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THE CHIRAL PHASE TRANSITION

in the (T, m,,m, ;) plane at ugz = 0
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THE CHIRAL PHASE TRANSITION
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MANY FACES OF THE PHASE DIAGRAM
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® direct detection of phase
transitions challenging

® powerful constraints from
universality and analytic structure
near 2nd-order transitions
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® direct detection of phase
ansitions challenging

| st order surface
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® universality of YLEs
A — basics & state-of-the-art
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This talk: erful constraints from
2rsality and analytic structure
2nd-order transitions

® application to the phase diagram
T4 — importance of non-universal corrections
— order of the chiral phase transition
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UNIVERSALITY OF THE YLE



LEE-YANG THEOREMS

phase structure <€—» analytic structure in the complex plane

Consider system of NV atoms: grand canonical partition function is polynomial of degree /N in a finite volume V,

fugacity z ~ e#/,
u: chemical potential, magnetic field, source,...

! LY theorem

Al R if Z,, has no zeros in a region R in C, then

Ly = Z Z;(1) 7 = H (2= z) all thermodynamic quantities are analytic
i=1/ =1 \ forz€ Rfor V — oo

canonical partition function with 7 particles Lee-Yang zeros [Yang, Lee (1952)]

At a phase transition thermodynamic functions can't be analytic

® | ee-Yang zeros are poles of the free energy f(T,z) = — lim v In Z,(T, z)
V-0
® for V — oo they coalesce into branch cuts in the complex z-plane

® branch points: Yang-Lee edge singularities (YLE)

—» | ee-Yang zeros/cuts & YLEs encode phase structure



YANG-LEE EDGE SINGULARITY

Example: analytic structure of the free energy density of the |d Ising model, z = e*"!

o \ B
0.5/
Lee-Yang zeros (N=50)
N,
g 00 branch cut (N — o0)
YLE
-0.5|
_1.0__ /
10  -05 0.0 0.5 1.0

® no thermal phase transition in |d Ising: YLE never touches the real, positive axis

® zeros/cut on the unit circle/at purely imaginary /: Lee-Yang circle theorem

All zeros/cuts/YLEs are at imaginary magnetic fields

® rigorously proven for ferromagnetic spin-1/2 systems and O(N = 1,2,3,00)

® systematic results suggest that it holds for all N

[Lee,Yang (1952); Simon, Griffith (1972); Dunlop, Newman (1975); Lieb, Sokal (1981); Kurtze, Fisher (1978); Johnson, FR, Skokov (2020-2022)]



YLE & PHASE TRANSITIONS

Phase transitions can be understood from the location of the YLE:

no phase transition 2nd order transition | st order transition
YLE in the complex plane YLE pinches real axis cut cuts real axis
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IDENTIFYING THE YLE

Free energy from the effective action, (/i: explicit symmetry breaking/magnetic field)

AT, h)=—Q(d(T, h)) = ! C|¢(T, h)] [[¢] = sup “ J-¢p —In Z[n}
! "1 Y

effective potential effective action InZ|J] = [9 pe WS

Order parameter field/magnetization (7, h) = — 0, f(T, h) determined by EoM,

STl
0P lp=p
YLE: branch pointh =h. € C of f(T,h)for T > T, (T < T.:spinodals) 620 ,
Re(qbo)zoo 450
—» edge singularity encoded in magnetization ~200 B=> 200

g
S

¢(T, h) implicitly defined: use implicit function theorem to identify /iy el Im(u]
from Hessian:
5T : . :
det H = det 9] —0 Zero elgerfvalue <—> crltlcz}I n:ode
5¢i5¢j Pp=¢(T, h,) YLE is a critical point! [Mukherjee, FR, Skokov (2021)]

[Haensch, FR, von Smekal (2023)]



CRITICAL PHENOMENA & UNIVERSALITY

correlation length fluctuations on all length scales
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critical opalescence of ethane [Wikipedia]

Near the critical point the system is scale invariant and microscopic details are irrelevant

Universality: main features of the system are described by universal critical exponents, e.g.,, E ~ (T'—T,)™"

1.0
example: |
. . « o 0.8 + Ne
liquid-gas transition . Ar g
— 0.6 "ok e
— Ho i < Xe -+
3d Ising = 04f B
. \Y 02
= , i = SI({) vdW prediction
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SCALING HYPOTHESIS AND THE EDGE SINGULARITY

