameterized by $\xi = \frac{h}{|2\pi\tau|^{15/8}}$.
- Our goal is to study the analytic structure of $M(\xi)$ and $G(\xi)$.

$$F(\xi) = \frac{m^2}{8\pi} \log m^2 + m^2 G(\xi)$$

The Yang-Lee edge singularity

• The Yang-Lee critical point at $\xi^2 = -\xi_0^2 = -0.03583 \cdots$, is described by the effective minimal model [Cardy, 1985].

$$\mathcal{A} = \mathcal{A}_{(2,5)} + \lambda(\xi^2) \int \phi(x) d^2x + \sum_i a_i(\xi^2) \int \mathcal{O}_i d^2x$$

• Both $M(\xi)$ and $G(\xi)$ have branch cuts at $\xi = i\xi_0$.

$$G(\xi^2) = G_{reg}(\xi^2) + (\xi^2 + \xi_0^2)^{5/6} G_A(\xi^2) + \cdots$$
$$M(\xi^2) = (\xi^2 + \xi_0^2)^{\frac{5}{12}} M_A(\xi^2) + \cdots$$

Discussed By HaoLan

Free fermion regime

• $h=0, \tau \neq 0$ ($\xi=0$), IFT could be described by free Majorana Fermions [McCoy and Wu, 1978].

$${\cal A}_{IFT} = {\cal A}_{FF} + h \int \sigma(x) d^2 x$$
 ${\cal A}_{FF} = rac{1}{2\pi} \int (\psi ar{\partial} \psi + ar{\psi} \partial ar{\psi} + i m \psi ar{\psi}), \quad m = 2\pi au.$

• For the **High temperature regime** $(\tau \geq 0)$, it is possible to do perturbation analysis.

$$G_{\text{High}}(\xi^2) = G_2 \xi^2 + G_4 \xi^4 + G_6 \xi^6 + \cdots$$

• In the In the low- T domain, the perturbative analysis cannot work because of confinement.

• There is a **Essential singularity** at $\xi=0$ For low T. i.e. Fisher-Langer singularity [Langer, 1967].

Bethe-Salpeter equation

• For h = 0, IFT is free fermion. We define its creation and annihilation operators

$$\{\mathbf{a}(p), \ \mathbf{a}^{\dagger}(p')\} = 2\pi\delta(p-p'), \quad \{\mathbf{a}(p), \ \mathbf{a}(p')\} = \{\mathbf{a}^{\dagger}(p), \ \mathbf{a}^{\dagger}(p')\} = 0.$$

• We can view the full IFT as Free fermion + a perturbation in σ .

$$H = H_0 + hV, \quad H_0 = \int_{-\infty}^{\infty} \frac{dp}{2\pi} \, \omega(p) \mathbf{a}^{\dagger}(p) \mathbf{a}(p), \quad V = -\int_{-\infty}^{\infty} \sigma(\mathbf{x}) d\mathbf{x}.$$

- Instated taking the finite size limit, take **2-particle approximation** instead: The Hilbert space is: $|\Psi^{(2)}\rangle = \frac{1}{2}\int \frac{dp_1}{2\pi}\frac{dp_2}{2\pi}\Psi(p_1,p_2)|p_1,p_2\rangle$..
- The Bethe-Salpeter equation.

$$(\omega(p_1) + \omega(p_2) + \Delta E)\Psi(p_1, p_2) = f_0 \int_{-\infty}^{\infty} \delta(p_1 + p_2 - q_1 - q_2) \mathcal{G}(p_1, p_2 | q_1, q_2) \Psi(q_1, q_2) \frac{dq_1}{2\pi} \frac{dq_1}{2\pi},$$

$$\begin{split} \mathcal{G}(\rho_{1},\rho_{2}|q_{1},q_{2}) &= \frac{1/4}{\sqrt{\omega(\rho_{1})\omega(\rho_{2})\omega(q_{1})\omega(q_{2})}} \left[\frac{\omega(\rho_{1})+\omega(q_{1})}{\rho_{1}-q_{1}} \frac{\omega(\rho_{2})+\omega(q_{2})}{\rho_{2}-q_{2}} + \right. \\ &\left. \frac{\omega(\rho_{1})+\omega(q_{2})}{\rho_{1}-q_{2}} \frac{\omega(\rho_{2})+\omega(q_{1})}{\rho_{2}-q_{1}} + \frac{\rho_{1}-\rho_{2}}{\omega(\rho_{1})+\omega(\rho_{2})} \frac{q_{1}-q_{2}}{\omega(q_{1})+\omega(q_{2})} \right] \end{split}$$

