Yang-Lee edge singularities and proton number cumulants

Gökçe Başar

University of North Carolina, Chapel Hill

Analytic Structure of QCD and Yang-Lee Edge Singulary

Based on:

GB, PRL 127 (2021) 17, 171603; PRC 110 (2024) 1, 015203 GB, G. Dunne, Z. Yin PRD 105 (2022) 10, 105002 GB, M. Pradeep, M. Stephanov, in progress

Lattice QCD
Taylor series around $\mu_B = 0$ Imaginary μ_B

$$\begin{pmatrix} r \\ h \end{pmatrix} = \begin{pmatrix} r_T & r_\mu \\ h_T & h_\mu \end{pmatrix} \begin{pmatrix} T - T_c \\ \mu - \mu_C \end{pmatrix} = \mathbb{M} \begin{pmatrix} T - T_c \\ \mu - \mu_C \end{pmatrix}$$

Given the e.o.s. as truncated Taylor series around μ =0, what can we say about *the critical e.o.s* ?

Key observable for the search for critical point: *fluctuations*

Proton number (factorial) cumulants

[STAR BES II data: 2504.00817]

Fluctuations are sensitive to the non-universal mapping parameters

Cartoon images of susceptibilities (red <0, blue >0)

Goal: Extract as much information as possible about the critical point and the mapping parameters from the lattice

Lee-Yang edge singularities

- The equation of state has complex singularities [Lee-Yang, 52']
- Zeroes of partition function $\mathcal{Z}(\zeta)$ ($\zeta = e^{\mu/T}$: fugacity)
- Coalesce into branch cuts in thermodynamic limit
- Pinch the real axis at a second order transition
- Closest singularity to origin ("extended analyticity conjecture")

[Fonseca, Zamolodchikov '02, An, Mesterházy, Stephanov '17]

LY singularity near the critical point

Universality:

The scaling e.o.s, $f_s(w)$, has singularities at

$$w := hr^{-\beta\delta} = \pm iw_{LY}$$

relative angle

between r, h axes

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_\mu} (T - T_c) \pm i w_{LY} \frac{\left(\det \mathbb{M}\right)^{\beta \delta}}{h_\mu^{\beta \delta + 1}} (T - T_c)^{\beta \delta}$$

$$\downarrow \qquad \qquad \qquad \det \mathbb{M} \propto (\tan \alpha_1)^{-1}$$

$$\det \mathbb{M} \propto (\tan \alpha_2 - \tan \alpha_1)$$

slope of the

crossover line

[Stephanov '06]

When life gives you Taylor series...

Darboux theorem: Nearest singularity ← → Large order growth

8

[Halasz et al, 98]
Padé approximants give a much better estimate of the singularity!

When life gives you Taylor series...

Taylor series:
$$\chi(\mu^2) = \sum_{n=0}^{N} c_{2n} \mu^{2n}$$

Padé approximant (diagonal) $P_{[N/2,N/2]}f(\mu^2) = \frac{P_{N/2}(\mu^2)}{Q_{N/2}(\mu^2)}$

Singularity of the function

poles/zeroes of Padé

Problem: Padé is fairly good away from the singularity but fails badly near a singularity / branch cut

[Stahl' 97, Costin Dunne '20]

e.g. GN model

Conformal Maps

Solution: Do Padé after a conformal map

"conformal Padé"
$$P\chi(T,\phi(\zeta)) = \frac{\tilde{p}_0(T) + \tilde{p}_1(T)\zeta + \ldots + \tilde{p}_{N/2}(T)\zeta^N}{\tilde{q}_0(T) + \tilde{q}_1(T)\zeta + \ldots + \tilde{q}_{N/2}(T)\zeta^N} \bigg|_{\zeta = \phi^{-1}(\mu^2)}$$

- Captures the singular behavior, no unphysical poles along real axis
- Significantly better approximation than Padé
- Can go beyond the radius of convergence, even to different Riemann sheets!

