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MANY FACES OF THE PHASE DIAGRAM
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This talk:

• universality of YLEs                                            
 basics & state-of-the-art

• application to the phase diagram                                                    
 importance of non-universal corrections                                                        
 order of the chiral phase transition

→

→
→



UNIVERSALITY OF THE YLE



LEE-YANG THEOREMS
phase structure analytic structure in the complex plane

Consider system of  atoms: grand canonical partition function is polynomial of degree  in a finite volume ,N N V

ZV =
N

∑
i=1

𝒵i (T) zi =
N

∏
i=1

(z − zi)

canonical partition function with  particlesi

fugacity ,
: chemical potential, magnetic field, source,...

z ∼ eμ/T

μ

Lee-Yang zeros

LY theorem 
if  has no zeros in a region  in , then 
all thermodynamic quantities are analytic 

for  for 

ZV R ℂ

z ∈ R V → ∞
[Yang, Lee (1952)]

• Lee-Yang zeros are poles of the free energy

• for  they coalesce into branch cuts in the complex -plane

• branch points: Yang-Lee edge singularities (YLE) 

V → ∞ z

At a phase transition thermodynamic functions can't be analytic

Lee-Yang zeros/cuts & YLEs encode phase structure

f(T, z) = − lim
V→∞

T
V

ln ZV(T, z)



YANG-LEE EDGE SINGULARITY
Example: analytic structure of the free energy density of the 1d Ising model,  z = e2h/T
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Lee-Yang zeros (N=50)

branch cut ( )N → ∞
YLE

• no thermal phase transition in 1d Ising:  YLE never touches the real, positive axis

• zeros/cut on the unit circle/at purely imaginary : Lee-Yang circle theoremh

All zeros/cuts/YLEs are at imaginary magnetic fields

• rigorously proven for ferromagnetic spin-1/2 systems and 

• systematic results suggest that it holds for all 
O(N = 1,2,3,∞)

N
[Lee, Yang (1952); Simon, Griffith (1972); Dunlop, Newman (1975); Lieb, Sokal (1981); Kurtze, Fisher (1978); Johnson, FR, Skokov (2020-2022)]



YLE & PHASE TRANSITIONS
Phase transitions can be understood from the location of the YLE:
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IDENTIFYING THE YLE

ANALYTIC STRUCTUREOFTHEQMMODEL
The cut discontinuity in Reto Icf

electrostaticanalogy

Free energy from the effective action, ( : explicit symmetry breaking/magnetic field)h

f(T, h) = − Ω(ϕ̄(T, h)) ≡ −
T
V

Γ[ϕ̄(T, h)] Γ[ϕ] = sup
J {∫x

J⋅ϕ − ln Z[J]}
ln Z[J] = ∫ 𝒟ϕ e−S[ϕ]+ ∫x J⋅ϕ ,

Order parameter field/magnetization  determined by EoM,ϕ̄(T, h) = − ∂h f(T, h)

δΓ[ϕ]
δϕ ϕ=ϕ̄

= h

edge singularity encoded in magnetization

 implicitly defined: use implicit function theorem to identify  
from Hessian:
ϕ̄(T, h) hYLE

det H = det (δ2Γ[ϕ]
δϕiδϕj ϕ=ϕ̄(T, hc) ) = 0

Re ϕ̄(Re h, Im h)

[Mukherjee, FR, Skokov (2021)]

effective potential effective action

YLE: branch point  of   for  ( : spinodals)h = hc ∈ ℂ f(T, h) T ≥ Tc T < Tc

zero eigenvalue  critical mode:
YLE is a critical point!