• In the infinite momentum frame, define u=2p/P. $\phi(u)=\lim_{P\to\infty}\Psi_P(uP/2)$ [Fonseca and Zamolodchikov, 2006].

$$\left(\frac{m^2}{1-u^2} - \frac{M^2}{4}\right)\phi(u) = f_0 \int_{-1}^{+1} F(u|v)\phi(v) \frac{dv}{2\pi}.$$

$$F(u|v) = \frac{1}{\sqrt{(1-u^2)(1-v^2)}} \left[\frac{2(1-uv)}{(u-v)^2} - \frac{uv}{4}\right].$$

- In important part is that $F \sim \frac{1}{(u-v)^2}$ singularity gives linear forces at large distance. (Confinement)
- Pros: Works very well with analytic continuation of f_0 ($\propto \xi$). Cons: Only an approximation for small h.

Intro to the 't Hooft model

• The 't Hooft model is 1+1D QCD, fundamental matter, $N \to \infty$ with gN^2 fixed.

$$\mathcal{L} = rac{1}{4} \mathrm{tr} F_{\mu
u} F^{\mu
u} - q_a \left(i \rlap{/}D - m_a
ight) \overline{q}^a, \quad a = 1, \cdots m.$$

ullet We can choose a gauge such that $\mathcal{L}=-rac{1}{2}\mathrm{tr}\,(\partial_-A_+)^2+\cdots$.

The Feynman rules are:

- In the large *N* limit, only planar graphs contribute.
- The 4-point quart propagator could be exactly resummed. ⇒ Bethe-Salpeter equation.

The 't Hooft equation

$$\begin{split} \left[\frac{\alpha}{1-u^2}\right]\phi_k(u) + \int_{-1}^1 \frac{\phi_k(v)}{(u-v)^2} \, dv &= \mu_k^2 \phi_k(x). \\ u &= 2p_-/r_-, \quad v = 2p_-'/r_-, \quad \alpha = \frac{m^2}{gN^2} - 1. \end{split}$$

• Take the following integral transformation on the wave function $\phi(u)$.

$$\psi(\nu) = \int_{-1}^{1} \frac{du}{1 - u^2} \phi(u) \left(\frac{1 + u}{1 - u}\right)^{i\nu/2},$$

• The Bethe-Salpeter equation for *Ising model* becomes.

$$f_I(\nu)\psi(\nu) = \mu^2 \hat{K}\psi(\nu) + \lambda \frac{\nu}{\operatorname{ch}(\pi\nu/2)} \overline{\psi}.$$

• The Bethe-Salpeter equation for 't Hooft model becomes.

$$f_{H}(\nu)\psi(\nu)=\mu^{2}\hat{K}\psi(\nu).$$

where

$$\overline{\psi} \equiv \int d\nu \frac{\nu}{\operatorname{ch}\left(\frac{\pi\nu}{2}\right)}, \quad \hat{K}\psi(\nu) \equiv \int d\nu' \frac{\pi(\nu-\nu')}{\sin\pi(\nu-\nu')/2} \psi(\nu'), \quad \begin{cases} f_I(\nu) = 1 + \lambda \nu \tanh\left(\frac{\pi\nu}{2}\right) \\ f_H(\nu) = 1 + \lambda \nu \coth\left(\frac{\pi\nu}{2}\right) \end{cases}$$

The analytic properties of wave function

- $\psi(\nu)$ has infinite number of simple poles.
- $\psi(\nu)$ has simple poles at $f_I(\nu) = 0$.
- If $f(\nu)$ has poles has poles at ν_a , $\hat{K}f$ has poles at $\nu_a + 2i$, $\nu_a + 4i$, \cdots for $Im \nu_a \ge 0$, $\hat{K}f$ has poles at $\nu_a 2i$, $\nu_a 4i$, \cdots for $Im \nu_a \le 0$.

- The minimal consistent poles are $\nu_{n,k}(\lambda) = \pm (\nu_k(\lambda) + 2ni), \ \pm \nu_k$ is the root of $f_l(\nu)$. (Primary poles).
- The poles and residues characterized expansion in large transverse momentum.

$$\psi(\nu) \sim rac{r}{v -
u_k} \longrightarrow \phi(u) \sim r(1 - u^2)^{
u_k}.$$

• How the poles behave in λ -plane also determine the analyticity properties of $M^2(\lambda)$.

- Consider $\lambda = |\lambda|e^{i\theta}$, ν_1 and $-\nu_1$ exchanged. i.e. a branch cut at $\lambda = 0$.
- More generally, we could see that the point where two poles collide is a square root singularity.

$$f_I(\nu)=0, \quad f_I'(\nu)=0$$

or

$$\pi
u^{(\mathsf{p})} + \sinh \pi
u^{(\mathsf{p})} = 0$$
, and $\lambda^{(\mathsf{p})} = -\frac{\cosh \frac{\pi}{2}
u^{(\mathsf{p})}}{
u^{(\mathsf{p})} \sinh \frac{\pi}{2}
u^{(\mathsf{p})}}$.