Taylor coefficients for QCD (HotQCD)

Taylor coefficients from Hot QCD collaboration up to μ_B^8 [Bollweg et al. PRD 105 (2022) 7, 074511]

Conformal Pade Algorithm

- Sample Taylor coefficients from a Gaussian ensemble
- Estimate singularity from Pade as an input for conformal map
- Refine the estimate via conformal Pade
- Use the refined value in conformal map

Consistency check:

Estimates of the singularities approach the edge of the unit disk!

12

Lee Yang Trajectory

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_\mu}(T - T_c) + iw_c \frac{r_\mu^{\beta \delta}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{\beta \delta} (T - T_c)^{\beta \delta}$$

fits:
$$\mathrm{Re}\mu_{LY}(T)=a(T-T_C)^2+b(T-T_C)+c$$

$$\mathrm{Im}\mu_{LY}(T)=cw_c(T-T_C)^{\beta\delta}$$

 $\beta\delta \approx 1.5631$ (3d Ising) from conformal bootstrap [Simmons-Duffin, 1502.02033]

$$w_c = |z_c|^{-\beta\delta} \approx 0.246$$

from functional RG [Connelly et al, 2006.12541]

consistent with the HotQCD results [Bollweg et al. 2202.09184]

Estimations of QCD critical point

14


```
unif. Padé T_C = 97 \,\mathrm{MeV} \mu_C = 579 \,\mathrm{MeV} \alpha_1 = 9.40^\circ c = 2.22
```

2-cut
$$T_C = 100 \, \text{MeV}$$
 $\mu_C = 557 \, \text{MeV}$ conf. Padé $\alpha_1 = 8.69^\circ$ $c = 2.65$

$$T_C = 108 \, {
m MeV} \quad \mu_C = 437 \, {
m MeV}$$
 $\alpha_1 = 4.55^{\circ} \quad c = 3.35$

1 sigma uncertainty:

$$T_c :\sim \pm 20 \text{MeV}, \quad \mu_c :\sim \pm 200 \text{MeV}$$

Bielefeld-Parma
$$T_C \sim 90 \,\mathrm{MeV}$$
 $\mu_C \sim 600 \,\mathrm{MeV}$ [Di Renzo, Clarke, Dimopoulos, Goswami, Schmidt '23 Lattice 23]

Functional RG
$$T_C \sim 107 \,\mathrm{MeV}$$
 $\mu_C \sim 635 \,\mathrm{MeV}$

[Fu, Pawlowski, Rennecke '20 PRD 101 054032]

Dyson-Schwinger:
$$T_C \sim 117 \, \text{MeV}$$
 $\mu_C \sim 600 \, \text{MeV}$ [Gunkel, Fischer 21. PRD 104 054022]

Holography:
$$T_C \sim 104 \, \text{MeV}$$
 $\mu_C \sim 590 \, \text{MeV}$ [Hippel et al 2309.00579]

Comparison with other estimates

constant s/n
[Shah et al '24 2410.16206]

Bielefeld-Parma
[Di Renzo et al. Lattice 23]

Dyson-Schwinger
[Gunkel et al '21 PRD 104 054022]

Functional RG
[Fu et al '20 PRD 101 054032]

Holographic model [Hippel et al '24 PRD 110 094006]

Chiral crossover / deconfinement [WP data: 2410.06216v1]

Pale black points: freezout estimates (various)

Constraints on the equation of state

shape & size: depend on
$$\rho$$
, w , α_1 , α_2

$$\mathbb{M} = \frac{1}{w\rho T_c \sin(\alpha_1 - \alpha_2)} \begin{pmatrix} -\rho \cos \alpha_1 & -\rho \sin \alpha_1 \\ \cos \alpha_2 & \sin \alpha_2 \end{pmatrix}$$

[Pradeep, Stephanov, '19]

Note: in this talk everything is in thermal equilibrium, there are no dynamical effects. For *dynamics of fluctuations* see recent review an references therein [GB, 2410.02866]

From Ising to protons

The experiments measure proton number cumulants.