↔

[Haensch, FR, von Smekal (2023)]



CRITICAL PHENOMENA & UNIVERSALITY
Second order phase transition: correlation length diverges

μ

CRITICAL PHENOMENA & UNIVERSALITY

Near the critical point the system is scale invariant and microscopic details are irrelevant 

2nd order transition: 
ξ → ∞

fluctuations on all length scales

critical opalescence of ethane [Wikipedia]

correlation length

T < Tc T = Tc T > Tc

example: 
liquid-gas transition

= 
3d Ising

 = 
QCD CEP

QCD PHASE DIAGRAM

THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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We can re-express the van der Waals equation of state (2.1) in a form independent of the

model dependent parameters using rescaled variables P̄ = P
Pc

, V̄ = V
Vc

, and T̄ = T
Tc

:

Å
P̄ +

3

V̄

ãÅ
V̄ �

1
3

ã
=

8
3

T̄ (2.2)

Regardless of the physical differences which produce different critical temperatures, pres-

sures, and volumes, every system can be described via the above equation of state. Here, all

critical values are unity, P̄c = T̄c = V̄c = 1. Pushing this observation further, it was predicted

that the expression in Eq. (2.2) was a universal equation of state for all fluids - the law of corre-

sponding states. Though the van der Waals equation does capture qualitative features of this
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Figure 2.3: The Guggenheim plot

phase transition, it does not do so well quan-

titatively. In defense of this idea though -

that there is an underlying universality for

all fluids - there is a famous plot dating back

to 1945, the Guggenheim plot [48], see Fig.

2.3. This plot compares various gases near

the critical point by plotting the rescaled

temperature vs the rescaled density (de-

noted n in the plot). Amazingly, one does

indeed see that all the data falls on the same,

seemingly universal, curve. However, there

is a clear discrepancy between the data and

the van der Waals (vdW in the plot) predic-

tion although it does a surprisingly good job.

Lastly, this idea of universality is central to

this thesis and can be set on a rigorous foot-

ing using the concept of the renormalization group, but more on this later.

2.2.1 Basic universal data

Common to the discussion of universality is a set of universal critical exponents, some of

which are loosely defined below, which detail how properties of the system near criticality

11

[Guggenheim plot (1945)]

Universality: main features of the system are described by universal critical exponents,  e.g.,   ξ ∼ (T − Tc)−ν



f(t, h) = b−d ff(t b
1
ν , h b

βδ
ν ) + freg(t, h)

SCALING HYPOTHESIS AND THE EDGE SINGULARITY
Scale invariance near 2nd order transition: free energy is homogeneous function (for two relevant directions)

dim.less rescalingt =
T − Tc

Tc

YLE is universal at criticality

 is a universal scaling function and  are universal critical exponentsff β, δ, ν

Consider magnetic scaling:  with scaling variable b = |h |− ν
βδ ⟶ f(t, h) = h

dν
βδ ff(z) + … z =

t

h
1
βδ

Order parameter described by universal magnetic equation of state  (using )fG(z) ϕ̄(t, h) = − ∂h f(t, h)

ϕ̄(t, h) = h
1
δ fG(z) + ϕ̄reg(t, h) YLE is branch point of fG(z)

circle theorem :hc ∈ iℝ

zc = |zc |e± iπ
2βδ



MEAN FIELD INTUITION
Relevant features can be illustrated by simple mean-field analysis of -theory/ -modelϕ4 O(N)

Ω(ϕ) =
1
2

t ϕ2 +
1
4

ϕ4 − hϕ

• EoM at :t = 0 ϕ̄ = h
1
3 ⇒ δMF = 3

• EoM at :h = 0 ϕ̄ = (−t)1
2 ⇒ βMF =

1
2

• YLE from : Ω′￼(ϕ̄c) = 0 = Ω′￼′￼(ϕ̄c)

zc =
3

22/3
e± iπ

3

Yang-Lee edge singularity

fg(Z)
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credit: V. Skokov

hc = ± 2i (t/3)3/2 ,



MEAN FIELD INTUITION

Ω(ϕ) =
1
2

t ϕ2 +
1
4

ϕ4 − hϕ

• : nonzero imaginary magnetization at 

• expand  about  ,    

Ω′￼′￼(ϕ̄c) = 0 ⇒ ϕ̄c = ± i t/3 t > 0
Ω ϕ̄c ϕ = φ + ϕ̄c

Ω(φ) ≈ iλ̄ φ3 − h̄φ
λ̄ = t/3

YLE has its "own" universality class (LY-theory),
independent of underlying  universality of -theoryO(N) ϕ4