Trajectories of the roots in the Complex Plane

For the Ising model:

(a) The critical points of λ . We can see that there is an accumulation point at $\lambda=0$.

(b) The critical points of ν . The gray dashed line denotes boundaries $\text{Im}\nu=2n$.

For the 't Hooft model:

(a) The critical points of λ . We can see that there is an accumulation point at $\lambda=0$.

(b) The critical points of ν . The gray dashed line denotes boundaries $\text{Im}\nu=2n$.

Poles trajectory

Figure: The trajectories of the poles ν_n , when λ evolves along the red circle in λ -space, where $|\lambda| = 0.7$.

Poles trajectory

Figure: The trajectories of poles passed through the first branching point. $|\lambda|=0.595065.$

Poles trajectory

Figure: $|\lambda| = 0.5$. The second pair of poles exchange instead.

Figure: The branch structure of $M^2(\xi)$, i.e. The Lasagne.

Figure: The branch points in the extended η -plane.

Deformed Beth-Salpeter Equation

- Consider analytic continuation of λ . $\lambda(\theta) = \lambda_0 e^{i\theta}$.
- For sufficiently small λ , ν_1 and $-\nu_1$, exchanged while all other poles return is its origin.
- The Bethe-Salpeter equation is deformed.

$$\overline{\psi}
ightarrow \overline{\psi} - 2\pi \emph{i} \emph{r}_1 rac{
u_1}{\cosh(\pi
u_1/2)}, \quad \hat{K} \psi(
u)
ightarrow \hat{K} \psi(
u) - 2\pi \emph{i} \emph{r}_1 K(
u_1,
u),$$

The deformed equation

$$f(\nu)\psi(\nu) - \frac{\lambda}{8} \frac{\nu}{\operatorname{ch} \frac{\pi \nu}{2}} \left(\overline{\psi} - 2\pi i r_1 \frac{\nu_1}{\operatorname{ch} \frac{\pi \nu_1}{2}} \right) = M^2 \left[\hat{K}\psi(\nu) - 2\pi i r_1 K(\nu, \nu_1) \right].$$

Deformed Beth-Salpeter Equation.

Figure: The contour deformed after a pole goes to the lower half plane.

Numerical spectrum

- The deformed Bethe-Salpeter equation could be solved numerically in the region where **only one pole crosses the real line**.
- The discretized $\psi(x_i)$ and the residue r_1 is the unknown in:

$$f(\nu)\psi(\nu) - \frac{\lambda}{8} \frac{\nu}{\operatorname{ch} \frac{\pi \nu}{2}} \left(\overline{\psi} - 2\pi i r_1 \frac{\nu_1}{\operatorname{ch} \frac{\pi \nu_1}{2}} \right) = M^2 \left[\hat{K}\psi(\nu) - 2\pi i r_1 K(\nu, \nu_1) \right].$$

• We are essentially solving a generalized eigenvalue systems for $\vec{v} = (\psi_i \Delta x \frac{r_1}{2\pi i})$.

$$A \cdot \vec{v} = M^2 B \cdot \vec{v}.$$

where

$$A = \begin{bmatrix} x_j & \Delta x \psi_i & r_1/(2\pi i) \\ f(x_i)\delta_{ij} - \lambda \frac{x_i}{\operatorname{ch}(\pi x_i/2)} \frac{x_j}{\operatorname{ch}(\pi x_j/2)} & \frac{\lambda}{8} \frac{x_i}{\operatorname{ch}(\pi x_i/2)} \frac{\nu_1}{\operatorname{ch}(\pi \nu_1/2)} \\ -\frac{\lambda}{8} \frac{x_j}{\operatorname{ch}(\pi x_j/2)} \frac{\nu_1}{\operatorname{ch}(\pi \nu_1/2)} & \frac{f'(\nu_1)}{4\pi i} + \left(\frac{\nu_1}{\operatorname{ch}(\pi \nu_1/2)}\right)^2 \end{bmatrix} \qquad B = \begin{bmatrix} \Delta x \psi_i & r_1/(2\pi i) \\ K(x_i, x_j) & -K(\nu_1, x_i) \\ -K(\nu_1, x_j) & -K(\nu_1, x_i) \end{bmatrix}$$