Scale invariance near 2" order transition: free energy is homogeneous function (for two relevant directions)
—d 1 bo
ft,h)y = b~ f(tbe, hb~) + [,..(1.h)

I'—1. dim.less rescaling

]}is a universal scaling function and f, 0, v are universal critical exponents

—» YLE is universal at criticality

v v [
Consider magnetic scaling:b = || # — f(t,h) = h%]}(z) ... with scaling variable 7 = —

1
hps

Order parameter described by universal magnetic equation of state f(z) (using ¢(7,h) = — 0, f(z, h))

circle theorem A, € iR:

Bt h) = h5£52) + ¢.,(t.h) | — YLE is branch point of f;(2)




MEAN FIELD INTUITION

Relevant features can be illustrated by simple mean-field analysis of ¢*-theory/O(N)-model
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® EoMat ¢ = 0: q§=h%=> oMp = 3
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® YLE from Q'(¢p.) = 0 = Q"(¢,):
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credit:V. Skokov



MEAN FIELD INTUITION

Relevant features can be illustrated by simple mean-field analysis of ¢*-theory/O(N) model

L PUCINE PVE
Q(¢)—2f¢ +4¢ he

e Q(¢p)=0 = ¢.= *xi\/t/3:nonzero imaginary magnetization at ¢ > 0
® expand Qabout ., ¢ =@ + ¢,

- - YLE has its "own" universality class (LY-theory), [Fisher (1978)]
— ~ - —
Up) R kg™ = hy independent of underlying O(N) universality of ¢*-theory

® O(N) model at ¢, h # 0O: 2 relevant directions (< 2 independent crit. exponents), upper crit. dimension d. = 4

® |Y-theory at #,h # O: | relevant direction,d. = 6

o o® 0 = S —» =~ —0.53atYLE!
d—2+n
3 3
4.78984(1) 4.7915(67) 11.7(1) *conformal bootstrap & FRG:

[Gliozzi, Rago (2014); Kos et al. (2014,2015)]
[Balog et al. (2019), De Polsi et al. (2020)]



UNIVERSALITY OF THE EDGE SINGULARITY

Consider O(N) model as relevant example

N = 0O: polymer chains N = 1:lsing model N = 2: (XY model) superfluidity N 4: QCD in the chiral limit

Ng=2 PURE

- ot “lcAUGE

e | nd order .
| 2 ( 4;"de’ 2(2) \order
hysical point
, = v physical p N&3

25 nm

e P

[Wikipedia] [Wikipedia] | .:Forcrand (2017)]  Mue

z.=|z.| e 2% is universal in scaling region of Wilson-Fisher fixed point.
Phase is well known from various methods: CB, Monte Carlo, d.—¢ expansion, FRG, ...
But what about |z.|?

systematic & direct (i.e. no
reconstruction, extrapolation, ...)

®d =6: turbative for d<6 4/&9@1/ /
non-perturbative for a <06 — naton — FRG is the only way for 2 < d < 6

® complex parameters: sign problem — Mante-€arlo d=1 trivial: CFT methods at d=2

® analytic structure of scaling function —-&B-
FRG: [Johnson, FR, Skokov (2020-2022)]

CFT: [Fonseca, Zamolodchikov (2001); Xu, Zamolodchikov (2022)]



FUNCTIONAL RENORMALIZATION GROUP

Successively integrate-out fluctuations

® start with bare action I’y = § at small distance/large momentum scale A

® gradually include fluctuations of larger size by integrating out modes with increasingly
small momenta:Wilson RG (Nobel Prize in 1982)

» running couplings with RG scale k Scale dependent effective action | :
—» new couplings are generated dynamically incorporates all fluctuations down to scale k&

Practical implementation: VWetterich equation [Wetterich (1993)] O,

0., [§] = Lot

2

{0}

® pros: one-loop exact, non-perturbative, no sigh problem

® cons: requires truncation O,
credit: Jan Pawlowski



FRG FOR CRITICAL PHENOMENA
Consider O(N)-model with ¢ = (¢, ..., Pn)

® systematic truncation for critical phenomena: derivative expansion in pz/ k* [Balog et al. (2019), De Polsi et al. (2020)]
| |
[ = Jddx { U(h) + EZk(cb)(aﬂcb)z + ZYk(qb)(aﬂp)z} + 0(0%)