•  model at : 2 relevant directions (  2 independent crit. exponents), upper crit. dimension 

• LY-theory at : 1 relevant direction, 

O(N) t, h ≠ 0 ↔ dc = 4
t, h ≠ 0 dc = 6

Relevant features can be illustrated by simple mean-field analysis of -theory/  modelϕ4 O(N)

δ =
d + 2 − η
d − 2 + η  at YLE!η ≈ − 0.53

O(1) O(4)

MF

best*

δd=3

3 3 2
4.78984(1) 4.7915(67) 11.7(1)

LY

*conformal bootstrap & FRG:
[Gliozzi, Rago (2014); Kos et al. (2014, 2015)]
[Balog et al. (2019), De Polsi et al. (2020)]

[Fisher (1978)]



UNIVERSALITY OF THE EDGE SINGULARITY

 is universal in scaling region of Wilson-Fisher fixed point.

Phase is well known from various methods: CB, Monte Carlo,  expansion, FRG, ...

But what about ?

zc = |zc |e± iπ
2βδ

dc−ϵ
|zc |

: Ising modelN = 1: polymer chainsN = 0

[Wikipedia]

: (XY model) superfluidityN = 2

[Wikipedia]

: QCD in the chiral limitN = 4

Universality and Columbia plot Philippe de Forcrand

Figure 1: (left) Columbia plot: we focus on the Nf = 3 chiral critical point (arrow), and its Nf = 4 analogue;
(right): adding a vertical axis for the chemical potential µ , a possible QCD chiral critical point occurs when
the surface swept by the µ = 0 chiral critical line intersects the physical quark masses’ vertical line.

1. Introduction

The QCD phase diagram summarizes the various behaviors of QCD as a function of temper-
ature T and matter density, or equivalently quark chemical potential µ . Since the chiral and the
center symmetry, which play crucial roles in the phase diagram, are both explicitly broken in QCD
by the quark masses, it is useful to consider these masses as QCD parameters: mu,d for the two
light quark masses considered degenerate for simplicity, and ms for the strange quark mass. Our
expectations for the µ = 0 phase diagram, projected along the T -direction, are contained in the
“Columbia plot” Fig. 1 (left).

The upper-right and lower-left corners of the Columbia plot are simpler to analyze:
- In the first, all quarks are infinitely massive. They decouple, and the resulting SU(Nc = 3) Yang-
Mills theory obeys the global Z(3) center symmetry, which is spontaneously broken at high tem-
perature via a first-order transition.
- In the second, all quarks are massless, and the theory obeys the global SU(Nf = 3) chiral sym-
metry, which is spontaneously broken at low temperature and restored at high temperature. For 3
massless flavors or more, one expects symmetry restoration to occur via a first-order transition [1],
because no 3d SU(Nf ),Nf � 3, second-order universality class is known [2].

In the middle of the Columbia plot, where both symmetries are badly broken explicitly, Monte
Carlo simulations indicate an analytic crossover as T is raised. Thus, there must exist two critical,
second-order lines separating the two first-order regions above from the central crossover region.
Because no particular symmetry is at play along these critical lines, their universality class should
be that of a 3d f 4 theory, i.e. that of the 3d Ising model.

A simple way to pin down the location of these two critical lines is to consider the Nf = 3
case, with all quark masses equal, shown as the diagonal of the Columbia plot. Two critical quark
masses should be observed, to be determined with high precision via Monte Carlo simulations. In
practice, it is difficult to adopt a reference scale, since an Nf = 3 theory is a distortion of real-world

2

[Forcrand (2017)]

Consider  model as relevant exampleO(N)

• :  non-perturbative for    expansion

• complex parameters: sign problem  Monte Carlo

• analytic structure of scaling function  CB

dc = 6 d<6 → 4 −ϵ
→

→

FRG is the only way for  
 trivial; CFT methods at 

2 < d < 6
d=1 d=2

FRG: [Johnson, FR, Skokov (2020-2022)]
CFT: [Fonseca, Zamolodchikov (2001); Xu, Zamolodchikov (2022)]

systematic & direct (i.e. no 
reconstruction, extrapolation, ...)



