UNIVERSALITY OF THE YANG-LEE EDGE SINGULARITY & ITS APPLICATIONS

Fabian Rennecke

ANALYTIC STRUCTURE OF QCD AND YANG-LEE EDGE SINGULARITY

ECT*TRENTO - 09/09/2025

in the (T, μ_B) plane

in the $(T, \text{Re } \mu_B, \text{Im } \mu_B)$ plane Yang-Lee edge singularity crossover CEP Ist order transition? branch cut surface $\text{Im }\mu_B$

 $\text{Re}\,\mu_B$

in the $(T, \mu_B, m_{u,d})$ plane

in the $(T, m_s, m_{u,d})$ plane at $\mu_B = 0$

in the (Im $m_{u,d}$, m_s , Re $m_{u,d}$) plane at $T = T_c \mid_{\mathrm{m_{s,phys}}}$

MANY FACES OF THE PHASE DIAGRAM

- direct detection of phase transitions challenging
- powerful constraints from universality and analytic structure near 2nd-order transitions

leverage this to understand QCD phase diagram

MANY FACE OF THE PHASE DIAGRAM

direct detection of phase

erful constraints from ersality and analytic structure 2nd-order transitions

erage this to understand QCD phase diagram

UNIVERSALITY OF THE YLE

LEE-YANG THEOREMS

phase structure analytic structure in the complex plane

Consider system of N atoms: grand canonical partition function is polynomial of degree N in a finite volume V,

LY theorem

if Z_V has no zeros in a region R in \mathbb{C} , then all thermodynamic quantities are analytic for $z \in R$ for $V \to \infty$

[Yang, Lee (1952)]

At a phase transition thermodynamic functions can't be analytic

- Lee-Yang zeros are poles of the free energy $f(T,z) = -\lim_{V \to \infty} \frac{T}{V} \ln Z_V(T,z)$
- ullet for $V o \infty$ they coalesce into branch cuts in the complex z-plane
- branch points: Yang-Lee edge singularities (YLE)

Lee-Yang zeros/cuts & YLEs encode phase structure

YANG-LEE EDGE SINGULARITY

Example: analytic structure of the free energy density of the 1d Ising model, $z=e^{2h/T}$

- no thermal phase transition in 1d Ising: YLE never touches the real, positive axis
- \bullet zeros/cut on the unit circle/at purely imaginary h: Lee-Yang circle theorem

All zeros/cuts/YLEs are at imaginary magnetic fields

- rigorously proven for ferromagnetic spin-1/2 systems and $O(N=1,2,3,\infty)$
- ullet systematic results suggest that it holds for all N

YLE & PHASE TRANSITIONS

Phase transitions can be understood from the location of the YLE:

IDENTIFYING THE YLE

Free energy from the effective action, (h: explicit symmetry breaking/magnetic field)

$$f(T,h) = -\Omega(\bar{\phi}(T,h)) \equiv -\frac{T}{V} \Gamma[\bar{\phi}(T,h)] \qquad \Gamma[\phi] = \sup_{J} \left\{ \int_{x} J \cdot \phi - \ln Z[J] \right\}$$
effective potential effective action
$$\ln Z[J] = \int \mathcal{D}\phi \, e^{-S[\phi] + \int_{x} J \cdot \phi},$$

$$\Gamma[\phi] = \sup_{J} \left\{ \int_{x} J \cdot \phi - \ln Z[J] \right\}$$

$$\ln Z[J] = \int \mathcal{D}\phi \, e^{-S[\phi] + \int_{x} J \cdot \phi},$$

Order parameter field/magnetization $\phi(T,h) = -\partial_h f(T,h)$ determined by EoM,

$$\left. \frac{\delta \Gamma[\phi]}{\delta \phi} \right|_{\phi = \bar{\phi}} = h$$

YLE: branch point $h = h_c \in \mathbb{C}$ of f(T, h) for $T \ge T_c$ ($T < T_c$: spinodals)

edge singularity encoded in magnetization

 $\phi(T,h)$ implicitly defined: use implicit function theorem to identify h_{YLE} from Hessian:

$$\det H = \det \left(\frac{\delta^2 \Gamma[\phi]}{\delta \phi_i \delta \phi_j} \Big|_{\phi = \bar{\phi}(T, h_c)} \right) = 0$$

zero eigenvalue ↔ critical mode: YLE is a critical point!