® Taylor expand U, Z, Y, around ¢ = §5k = (0},0,...,0) (o critical radial mode) -
O T (—z)ﬂ

requires fine-tuned initial

> conventional choice: d,U|; =h=const. = 0 «<—— .. - o

» convenient for Yang-Lee FP: 6(2;U\q5 = m? = const. — 0 . L5
k
disadvantage: numerically expensive in broken phase as expansion =
point lies in flat part of the convex potential for any £ > 0 L7
0.5

—» follow RG flow of critical point in symmetric phase & read-off /.
, , , Z 4 -2 0 2 A 6
—» convenient scaling variable: { = —— 2

1/6
R)(

e use optimized regulator for NLO derivative expansion: R,(g?%) = aZs, (k* — g%) O(k* — g?) [Litim (2001)]

a: free parameter to estimate regulator dependence (truncation error)



RG FLOW FROM WF TO LY

Initialize system close to Wilson-Fisher and follow RG flow to Lee-Yang fixed point (here: Ising (O(1)) model)
[FR, Skokov (2022)]

0.0
—0.1F
anomalous dimension
= — 0, Q& _02 i
Z
—0.3 |
—0.4

Ink/A



ISING YLE

Edge singularity in the Ising model [FR, Skokov (2022)]

1.8 @ exact
' ® Xu-Zamolodchikov o >
— —(4-d)-expansion ©
16 Pade approx. o o |
i y O FRG O
— <
=
— 1.4 ]
= &
1.2 ]
1.0
1 2 3 4



D=3 YLE

Edge singularity for various N in 3d  [Johnson, FR, Skokov (2022)]

using known values of R
165 | N — o0
N 1 2 3 4 5
® O
° 2.]12.43(4)[2.04(8)[1.83(6)[1.69(3) |1.55(4)
|CC‘16O Ceoo00°®® °
universal YLE location known
1.55 for all O(N) models!
To do for QCD:
1.50 - - - - UN) X UWN)and SUN) X SU(N)
5 10 19 20



APPLICATION TO THE PHASE DIAGRAM(S)



YLE OF THE CEP

Consider system with a CEP at (7gp, 4cpp) in the complex y plane

Im[ug] [MeV]

MF quark-meson model [Mukherjee, FR, Skokov (2021)]

I : 2.0 — -
1500: T=300 \ T=170
I i \ full
1000 s 1oy VT E- N=6
[ fo \ E: N=8
500} . Z \ E: N=12
| _ | S 1.0} ———-E:N=14
| J1=120 T=27.46 o | \
0 —— | — I \
I —— . o) I N\
| | > 05—
-500} ) S e \\\
~1000} : 0.01 ‘
~1500F o o o o | o5 1+ . {/ . . . . \\ o
0 200 200 500 500 0.2 -0.1 0.0 0.1 E
Re[us] [MeV] el 221Gy Tvield
_ . _ At i = 0 the YLE is the nearest singularit
® I'=Tcgp: Hyrg = Hcep € R 5 4
® T'>Tepp: pyip €C , determines radius of convergence

for expansions around y = 0
(see Fei Gao's talk for QCD results)



YLE OF THE CEP

Sometimes (e.g. for lattice and experiment) (7 -gp, Ucpp) NOt directly accessible. Then:

® reconstruct YLE location for available 7" and u

® extrapolate to Im = () to locate CEP
> HYLE

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)

How to extrapolate!?
® if data is in scaling region of CEP: use universality
T — Tcgp )ﬂa

| 2. |

[Stephanov (2006)]

Hyrg = MPcpp T (T — Tepp) £ iCz(

800

600

400

200

400

300

200

100

Re pryg [MeV] HotQCD [4,4] _
BiPar Multi

Im pryg [MeV] HotQCD [4.,4] -
BiPar Multi

= T 120 140 160

[Clarke et al. (2024)]



YLE OF THE CEP

Sometimes (e.g. for lattice and experiment) (7 -gp, Ucpp) NOt directly accessible. Then:

® reconstruct YLE location for available 7" and u

® extrapolate to Im = () to locate CEP
P //tYLE 5'5 ' L ' L ' L ' L |

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...) @

How to extrapolate? 5 0 L [Gao, Pawlowski, FR, Yin et al. (2023)] _

® if data is in scaling region of CEP: use universality

® but how large is scaling region!? < 4.5

0(4)-scaling of light chiral limit (physical ,):