FUNCTIONAL RENORMALIZATION GROUP
Successively integrate-out fluctuations

running couplings with RG scale k
new couplings are generated dynamically

Scale dependent effective action :
incorporates all fluctuations down to scale 

Γk
k

ΓΛ = S Γk Γ0 = Γ

• start with bare action  at small distance/large momentum scale ΓΛ = S Λ

• gradually include fluctuations of larger size by integrating out modes with increasingly 
small momenta: Wilson RG (Nobel Prize in 1982)

Practical implementation: Wetterich equation [Wetterich (1993)]

credit: Jan Pawlowski

∂kΓk [ϕ] =
1
2

STr[(Γ(2)
k [ϕ] + Rk)−1⋅ ∂kRk] =

1
2

• pros: one-loop exact, non-perturbative, no sign problem

• cons: requires truncation



Magnetic equation of state

Minimize   equilibrium order
parameter:

Arbitrary  and : 
Simplify: : 
Ansatz for the solution 

 or 

Scaling form of  ( )

F = ∫ ddx ( 1
2

tϕ2 +
1
4

λϕ4 − hϕ)

F [ϕ] ⇝

t h tϕ + λϕ3 = h
λ → 1 tϕ + ϕ3 = h

ϕ = h1/3fG

th1/3fG + hfG
3 = h t

h2/3 fG + fG
3 = 1

magnetic equation of state β = 1/2, δ = 3

fG(z + fG
2) = 1, z =

t

h
1

βδ

6 /  16

FRG FOR CRITICAL PHENOMENA

• systematic truncation for critical phenomena: derivative expansion in p2/k2

Γk = ∫ ddx {Uk(ϕ) +
1
2

Zk(ϕ)(∂μϕ)2 +
1
4

Yk(ϕ)(∂μρ)2} + 𝒪(∂4)

Consider -model with O(N) ϕ = (ϕ1, …, ϕN)
[Balog et al. (2019), De Polsi et al. (2020)]

• Taylor expand , ,  around  ( : critical radial mode)Uk Zk Yk ϕ = ϕ̄k = (σ̄k,0,…,0) σ

‣ conventional choice:  

‣ convenient for Yang-Lee FP: 

∂σU |ϕ̄k
= h = const . → 0

∂2
σU |ϕ̄k

= m2
σ = const . → 0

requires fine-tuned initial 
conditions to find FP

follow RG flow of critical point in symmetric phase & read-off hc

• use optimized regulator for NLO derivative expansion:   [Litim (2001)]Rk(q2) = a Zσ,k (k2 − q2) θ(k2 − q2)

convenient scaling variable: ζ =
z

R1/δ
χ

: free parameter to estimate regulator dependence (truncation error)a

disadvantage: numerically expensive in broken phase as expansion 
point lies in flat part of the convex potential for any k > 0



RG FLOW FROM WF TO LY

anomalous dimension

ηk = −
∂tZk

Zk

[FR, Skokov (2022)]

Initialize system close to Wilson-Fisher and follow RG flow to Lee-Yang fixed point (here: Ising ( ) model)O(1)



ISING YLE
Edge singularity in the Ising model

Results: Ising universality class 
 does not have to be integer in FRG

d 1 2 3 4

1 1.32504(2) 1.621(4)
G. Johnson, F. Rennecke, and V. S, Phys.Rev.D 107 (2023) 11, 116013

F. Rennecke and V. S, Annals Phys. 444 (2022) 169010
A. Connelly, G. Johnson, F. Rennecke, and V. S, Phys.Rev.Lett. 125 19, 191602 (2020)

