
1

Yang-Lee edge singularities 
and proton number cumulants 

Gökçe Başar 
University of North Carolina, Chapel Hill

Based on: 
GB, PRL 127 (2021) 17, 171603; PRC 110 (2024) 1, 015203 

GB, G. Dunne, Z. Yin PRD 105 (2022)  10, 105002
GB, M. Pradeep, M. Stephanov, in progress

Analytic Structure of QCD and Yang-Lee Edge Singulary



μB = 0

Baryon chemical potential 938 MeV

hadron gas 

Quark Gluon Plasma 

Color
superconductor

Critical point?

(μB)
Lattice QCD

Taylor series around

C
ro

ss
ov

er

μBImaginary 

Motivations

RHICBeam energy scan

μ
T

≲ 3



Motivations

3

(r
h) = (

rT rμ

hT hμ) (T − Tc
μ − μC) = 𝕄 (T − Tc

μ − μC)
cr

os
so

ve
r

1st
or

de
r

r

h

155

μB

T Q
C

D

MeV

crossover

r

h

3d- Ising QCD

Given the e.o.s. as truncated Taylor series around 𝜇=0, what can 
we say about the critical e.o.s ?

universality



Motivations
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[STAR BES II data: 2504.00817]

Key observable for the search for critical point: fluctuations 

Proton number (factorial) cumulants 



Motivations
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Fluctuations are sensitive to the non-universal mapping parameters

Cartoon images of susceptibilities (red <0, blue >0)
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Goal: Extract as much information as possible about the critical 
point and the mapping parameters from the lattice



•The equation of state has complex singularities
•Zeroes of partition function             
•Coalesce into branch cuts in thermodynamic limit
•Pinch the real axis at a second order transition
•Closest singularity to origin (“extended analyticity conjecture”)

𝒵(ζ) (ζ = eμ/T : fugacity)

Lee-Yang edge singularities
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[Lee-Yang, 52’]

 [Fonseca, Zamolodchikov ’02,  An, Mesterházy, Stephanov ’17 ]



LY singularity near the critical point
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Universality: 
The scaling e.o.s, fs(w), 
has singularities at  

w := hr−βδ = ± iwLY

μLY(T ) ≈ μc −
hT

hμ
(T − Tc) ± iwLY

(det 𝕄)βδ

hβδ+1
μ

(T − Tc)βδ

slope of the 
crossover line

         det 𝕄 ∝ (tan α2 − tan α1)(tan α1)−1

relative angle 
between r, h axes

[Stephanov ’06]
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When life gives you Taylor series…
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Padé approximants give a much better estimate of the singularity!

example: Chiral 
Random 

Matrix Model
[Halasz et al, 98]

Darboux theorem: Nearest singularity Large order growth



When life gives you Taylor series…
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χ(μ2) =
N

∑
n=0

c2nμ2nTaylor series: P[N/2,N/2] f(μ2) =
PN/2(μ2)
QN/2(μ2)

Padé approximant 
(diagonal)

Singularity of the function poles/zeroes of Padé

Problem: Padé is fairly good away from 
the singularity but fails 

badly near a singularity/ branch cut 🤷 

[Stahl’ 97, Costin Dunne ’20]
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e.g. GN model

Unphysical poles 



Conformal Maps
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Solution: Do Padé after a conformal map

•Captures the singular behavior, no unphysical poles along real axis
•Significantly better approximation than Padé
•Can go beyond the radius of convergence, even to different Riemann sheets!

Conformal
map

μ2 ζ

Do Padé
 here

Pχ(T, ϕ(ζ)) =
p̃0(T ) + p̃1(T )ζ + … + p̃N/2(T )ζN

q̃0(T ) + q̃1(T )ζ + … + q̃N/2(T )ζN
ζ=ϕ−1(μ2)

“conformal Padé” 



Taylor coefficients for QCD (HotQCD)
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Taylor coefficients from Hot QCD collaboration up to 
[Bollweg et al. PRD 105 (2022) 7, 074511]

μ8
B
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FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].