4.0 |- fRG-QCD: leading scaling | -
®m,_ 5 S5MeV at T = Tc B fRG-QCD: leading+subleading scaling

------- fRG-QCD: fixed-point value
o T —T<S7TMeVatm, =0

3.5 | ! e oo ! e ! e ! e oo
| | 0.01 0.1 1 10 100
CEP scaling region probably also small m,[MeV]
[Fu, Luo, Pawlowski, FR,Yin (2021, 2023)]
— non-universal information necessary fits of the form \

A(m_) =B, mg/é(l +a,m; ) +cym>+c,m

(see talks of Gao and Pawlowski) break down for m. > 25 MeV "



THE COLUMBIA PLOT AND EDGE SINGULARITIES

[Herl, FR, Schmidt, von Smekal (in preparation)]
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THE COLUMBIA PLOT

How does the order of the chiral phase transition depend on the quark mass!?

100}

® distinct mass hierarchy of quarks (2z7. ~ 1 GeV) 10f

1

0.1¢

m |GeV]

—» what if u, d were even lighter?

0.01¢

® relevant flavor symmetry:

UB) XUQB)p~ SUQB)y X SUB), X U(l)y, X U(1),4
| axial anomaly
SU3), X SUB3), X U(1)y
| chubby strange quark —_
SUQ2)y x SU2), x U(1),

any 'remnants” at
physical quark masses!?

~ 0(4) l light quark masses
SUQR)y X U(1)y,




THE COLUMBIA PLOT

Expectation from Pisarski & Wilczek (1983) (perturbative RG analysis of a linear sigma model):
® N =3 chiral quarks: Ist order transition

e N, =2 chiral quarks: depends on the fate of the axial anomaly

FRG analysis: [Resch, FR, Schaefer (2017)]

with anomaly without anomaly

i

i p [MeV]

p [MeV]

300 300
200 : 200
100 : 100

0 N crossover : 0

d ' e
50 500
100 500
m~ [MeV] 100 300 mx [MeV] 100

100 2" mx MeV]

100 mx [MeV]

150 0 150 0

—Pp suggests very small |st order region in the 3-flavor chiral limit
(triggered by bosonic fluctuations - large corrections to mean-field)

Also: no stable fixed point for N, = 3 from recent FRG analysis in the 3-flavor chiral limit [Fejos (2022)]



Nt =2 50

THE COLUMBIA PLOT o ) |
s | v@LeU@R/ U@V : 1°
® Physical point
Could there even be a 2nd order o
transition in the 3-flavor chiral limit? s -
||
=3
Crossover
? [Cuteri, Philipsen, Sciara (2021)]

0 My, d

® generic prediction of mean-field studies of models without 't Hooft determinant [e.g. Resch, FR, Schaefer (2017)]

e detailed lattice study suggests 2nd order transition even for Nf < 6 massless quarks [Cuteri, Philipsen, Sciara (2021)]

® fixed-point analyses: only possible if U(1), is restored at 7 .? [Fejos (2022), Kousvos and Stergiou (2023)]
® cannot be excluded from lattice computations [Aarts et al. (2023) & references therein]

® suggested by recent DSE study [Bernhardt, Fischer (2023)]

® conjecture: dominance of higher topological charges at 7' S 7T'. necessary for this scenario [Pisarski, FR (2024)]

Can YLEs help us here?



YLE AND THE COLUMBIA PLOT tmm, 4

s,phys

® consider quark mass as thermodynamic control parameter
(acts like magnetic field in O(N) models)

branch cut surface

® search for 2nd order transition at some (7., m ) " Rem,,
® YLEforme CatT > T,

YLE

There are in general 3 different scenarios

Mg bhys m

[Herl, FR, Schmidt, von Smekal (in preparation)]



YLE AND THE COLUMBIA PLOT tmm, 4

s,phys

® consider quark mass as thermodynamic control parameter
(acts like magnetic field in O(N) models)

branch cut surface

® search for 2nd order transition at some (7., m ) " Rem,,
® YLEforme CatT > T,

YLE

There are in general 3 different scenarios, A:

Mg bhys m

® 2nd order transition at zero mass
® no further restriction on the transition

® requires reconstruction + extrapolation for
various 7' in the continuum limit

scaling region

/

[Herl, FR, Schmidt, von Smekal (in preparation)]