: H.-L. Xu and A. Zamolodchikov, JHEP 08 (2022) 057 H.-L. Xu and A. Zamolodchikov, 2304.07886

N = 1
d

1.8

1.6

•exact
•Xu-Zamolodchikov
--(1-d)-expansion

Padeapprox.
•FRG

81:1
1.2

1.88
1.86
1.84
1.82
1.80

1.0to
1

3.7 3.8

2 3
d

0000000

3.9 4.0,-
4

|zc|/R
1/γ
χ (Ntrunc) 3/22/3

d = 2
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[FR, Skokov (2022)]



D=3 YLE
Edge singularity for various  in N 3d [Johnson, FR, Skokov (2022)]

N 1 2 3 4 5

|ωc| 1.621(4)(1) 1.612(9)(0) 1.604(7)(0) 1.597(3)(0) 1.5925(2)(1)

TABLE II. The location of the YLE singularity, |ωc| = |zc|/R
1/ω
ε for a representative number of

components N . The numbers in the parentheses (!tr), (!reg) show the truncation error and the

error due to residual regulator dependence. The uncertainty quoted in the text corresponds to the

maximum of !tr and !reg. In all considered cases, !tr is the largest. For the three-dimensional

Ising universality class N = 1, the result of the current work is consistent with the previous study

of Ref. [7].

N 1 2 3 4 5

R
1/ω
ε 1.497(22) 1.26(5) 1.140(34) 1.058(21) 0.974(26)

TABLE III. The combination required to map ωc to zc. Critical amplitude Rε and critical exponent

ε are obtained from Ref. [46, 70] and precision calculations of Refs. [20, 63].

these results together with the value of Rε computed for N = 1 in Ref. [70]. Reference [70]

does not provide systematic uncertainty on the value of Rε; we estimated it by comparing

to earlier calculations of Rε in the LPA’ FRG of Ref. [46]. We list the results in Table III,

where to find R1/ω
ε the value of ω was taken from Ref. [63]. With this we can perform the

transformation to |zc|. The result is presented in Table IV. Within the systematic uncertainty

the values are consistent to our previous calculations in LPA’, see Ref. [6].

Tables II and IV constitute the main results of this paper.

V. CONCLUSIONS

Using the Functional Renormalization Group, we extended our previous results, see

Refs. [6] and [7], for the universal location of the Yang-Lee edge singularity in the most

N 1 2 3 4 5

|zc| 2.43(4) 2.04(8) 1.83(6) 1.69(3) 1.55(4)

TABLE IV. Location of the YLE singularity, zc, at di”erent N . The uncertainty is dominated by

the uncertainty in determination of Rε.

29

using known values of :Rχ

universal YLE location known 
for all  models!O(N)

To do for QCD:
 and U(N) × U(N) SU(N) × SU(N)



APPLICATION TO THE PHASE DIAGRAM(S)



•  :  

•  :  

T = TCEP μYLE = μCEP ∈ ℝ

T > TCEP μYLE ∈ ℂ

T= 300

T= 170
T= 120 T= 27.46
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Consider system with a CEP at  in the complex  plane(TCEP, μCEP) μ MF quark-meson model [Mukherjee, FR, Skokov (2021)]

At  the YLE is the nearest singularityμ = 0

determines radius of convergence 
for expansions around μ = 0

T=170
full
E: N=6
E: N=8
E: N=12
E: N=14
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YLE OF THE CEP

(see Fei Gao's talk for QCD results)
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Sometimes (e.g. for lattice and experiment)  not directly accessible. Then:(TCEP, μCEP)
YLE OF THE CEP

How to extrapolate?

• reconstruct YLE location for available  and 

• extrapolate to  to locate CEP

T μ
Im μYLE = 0

[Clarke et al. (2024)]

• if data is in scaling region of CEP: use universality 

μYLE = μCEP + c1(T − TCEP) ± ic2( T − TCEP

|zc | )βδ

[Stephanov (2006)]

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)



Sometimes (e.g. for lattice and experiment)  not directly accessible. Then:(TCEP, μCEP)
YLE OF THE CEP

How to extrapolate?