4

0

0.02

0.04

0.06

0.08

0.1

130 140 150 160 170

χ4B

T [MeV]

cont. est.
Nτ = 6

8
12

QMHRG2020

FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].

4

-0.2
-0.15
-0.1
-0.05

0
0.05
0.1
0.15
0.2
0.25

130 140 150 160 170

χ6B

T [MeV]

Spline : Nτ = 8
Nτ = 8

12
QMHRG2020

FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].

4

-3
-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

130 140 150 160 170

χ8B

T [MeV]

Spline : Nτ = 8
Nτ = 8

QMHRG2020

FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].



Conformal Pade Algorithm 
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• Sample Taylor coefficients from a Gaussian ensemble
• Estimate singularity from Pade as an input for conformal map
• Refine the estimate via conformal Pade
• Use the refined value in conformal map
• Repeat ζ⏌

two-cut map
T=135. MeV

ζ⏌

uniformizing map
T=135. MeV

Consistency check:
Estimates of the 

singularities approach 
the edge of the unit 

disk!



Lee Yang Trajectory
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fits:
ReμLY(T ) = a(T − TC)2 + b(T − TC) + c

ImμLY(T ) = cwc(T − TC)βδ

βδ ≈ 1.5631 (3d Ising)

[Simmons-Duffin, 1502.02033]
from conformal bootstrap

μLY(T ) ≈ + iwc
rβδ
μ

hμ ( rT

rμ
−

hT

hμ )
βδ

(T − Tc)βδμc −
hT

hμ
(T − Tc)

wc = |zc |−βδ ≈ 0.246

[Connelly et al, 2006.12541]
from functional RG

consistent with the HotQCD results
 [Bollweg et al. 2202.09184]



Estimations of QCD critical point 
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μC

TC

TC

TC ∼ 90 MeV μC ∼ 600 MeV

2-cut 
conf. Padé

TC = 100 MeV μC = 557 MeV
α1 = 8.69∘ c = 2.65

Padé
TC = 108 MeV μC = 437 MeV
α1 = 4.55∘ c = 3.35

unif. Padé
TC = 97 MeV μC = 579 MeV
α1 = 9.40∘ c = 2.22

 Bielefeld-Parma 

Functional RG

Dyson-Schwinger:

TC ∼ 107 MeV μC ∼ 635 MeV

TC ∼ 117 MeV μC ∼ 600 MeV
[Gunkel, Fischer 21. PRD 104 054022]

[Fu, Pawlowski, Rennecke ’20 PRD 101 054032]

[Di Renzo, Clarke, Dimopoulos, Goswami, Schmidt  ’23 Lattice 23]

Tc :∼ ± 20MeV, μc :∼ ± 200MeV

1 sigma uncertainty:

Holography: TC ∼ 104 MeV μC ∼ 590 MeV
[Hippel et al 2309.00579 ]



Comparison with other estimates

15

Functional RG
[Fu et al ’20 PRD 101 054032]

 Bielefeld-Parma 
[Di Renzo et al.  Lattice 23]

constant s/n
[Shah et al ’24 2410.16206]

Holographic model
[Hippel et al ’24 PRD 110 094006 ]

Dyson-Schwinger
[Gunkel et al ’21 PRD 104 054022]

uni. pade

2cut pade

pade

constant s/n
Pade (Bielefeld-Parma)
Dyson-Schwinger
fRG

holography
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Chiral crossover/deconfinement
 [WP data: 2410.06216v1] 

Pale black points: 
freezout estimates (various)



Constraints on the equation of state
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𝕄 =
1

wρTc sin(α1 − α2) (−ρ cos α1 −ρ sin α1

cos α2 sin α2 )

ρ, w, α1, α2shape & size: depend on

[Pradeep, Stephanov, ’19]

μ

T

Tc

μc

α1α2

r

h r

h

T

μ

χ2 r

h

T

μ

χ3 r

h

μ

T
χ4

Note: in this talk everything is in  thermal equilibrium, there are no dynamical effects. 
For dynamics of fluctuations see recent review an references therein [GB, 2410.02866]

susceptibilities:



From Ising to protons
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The experiments measure proton number cumulants. 