[Mukherjee, FR, Skokov (2021)]

CRITICAL PHENOMENA & UNIVERSALITY

correlation length

 $2^{
m nd}$ order transition: $\xi
ightarrow \infty$

fluctuations on all length scales

critical opalescence of ethane [Wikipedia]

Near the critical point the system is scale invariant and microscopic details are irrelevant

Universality: main features of the system are described by universal critical exponents, e.g., $\xi \sim (T-T_c)^{-\nu}$

example:
liquid-gas transition
=
3d Ising
=
QCD CEP

SCALING HYPOTHESIS AND THE EDGE SINGULARITY

Scale invariance near 2nd order transition: free energy is homogeneous function (for two relevant directions)

$$f(t,h) = b^{-d} f_f(t b^{\frac{1}{\nu}}, h b^{\frac{\beta \delta}{\nu}}) + f_{\text{reg}}(t,h)$$

$$t = \frac{T - T_c}{T_c}$$
dim.less rescaling

 f_f is a universal scaling function and β, δ, ν are universal critical exponents

→ YLE is universal at criticality

Consider magnetic scaling: $b = |h|^{-\frac{\nu}{\beta\delta}} \longrightarrow f(t,h) = h^{\frac{d\nu}{\beta\delta}} f_f(z) + \dots$ with scaling variable $z = \frac{t}{h^{\frac{1}{\beta\delta}}}$

Order parameter described by universal magnetic equation of state $f_G(z)$ (using $\bar{\phi}(t,h) = -\partial_h f(t,h)$)

circle theorem $h_c \in i\mathbb{R}$:

$$\bar{\phi}(t,h) = h^{\frac{1}{\delta}} f_G(z) + \bar{\phi}_{\text{reg}}(t,h)$$
 — YLE is branch point of $f_G(z)$

$$z_c = |z_c| e^{\pm \frac{i\pi}{2\beta\delta}}$$

MEAN FIELD INTUITION

Relevant features can be illustrated by simple mean-field analysis of ϕ^4 -theory/O(N)-model

$$\Omega(\phi) = \frac{1}{2}t\phi^2 + \frac{1}{4}\phi^4 - h\phi$$

- EoM at t=0: $\bar{\phi}=h^{\frac{1}{3}} \Rightarrow \delta_{\mathrm{MF}}=3$
- EoM at h = 0: $\bar{\phi} = (-t)^{\frac{1}{2}} \Rightarrow \beta_{\text{MF}} = \frac{1}{2}$
- YLE from $\Omega'(\bar{\phi}_c) = 0 = \Omega''(\bar{\phi}_c)$:

$$h_c = \pm 2i (t/3)^{3/2}, \quad z_c = \frac{3}{2^{2/3}} e^{\pm \frac{i\pi}{3}}$$

MEAN FIELD INTUITION

Relevant features can be illustrated by simple mean-field analysis of ϕ^4 -theory/O(N) model

$$\Omega(\phi) = \frac{1}{2}t\phi^2 + \frac{1}{4}\phi^4 - h\phi$$

- $\Omega''(\bar{\phi}_c) = 0 \Rightarrow \bar{\phi}_c = \pm i\sqrt{t/3}$: nonzero imaginary magnetization at t > 0
- \bullet expand Ω about $\bar{\phi}_c$, $\,\phi = \varphi + \bar{\phi}_c$

- O(N) model at $t,h \neq 0$: 2 relevant directions (\leftrightarrow 2 independent crit. exponents), upper crit. dimension $d_c=4$
- LY-theory at $t, h \neq 0$: I relevant direction, $d_c = 6$

$\delta_{d=3}$	<i>O</i> (1)	<i>O</i> (4)	LY
MF	3	3	2
best*	4.78984(1)	4.7915(67)	11.7(1)

$$\delta = \frac{d+2-\eta}{d-2+\eta} \longrightarrow \eta \approx -0.53 \text{ at YLE!}$$

*conformal bootstrap & FRG: [Gliozzi, Rago (2014); Kos et al. (2014, 2015)] [Balog et al. (2019), De Polsi et al. (2020)]

UNIVERSALITY OF THE EDGE SINGULARITY

Consider O(N) model as relevant example

systematic & direct (i.e. no

 $z_c = |z_c| e^{\pm \frac{i\pi}{2\beta\delta}}$ is universal in scaling region of Wilson-Fisher fixed point.