Real spectrum

Complex spectrum

Massless Points

- For 't Hooft model, the pinching singularity $\lambda^{(p)}$ also correspond to the **massless** points $\lambda^{(z)}$ where at lest one mass vanishes $M(\lambda^{(z)}) = 0$.
- For the Ising model, these two points don't coincide **Because of the** $\bar{\psi}$ **term**.
- The consistency condition

$$f_I(\nu)\psi(\nu) = \frac{\lambda}{16} \frac{\nu}{\operatorname{ch}(\pi\nu/2)} \overline{\psi} \quad \Rightarrow \quad F(\lambda) = \frac{16}{\lambda}.$$

where
$$F(\lambda) \equiv \int_{-\infty}^{\infty} \left(\frac{\nu}{\operatorname{ch}(\pi\nu/2)}\right)^2 \frac{1}{f_{\lambda}(\nu)} d\nu$$
..

ullet When u_k passes the real line, one needs to add a residue term

$$F(\lambda) = \overline{F}(\lambda) - 4\pi i \left(\frac{\nu_k}{\operatorname{ch}(\pi \nu_k/2)}\right)^2 \frac{1}{f_\lambda'(\nu_k)}.$$

Figure: Plotted in the $\alpha=1/\lambda$ plane.

Crticial Points and Massless Points

Remarks

- We found an infinite number of square root branching points. With the accumulation at $\lambda = 0$. (Lasagna structure)
- The first branching point is very close to the Yang-Lee singularity.
- Numerical observation find that $\lambda = \lambda_1^{(p)}$, M_1^2 is very small.
- **Cojecture**: $\lambda = \lambda_1^{(p)}$ correspond to the Yang-Lee singularity. While other pinching points correspond to unknown critical non-unitary CFTs.
- A more sophisticated method is needed to probe critical points beyond Yang Lee.

Thank you for listening

References I

Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions.

Phys. Rev. Lett., 54:1354-1356.

- Fonseca, P. and Zamolodchikov, A. (2006). Ising spectroscopy. I. Mesons at T < T(c).
- Langer, J. S. (1967).
 Theory of the condensation point.

Annals of Physics, 41(1):108-157.

References II

McCoy, B. M. and Wu, T. T. (1978).

Two-dimensional Ising Field Theory in a Magnetic Field: Breakup of the Cut in the Two Point Function.

Phys. Rev. D, 18:1259.

Low temperature Analyticity

- $G_{\text{low}}(\xi)$ has only one branch cut in $(-\infty,0]$
- There is a essential singularity at $\xi = 0$. The physical interpretation: Nucleation process of metastable states.
- This branch cut could be estimated by Langers's theory of nucleation. Im $G_{low}(\xi) \sim \frac{\xi}{4\pi} e^{-\frac{\pi}{\xi \bar{\sigma}}}$ [Langer, 1967].

The dispersion relation [Fonseca and Zamolodchikov, 2001].

$$G_{\mathrm{low}}(\xi) = \tilde{G}_1 \xi - \xi^2 \int_0^\infty \frac{\operatorname{Im} G_{\mathrm{low}}(-t+i0)}{t^2(t+\xi)} \frac{dt}{\pi}$$

High temperature Analyticity

- $G_{\rm high}(\xi)$ is an even function of ξ it has branch cuts at $\xi^2 \in (-\infty, \xi_0^2]$. $\xi_0^2 \sim 0.18930$.
- The branching point corresponds to the Yang-Lee singularity. Described by non-unitary A_(2,5) minimal model.

The dispersion relation:

$$G_{\mathrm{high}}(\xi^2) = -\xi^2 \int_0^\infty rac{2 Im \, G_{\mathrm{high}}(-t+i0)}{t(t^2+\xi^2)} rac{dt}{\pi}.$$

Extended Analyticity

- The low temperature phase and the high temperature phase are connected by analytic continuation.
- The continuation become explicit when expressed in terms of $\eta = (2\pi\tau)/h^{\frac{8}{15}}$.

$$\Psi(\eta) = egin{cases} \eta^2 G_{
m low}(\eta^{-15/8}) & \eta > 0 \ \eta^2 G_{
m high}((-\eta)^{-15/8}) & \eta < 0. \end{cases}.$$

- Three distinct domains in the η -plane.

 - 1. Low-T domain: $-\frac{8}{15}\pi < {\rm Arg}\eta < \frac{8}{15}\pi.$ 2. High-T domain: $-\frac{4}{15}\pi < {\rm Arg} \eta < \frac{4}{15}\pi.$ 3. The shadow domain: $\frac{9}{15}\pi < {\rm Arg}\eta < \frac{11}{15}\pi, -\frac{11}{15}\pi < {\rm Arg}\eta < \frac{8}{15}\pi.$