YLE AND THE COLUMBIA PLOT tmm, 4

® consider quark mass as thermodynamic control parameter
(acts like magnetic field in O(N) models)

branch cut surface

® search for 2nd order transition at some (7., m ) " Rem,,
® YLEforme CatT > T,

YLE

There are in general 3 different scenarios, B:

(B) ® 2nd order transition at zero mass

Imm

® | ee-Yang circle theorem applies

® YLE and LY zeros must lie on the imaginary mass axis

infer that transition must be at zero mass without any

extrapolation, neither to small 7, m or the continuum

® reconstruction of YLE still necessary

0 Re m

[Herl, FR, Schmidt, von Smekal (in preparation)]



YLE AND THE COLUMBIA PLOT

Imm,, 4
I'=T, |ms,phys

® consider quark mass as thermodynamic control parameter

(acts like magnetic field in O(N) models) oraneh eut surface
® search for 2nd order transition at some (7., m_) T Rem,,
® YLEforme CatT > T,

YLE
There are in general 3 different scenarios, C:
M phys m

| ©
— ® 2nd order transition at nonzero mass
T\ T ® circle theorem irrelevant,as map from m to critical
c magnetic field is nontrivial

® requires reconstruction + extrapolation for various I’
in the continuum limit

[Herl, FR, Schmidt, von Smekal (in preparation)]



RECONSTRUCTING THE YLE

Adapt the strategy used for finite u in [Dimopoulos et al. (2022)] to finite m:
—» multi-point Pade reconstruction

® assume that analytic structure of the free energy is captured by a rational function

P,,(2) DINE4

~ R — —
S@) & %5 1) 1+0,() 1+ Z;l:l b;

® consider f(z) at NV nodes z; (k = 1,..., N) and assume we know its derivatives up to order L, at each node

P,(z)) — f(z)) O.(zy) = f(z)
N P, (z)) — f(z)) Q,(z)) — f(z) O(z1) = f'(2))
—p wecanfixn+m+1 = Z (L, + 1) Padeé coefficients E
=] P, (zy) — f(zy) O,(zy) = f(2y)
P, (zy) — f'(zy) O,(zn) — f(zy) On(z2y) = f'(2y)

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)



RECONSTRUCTING THE YLE

® rational functions can only have isolated poles (zeros of the denominator)
® branch cuts are indicated by arcs of poles, accumulating at branch points for large NV, [Stahl (1997)]

® identify YLE as closest pole to real axis that is stable under variation of the Pade order [m/n]

Proof of concept: Ny = 2 QM model, where scenario (B) and (C) can be realized (depends on choice of parameters).

00
® use 6 nodes for the chiral susceptibility y,, ~ —
m

® ) known derivatives at each node — use [16/18] Pade in m

® susceptibility is an even function of m



SCENARIO C

In this model: Ising transition at m > 0O

(©)

Imm

0 Rem

— reconstruction works well, but extrapolation is required if data at smaller 7" not available

O
o

Im[my; ]/ Mohys
= =
— N

|
©
—

-
N

O
W

145 MeV
140 MeV
135 MeV
130 MeV
123 MeV
121 MeV

O
=

® = Expected YLE
A = my;€[150, 240] MeV
o = my€[110, 150] MeV

A @& @

0.0

0.5

1.0 1.5

Re[my gl/ Mhys

[Herl, FR, Schmidt, von Smekal (in preparation)]

2.0




SCENARIO C

In this model: O(4) phase transition at m = ()

=175 MeV
=170 MeV
=165 MeV
=160 MeV
=155 MeV

=151 MeV

® = Expected YLE
o A =myz€[50, 140] MeV

? o = m,;€[10, 50] MeV
&

150
% :
E 4ol
r_LTh i
i B
£
é 0.5_-
o.o:—
~0.10

—-0.05

0.00

Re[my gl/ Mhys

0.05

— reconstruction works well, no extrapolation required to infer m,

To do: apply to lattice data!

[Herl, FR, Schmidt, von Smekal (in preparation)]

0.10



CONCLUSIONS

We can learn a lot from YLEs

Their location is universal.
It has been established using FRG (for relevant systems).
Universality only in the scaling regime of Wilson-Fisher fixed point.
But this is likely to be small - non-universal information needed.

Also: circle theorem can provide shortcut to solve Columbia plot puzzle.