Phase is well known from various methods: CB, Monte Carlo, $d_c - \epsilon$ expansion, FRG, ...

But what about $|z_c|$?

- $d_c = 6$: non-perturbative for $d < 6 \rightarrow 4 \epsilon$ expansion
- complex parameters: sign problem → Monte Carlo
- analytic structure of scaling function → CB

reconstruction, extrapolation, ...)

FRG is the only way for 2 < d < 6 d=1 trivial; CFT methods at d=2

FRG: [Johnson, FR, Skokov (2020-2022)]
CFT: [Fonseca, Zamolodchikov (2001); Xu, Zamolodchikov (2022)]

FUNCTIONAL RENORMALIZATION GROUP

Successively integrate-out fluctuations

- ullet start with bare action $\Gamma_{\Lambda}=S$ at small distance/large momentum scale Λ
- gradually include fluctuations of larger size by integrating out modes with increasingly small momenta: Wilson RG (Nobel Prize in 1982)
- \rightarrow running couplings with RG scale k
- new couplings are generated dynamically

Scale dependent effective action Γ_k : incorporates all fluctuations down to scale k

$$\Gamma_{\Lambda} = S$$
 Γ_{k}

Practical implementation: Wetterich equation [Wetterich (1993)]

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{STr} \left[\left(\Gamma_k^{(2)}[\phi] + R_k \right)^{-1} \cdot \partial_k R_k \right] = \frac{1}{2} \left(\begin{array}{c} \otimes \\ \end{array} \right)$$

- pros: one-loop exact, non-perturbative, no sign problem
- cons: requires truncation

FRG FOR CRITICAL PHENOMENA

Consider O(N)-model with $\phi = (\phi_1, ..., \phi_N)$

• systematic truncation for critical phenomena: derivative expansion in p^2/k^2 [Balog et al. (2019), De Polsi et al. (2020)]

$$\Gamma_k = \int d^d x \left\{ U_k(\phi) + \frac{1}{2} Z_k(\phi) \left(\partial_\mu \phi \right)^2 + \frac{1}{4} Y_k(\phi) \left(\partial_\mu \rho \right)^2 \right\} + \mathcal{O}(\partial^4)$$

- Taylor expand U_k , Z_k , Y_k around $\phi=\bar{\phi}_k=(\bar{\sigma}_k,0,\ldots,0)$ (σ : critical radial mode)
 - conventional choice: $\partial_{\sigma}U|_{\bar{\phi}_k}=h=\mathrm{const.}\to 0$ requires fine-tuned initial conditions to find FP
 - ▶ convenient for Yang-Lee FP: $\partial_{\sigma}^2 U|_{\bar{\phi}_k} = m_{\sigma}^2 = \text{const.} \to 0$ disadvantage: numerically expensive in broken phase as expansion point lies in flat part of the convex potential for any k>0
 - follow RG flow of critical point in symmetric phase & read-off h_c
 - convenient scaling variable: $\zeta = \frac{z}{R_{\chi}^{1/\delta}}$

• use optimized regulator for NLO derivative expansion: $R_k(q^2) = a Z_{\sigma,k}(k^2 - q^2) \theta(k^2 - q^2)$ [Litim (2001)]

a: free parameter to estimate regulator dependence (truncation error)

RG FLOW FROM WF TO LY

Initialize system close to Wilson-Fisher and follow RG flow to Lee-Yang fixed point (here: Ising (O(1)) model)

[FR, Skokov (2022)]

ISING YLE

Edge singularity in the Ising model [FR, Skokov (2022)]

D=3 YLE

Edge singularity for various N in 3d [John

[Johnson, FR, Skokov (2022)]

using known values of R_{χ} :

$oxed{N}$	1	2	3	4	5
$ z_c $	2.43(4)	2.04(8)	1.83(6)	1.69(3)	1.55(4)

universal YLE location known for all O(N) models!