• reconstruct YLE location for available  and 

• extrapolate to  to locate CEP

T μ
Im μYLE = 0

• if data is in scaling region of CEP: use universality 

• but how large is scaling region?

[Gao, Pawlowski, FR,  Yin et al. (2023)]

fits of the form
 

break down for 
Δ̄l(mπ) = Bc m2/δ

π (1 + amm2θH
π ) + c1 m2

π + c2 m4
π

mπ ≳ 25 MeV

-scaling of light chiral limit (physical ):O(4) ms

•  at 

•  at 

mπ ≲ 5 MeV T = Tc

Tc − T ≲ 7 MeV mπ = 0

CEP scaling region probably also small
[Fu, Luo, Pawlowski, FR, Yin (2021, 2023)]

non-universal information necessary
(see talks of Gao and Pawlowski)

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)



THE CHIRAL PHASE TRANSITION

Im mu,d

ms

Re mu,d

T = Tc |ms,phys

ms,phys

YLE

branch cut surface

in the  plane(Im mu,d, ms , Re mu,d)
THE COLUMBIA PLOT AND EDGE SINGULARITIES

[Herl, FR, Schmidt, von Smekal (in preparation)]



• relevant flavor symmetry:

How does the order of the chiral phase transition depend on the quark mass?

• distinct mass hierarchy of quarks ( )2πTc ≈ 1 GeV

0.01

0.1

1

10

100

u d s c b t

m
[G

eV
]

what if u, d were even lighter?

any "remnants" at 
physical quark masses?

U(3)L × U(3)R ≈ SU(3)V × SU(3)A × U(1)V × U(1)A

SU(2)V × SU(2)A × U(1)V

SU(3)V × SU(3)A × U(1)V

axial anomaly

chubby strange quark

∼ O(4)

SU(2)V × U(1)V

light quark masses

THE COLUMBIA PLOT



Expectation from Pisarski & Wilczek (1983) (perturbative RG analysis of a linear sigma model):

•  chiral quarks: 1st order transitionNf = 3

•  chiral quarks: depends on the fate of the axial anomalyNf = 2

FRG analysis: [Resch, FR, Schaefer (2017)]
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with anomaly without anomaly

suggests very small 1st order region in the 3-flavor chiral limit
(triggered by bosonic fluctuations - large corrections to mean-field)

Also: no stable fixed point for  from recent FRG analysis in the 3-flavor chiral limit [Fejos (2022)]NF = 3

THE COLUMBIA PLOT



Could there even be a 2nd order 
transition in the 3-flavor chiral limit?

• generic prediction of mean-field studies of models without 't Hooft determinant [e.g. Resch, FR, Schaefer (2017)]

• detailed lattice study suggests 2nd order transition even for  massless quarks [Cuteri, Philipsen, Sciara (2021)]

• fixed-point analyses: only possible if  is restored at ? [Fejos (2022), Kousvos and Stergiou (2023)]

• cannot be excluded from lattice computations [Aarts et al. (2023) & references therein]

• suggested by recent DSE study [Bernhardt, Fischer (2023)]

• conjecture: dominance of higher topological charges at  necessary for this scenario [Pisarski, FR (2024)]

Nf ≤ 6
U(1)A Tc

T ≲ Tc

[Cuteri, Philipsen, Sciara (2021)]

Can YLEs help us here?

THE COLUMBIA PLOT



• consider quark mass as thermodynamic control parameter 
(acts like magnetic field in  models)

• search for 2nd order transition at some 

• YLE for  at  

O(N)

(Tc, mc)
m ∈ ℂ T > Tc

THE CHIRAL PHASE TRANSITION
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in the  plane(Im mu,d, ms , Re mu,d)

YLE AND THE COLUMBIA PLOT

There are in general 3 different scenarios

[Herl, FR, Schmidt, von Smekal (in preparation)]



• consider quark mass as thermodynamic control parameter 
(acts like magnetic field in  models)