Have to relate thermal fluctuations in QGP to proton number fluctuations
       Maximum Entropy Freeze-out [see talk by Stephanov]

Ingredients:

No dynamical effects, regular part of EoS (yet…)

work in progress with Pradeep and Stephanov

Tc, μc, ρ, w, α1, α2

Ising EoS,  mapping parameters, Max. Entropy freeze-out, HRG

from Padé



Scaling of the factorial cumulants 

18

κn(ρ̄, w, . . . ) = ( w′￼

w )
1+ 1

δ

κn(ρ̄, w′￼, . . . )

ρ̄ = ρw1− 1
βδ determines the shape of the cumulant 

          w           determines the overall scale 

Example:



Yang-Lee Trajectory and Factorial Cumulants
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μLY(T ) ≈ μc − c1(T − Tc) ± ixLYc2(T − Tc)βδ

For fixed 𝛼1 and 𝛼2 the imaginary part of the YL 
trajectory fixes the shape of the factorial cumulants! 

Crossover slope

c1 = tan α1

ReμLY

ρ̄ = ( 1
c2Tβδ−1

c

|sin(α1 − α2) |

|sin α1 |βδ+1 )
1/βδ

ImμLY



Some examples
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We consider three values for the critical point for illustration

Use the values for  and 𝛼1 from Padè 
Take a range of 𝛼2 s
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Some examples
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f.-out:RHIC
f.-out:SPS/AGS
f.-out:GSI
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T

deconfinement 

chiral

width

Deconfinement transition is much wider than the chiral crossover

Chiral crossover
deconfinement

 [WP data: 2410.06216v1] 
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μc = 610 MeV, Tc = 103 MeVI:



Factorial Cumulants

23 I: μc = 610 MeV, Tc = 103 MeV



24 II: μc = 600 MeV, Tc = 91 MeV



Factorial Cumulants

25 II: μc = 600 MeV, Tc = 91 MeV



26 III: μc = 500 MeV, Tc = 115 MeV



Factorial Cumulants

27 III: μc = 500 MeV, Tc = 115 MeV
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A parade of singularities
A naive cartoon for Lee-Yang trajectory for QCD …

−π2

μ2

T2

μLY /T ≈ ± a(TRW − T )βδ ± iπ

μ2
LY /T2 ≈ a + b(T0 − T ) ± ic

μLY /T ≈ μc − a(T − Tc) ± ic(T − Tc)βδ

μ2
c /T2

c

“Z2 scaling”

“O(4) scaling”

“Roberge-Weiss scaling”
(also Z2)

??



Conclusions and comments
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• From my perspective, with a modest four Taylor coefficients conformal 
Padé is pretty much the best one can do to extract the LY singularity

• The extrapolation depends on the fit for  hence the estimate for 
 has a large uncertainty. Moving forward, lower T data would 

significantly improve the situation (very difficult, new ideas?)  

•  fixes the shape of the proton number cumulants via 

• The cumulants are sensitive to 

ReμLY
μc

ImμLY ρ̄

α2
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EXTRAS



When life gives you Taylor series…
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|μLY2|
|cn+1 /cn |

|cn -1/n

Padé

exact

c2n ∼
Γ(σ + n)

Γ(1 + n) |μ2
LY |n+σLY

cos(θ(n + σLY) − πσ), (θ := arg μ2
LY)

Padé approximants give a much better estimate of the singularity!

example: Chiral 
Random 

Matrix Model
[Halasz et al, 98]

Darboux theorem: Nearest singularity Large order growth

interference…



Wuppertal-Budapest data
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[Wuppertal Budapest: JHEP 10 (2018) 205 ]