To do for QCD: $U(N) \times U(N)$ and $SU(N) \times SU(N)$

APPLICATION TO THE PHASE DIAGRAM(S)

YLE OF THE CEP

Consider system with a CEP at $(T_{\text{CEP}}, \mu_{\text{CEP}})$ in the complex μ plane MF quark-meson model [Mukherjee, FR, Skokov (2021)]

- $T = T_{\text{CEP}} : \mu_{\text{YLE}} = \mu_{\text{CEP}} \in \mathbb{R}$
- $T > T_{\text{CEP}} : \mu_{\text{YLE}} \in \mathbb{C}$

(see Fei Gao's talk for QCD results)

At $\mu = 0$ the YLE is the nearest singularity

determines radius of convergence for expansions around $\mu=0$

YLE OF THE CEP

Sometimes (e.g. for lattice and experiment) $(T_{\rm CEP}, \mu_{\rm CEP})$ not directly accessible. Then:

- ullet reconstruct YLE location for available T and μ
- extrapolate to ${\rm Im}\,\mu_{\rm YLE}=0$ to locate CEP

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)

How to extrapolate?

• if data is in scaling region of CEP: use universality

$$\mu_{\text{YLE}} = \mu_{\text{CEP}} + c_1 (T - T_{\text{CEP}}) \pm ic_2 \left(\frac{T - T_{\text{CEP}}}{|z_c|}\right)^{\beta \delta}$$

[Stephanov (2006)]

YLE OF THE CEP

Sometimes (e.g. for lattice and experiment) $(T_{\rm CEP}, \mu_{\rm CEP})$ not directly accessible. Then:

- ullet reconstruct YLE location for available T and μ
- extrapolate to ${\rm Im}\,\mu_{\rm YLE}=0$ to locate CEP (see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)

How to extrapolate?

- if data is in scaling region of CEP: use universality
- but how large is scaling region?

O(4)-scaling of light chiral limit (physical m_s):

- $m_{\pi} \lesssim 5 \,\mathrm{MeV}$ at $T = T_c$
- $T_c T \lesssim 7 \,\mathrm{MeV}$ at $m_\pi = 0$

CEP scaling region probably also small

[Fu, Luo, Pawlowski, FR, Yin (2021, 2023)]

non-universal information necessary

(see talks of Gao and Pawlowski)

fits of the form
$$\bar{\Delta}_l(m_\pi) = B_c \, m_\pi^{2/\delta} \big(1 + a_m m_\pi^{2\theta_H}\big) + c_1 \, m_\pi^2 + c_2 \, m_\pi^4$$
 break down for $m_\pi \gtrsim 25 \, \mathrm{MeV}$

THE COLUMBIA PLOT AND EDGE SINGULARITIES

THE COLUMBIA PLOT

How does the order of the chiral phase transition depend on the quark mass?

• distinct mass hierarchy of quarks ($2\pi T_c \approx 1 \, \mathrm{GeV}$)

what if u, d were even lighter?

relevant flavor symmetry:

$$U(3)_L \times U(3)_R \approx SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$$

$$\downarrow \text{ axial anomaly}$$

$$SU(3)_V \times SU(3)_A \times U(1)_V$$

$$\downarrow \text{ chubby strange quark}$$

$$SU(2)_V \times SU(2)_A \times U(1)_V$$

$$\sim O(4) \quad \downarrow \text{ light quark masses}$$

$$SU(2)_V \times U(1)_V$$

any "remnants" at physical quark masses?

THE COLUMBIA PLOT

Expectation from Pisarski & Wilczek (1983) (perturbative RG analysis of a linear sigma model):

- $N_f = 3$ chiral quarks: Ist order transition
- $N_f = 2$ chiral quarks: depends on the fate of the axial anomaly

FRG analysis: [Resch, FR, Schaefer (2017)]

suggests very small 1st order region in the 3-flavor chiral limit (triggered by bosonic fluctuations - large corrections to mean-field)

Also: no stable fixed point for $N_F = 3$ from recent FRG analysis in the 3-flavor chiral limit [Fejos (2022)]

THE COLUMBIA PLOT

Could there even be a 2nd order transition in the 3-flavor chiral limit?

- generic prediction of mean-field studies of models without 't Hooft determinant [e.g. Resch, FR, Schaefer (2017)]
- detailed lattice study suggests 2nd order transition even for $N_f \le 6$ massless quarks [Cuteri, Philipsen, Sciara (2021)]
- fixed-point analyses: only possible if $U(1)_A$ is restored at T_c ? [Fejos (2022), Kousvos and Stergiou (2023)]
- cannot be excluded from lattice computations [Aarts et al. (2023) & references therein]
- suggested by recent DSE study [Bernhardt, Fischer (2023)]
- ullet conjecture: dominance of higher topological charges at $T\lesssim T_c$ necessary for this scenario [Pisarski, FR (2024)]

Can YLEs help us here?