• search for 2nd order transition at some 

• YLE for  at  

O(N)

(Tc, mc)
m ∈ ℂ T > Tc

THE CHIRAL PHASE TRANSITION

Im mu,d

ms

Re mu,d

T = Tc |ms,phys

ms,phys

YLE

branch cut surface

in the  plane(Im mu,d, ms , Re mu,d)
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(A) (B) (C)
• 2nd order transition at zero mass

• no further restriction on the transition

• requires reconstruction + extrapolation for 
various  in the continuum limitT
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scaling region

YLE AND THE COLUMBIA PLOT

There are in general 3 different scenarios, A:

[Herl, FR, Schmidt, von Smekal (in preparation)]



T ↘ Tc

Re m

Im
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0 Re m
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0 Re m
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(A) (B) (C)• 2nd order transition at zero mass

• Lee-Yang circle theorem applies

• YLE and LY zeros must lie on the imaginary mass axis

infer that transition must be at zero mass without any 
extrapolation, neither to small ,  or the continuum T m

• reconstruction of  YLE still necessary

• consider quark mass as thermodynamic control parameter 
(acts like magnetic field in  models)

• search for 2nd order transition at some 

• YLE for  at  

O(N)

(Tc, mc)
m ∈ ℂ T > Tc
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There are in general 3 different scenarios, B:

YLE AND THE COLUMBIA PLOT

[Herl, FR, Schmidt, von Smekal (in preparation)]



T ↘ Tc
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0 Re m
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0

(A) (B) (C)
• 2nd order transition at nonzero mass

• circle theorem irrelevant, as map from  to critical 
magnetic field is nontrivial 

• requires reconstruction + extrapolation for various  
in the continuum limit
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Adapt the strategy used for finite  in [Dimopoulos et al. (2022)] to finite :μ m

multi-point Padé reconstruction

• assume that analytic structure of the free energy is captured by a rational function

f(z) ≈ Rm
n (z) =

Pm(z)
1 + Qn(z)

=
∑m

i=0 ai zi

1 + ∑n
j=1 bj zj

• consider  at  nodes  ( ) and assume we know its derivatives up to order  at each nodef(z) N zk k = 1,…, N Lk

we can fix  Padé coefficientsn + m + 1 =
N

∑
k=1

(Lk + 1)

Pm(z1) − f(z1) Qn(z1) = f(z1)
P′￼m(z1) − f′￼(z1) Qn(z1) − f(z1) Q′￼n(z1) = f′￼(z1)

⋮
Pm(zN) − f(zN) Qn(zN) = f(zN)

P′￼m(zN) − f′￼(zN) Qn(zN) − f(zN) Q′￼n(zN) = f′￼(zN)
⋮

RECONSTRUCTING THE YLE

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)



• 2 known derivatives at each node

• susceptibility is an even function of m

• rational functions can only have isolated poles (zeros of the denominator)

• branch cuts are indicated by arcs of poles, accumulating at branch points for large ,  [Stahl (1997)]

• identify YLE as closest pole to real axis that is stable under variation of the Padé order [m/n]

N

Proof of concept:  QM model, where scenario (B) and (C) can be realized (depends on choice of parameters).Nf = 2

• use 6 nodes for the chiral susceptibility χm ∼
δσ
δm

use [16/18] Padé in m

RECONSTRUCTING THE YLE



T ↘ Tc
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In this model: Ising transition at m > 0

reconstruction works well, but extrapolation is required if data at smaller  not availableT
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reconstruction works well, no extrapolation required to infer mc

SCENARIO C
In this model:  phase transition at O(4) m = 0
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To do: apply to lattice data!
[Herl, FR, Schmidt, von Smekal (in preparation)]



CONCLUSIONS

We can learn a lot from YLEs 
Their location is universal. 

It has been established using FRG (for relevant systems). 
Universality only in the scaling regime of Wilson-Fisher fixed point.  

But this is likely to be small  non-universal information needed. 
Also: circle theorem can provide shortcut to solve Columbia plot puzzle.

→