HotQCD

WB
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Wuppertal-Budapest data
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2-cut 
conf. Padé

TC = 92 ± 25 MeV

Padé TC = 98 ± 25 MeV

unif. Padé TC = 91 ± 25 MeV

• Higher cumulants differ from HotQCD (systematics?)
• Larger error compared to HotQCD presumably due to uncertainties in 
• Sizable uncertainties, cannot meaningfully extract 
• Low T data is essential

χ8
μc
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Conformal Maps
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•conformal Padé does not introduce 
unphysical poles on the real axis!

• captures  the e.o.s. beyond the 
radius of convergence-5

0

5

χ 3

exact

conformal Padé (N=21)
conformal Padé (N=11)
Padé
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Test case: GN model



Lee-Yang trajectory
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μLY(T ) ≈ +

•Find               from poles of the conformal-Padé (GN model)μ2
LY(T )

wLY =
2

3 3

fi fi

•Extract            crossover slope,      ,  and   μc, Tc,
hT

hμ

r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

iwLY
r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

(T − Tc)3/2μc −
hT

hμ
(T − Tc)
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Ising parameters
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wLY =
2

3 3

μLY(T ) ≈ + iwLY
r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

(T − Tc)3/2μc −
hT

hμ
(T − Tc)

exact 0.192 0.717 0.249 4.684

conf. Padé (N=21) 0.195 0.716 0.248 4.323

conf. Padé (N=11) 0.185 0.707 0.225 3.666

cμc hT /hμTc



Uniformization Map : crossing the branch cut
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Ising model: w = F(z)w = hr−βδ
F(z) = z + z3 (mean field)

w w

high T sheet
r>0

low T sheet
r<0, h>0

z = Mr−β

 M ~ Im z 

h ~ -Im w

 M ~ Re z 

h ~ Re w

z(w) = w − w3 + 3w5 − 12w7 + …
high T expansion

High Temperature (T>Tc) Low Temperature (T<Tc)



Uniformization: crossing the branch cut
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w → w(τ) = i(−1 + 2λ(τ))

w plane

τ(ζ) = i ( 1 + iζ
1 − iζ )

high T sheet
r>0

λ(τ) =
θ4

2(τ)
θ4

3(τ)
(elliptic modular function) θ2(τ) =

∞

∑
n=1

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=1

e2πiτn2

ζ



Uniformization: crossing the branch cut
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w plane

low T sheet
r<0

ζ

Low T sheet = Schwartz reflection of the high T sheet 
(modular transformation)



Uniformization
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w(τ) = i(−1 + 2λ(τ))

λ(τ) =
θ4

2(τ)
θ4

3(τ)
θ2(τ) =

∞

∑
n=−∞

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=−∞

e2πiτn2

w = F(z) = z + z3 (mean field)

z1(w) = −
2i

3 [ 2F1 ( 1
3

, −
1
3

,
1
2

;
1
2

(1 − iw)) − c.c.]
z2(w) =

2i

3
2F1 ( 1

3
, −

1
3

,
1
2

;
1
2

(1 − iw))
“uniformization”

[Bateman, Higher Transcendal Functions I]
* w → 2/(3 3)w

z(τ) : single valued



Uniformization
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https://people.math.osu.edu/costin.9/classes.html
Interactive realization:

Smooth in 
      planeτ

Jumping sheets 
in w plane

https://people.math.osu.edu/costin.9/classes.html


Uniformization: higher Riemann sheets
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T<Tc

h<0

T>Tc T<Tc

h>0

-2 -1 0 1 2
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-Im w
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M
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Uniformization: crossing the branch cut
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Uniformizing (20 terms)

z1(exact)
z2 (exact)
z3(exact)

-20 -10 0 10 20
-3

-2

-1

0

1

2

3

-Im w

Im
z

Low T

Reconstructed from 
the high T expansion! 