- consider quark mass as thermodynamic control parameter (acts like magnetic field in O(N) models)
- search for 2nd order transition at some (T_c, m_c)
- YLE for $m \in \mathbb{C}$ at $T > T_c$

There are in general 3 different scenarios

- consider quark mass as thermodynamic control parameter (acts like magnetic field in O(N) models)
- search for 2nd order transition at some (T_c, m_c)
- YLE for $m \in \mathbb{C}$ at $T > T_c$

There are in general 3 different scenarios, A:

- 2nd order transition at zero mass
- no further restriction on the transition
- ullet requires reconstruction + extrapolation for various T in the continuum limit

- consider quark mass as thermodynamic control parameter (acts like magnetic field in O(N) models)
- search for 2nd order transition at some (T_c, m_c)
- YLE for $m \in \mathbb{C}$ at $T > T_c$

There are in general 3 different scenarios, B:

- 2nd order transition at zero mass
- Lee-Yang circle theorem applies
- YLE and LY zeros must lie on the imaginary mass axis
 - infer that transition must be at zero mass without any extrapolation, neither to small T, m or the continuum
- reconstruction of YLE still necessary

- consider quark mass as thermodynamic control parameter (acts like magnetic field in O(N) models)
- search for 2nd order transition at some (T_c, m_c)
- YLE for $m \in \mathbb{C}$ at $T > T_c$

There are in general 3 different scenarios, C:

- 2nd order transition at nonzero mass
- circle theorem irrelevant, as map from m to critical magnetic field is nontrivial
- ullet requires reconstruction + extrapolation for various T in the continuum limit

RECONSTRUCTING THE YLE

Adapt the strategy used for finite μ in [Dimopoulos et al. (2022)] to finite m:

multi-point Padé reconstruction

assume that analytic structure of the free energy is captured by a rational function

$$f(z) \approx R_n^m(z) = \frac{P_m(z)}{1 + Q_n(z)} = \frac{\sum_{i=0}^m a_i z^i}{1 + \sum_{j=1}^n b_j z^j}$$

• consider f(z) at N nodes z_k (k=1,...,N) and assume we know its derivatives up to order L_k at each node

we can fix
$$n + m + 1 = \sum_{k=1}^{N} (L_k + 1)$$
 Padé coefficients

$$P_{m}(z_{1}) - f(z_{1}) Q_{n}(z_{1}) = f(z_{1})$$

$$P'_{m}(z_{1}) - f'(z_{1}) Q_{n}(z_{1}) - f(z_{1}) Q'_{n}(z_{1}) = f'(z_{1})$$

$$\vdots$$

$$P_{m}(z_{N}) - f(z_{N}) Q_{n}(z_{N}) = f(z_{N})$$

$$P'_{m}(z_{N}) - f'(z_{N}) Q_{n}(z_{N}) - f(z_{N}) Q'_{n}(z_{N}) = f'(z_{N})$$

$$\vdots$$

RECONSTRUCTING THE YLE

- rational functions can only have isolated poles (zeros of the denominator)
- branch cuts are indicated by arcs of poles, accumulating at branch points for large N, [Stahl (1997)]
- identify YLE as closest pole to real axis that is stable under variation of the Padé order [m/n]

Proof of concept: $N_f = 2$ QM model, where scenario (B) and (C) can be realized (depends on choice of parameters).

- use 6 nodes for the chiral susceptibility $\chi_m \sim \frac{\delta \sigma}{\delta m}$
- 2 known derivatives at each node
- susceptibility is an even function of *m*

use [16/18] Padé in *m*

SCENARIO C

In this model: Ising transition at m > 0

 $-\!-\!-\!\!\!-\!\!\!\!-$ reconstruction works well, but extrapolation is required if data at smaller T not available

SCENARIO C

In this model: O(4) phase transition at m=0

reconstruction works well, no extrapolation required to infer m_c

To do: apply to lattice data!

[Herl, FR, Schmidt, von Smekal (in preparation)]

CONCLUSIONS

We can learn a lot from YLEs

Their location is universal.

It has been established using FRG (for relevant systems).

Universality only in the scaling regime of Wilson-Fisher fixed point.

But this is likely to be small \rightarrow non-universal information needed.

Also: circle theorem can provide shortcut to solve Columbia plot puzzle.