Have to relate thermal fluctuations in QGP to proton number fluctuations Maximum Entropy Freeze-out [see talk by Stephanov]

Ingredients:

Ising EoS, mapping parameters, Max. Entropy freeze-out, HRG

$$T_c, \mu_c, \rho, w, \alpha_1, \alpha_2$$
 from Padé

No dynamical effects, regular part of EoS (yet...)

work in progress with Pradeep and Stephanov

Scaling of the factorial cumulants

$$\kappa_n(\bar{\rho}, w, \dots) = \left(\frac{w'}{w}\right)^{1+\frac{1}{\delta}} \kappa_n(\bar{\rho}, w', \dots)$$

 $\bar{\rho} = \rho w^{1-\frac{1}{\beta\delta}}$ determines the shape of the cumulant

w determines the overall scale

Example:

Yang-Lee Trajectory and Factorial Cumulants

For fixed α_1 and α_2 the imaginary part of the YL trajectory fixes the shape of the factorial cumulants!

Some examples

We consider three values for the critical point for illustration

Use the values for $\bar{\rho}$ and α_1 from Padè Take a range of α_2 s

Some examples

Deconfinement transition is much wider than the chiral crossover

I: $\mu_c = 610 \text{ MeV}$, $T_c = 103 \text{ MeV}$

Factorial Cumulants

I: $\mu_c = 610 \text{ MeV}$, $T_c = 103 \text{ MeV}$

Factorial Cumulants

25

II: $\mu_c = 600 \text{ MeV}, \quad T_c = 91 \text{ MeV}$

III: $\mu_c = 500 \text{ MeV}$, $T_c = 115 \text{ MeV}$

Factorial Cumulants

III: $\mu_c = 500 \text{ MeV}, \quad T_c = 115 \text{ MeV}$

A parade of singularities

A naive cartoon for Lee-Yang trajectory for QCD ...

"Z₂ scaling"

 $\mu_{LY}/T \approx \pm a(T_{RW} - T)^{\beta\delta} \pm i\pi$ "Roberge-Weiss scaling"

(also Z_2)

$$\mu_{LY}/T \approx \mu_c - a(T - T_c) \pm ic(T - T_c)^{\beta\delta}$$

Conclusions and comments

- From my perspective, with a modest four Taylor coefficients conformal Padé is pretty much the best one can do to extract the LY singularity
- The extrapolation depends on the fit for $Re\mu_{LY}$ hence the estimate for μ_c has a large uncertainty. Moving forward, lower T data would significantly improve the situation (very difficult, new ideas?)
- Im μ_{LY} fixes the shape of the proton number cumulants via $\bar{\rho}$
- The cumulants are sensitive to α_2

EXTRAS

When life gives you Taylor series...

Darboux theorem: Nearest singularity ← → Large order growth

Padé approximants give a much better estimate of the singularity!

Wuppertal-Budapest data

[Wuppertal Budapest: JHEP 10 (2018) 205]

Wuppertal-Budapest data

unif. Padé
$$T_C = 91 \pm 25 \text{ MeV}$$

$$T_C = 92 \pm 25 \,\mathrm{MeV}$$

Padé
$$T_C = 98 \pm 25 \,\mathrm{MeV}$$

- Higher cumulants differ from HotQCD (systematics?)
- Larger error compared to HotQCD presumably due to uncertainties in χ_8
- Sizable uncertainties, cannot meaningfully extract μ_c
- Low T data is essential

Conformal Maps

Test case: GN model

- conformal Padé does not introduce unphysical poles on the real axis!
- captures the e.o.s. beyond the radius of convergence

Lee-Yang trajectory

• Find $\mu_{LY}^2(T)$ from poles of the conformal-Padé (GN model)

• Extract μ_c, T_c , crossover slope, $\frac{h_T}{h_\mu}$, and $\frac{r_\mu^{3/2}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{3/2}$

Ising parameters

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_\mu}(T - T_c) + iw_{LY} \frac{r_\mu^{3/2}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{3/2} (T - T_c)^{3/2} \qquad w_{LY} = \frac{2}{3\sqrt{3}}$$

	T_c	μ_c	h_T/h_μ	C
exact	0.192	0.717	0.249	4.684
conf. Padé (N=21)	0.195	0.716	0.248	4.323
conf. Padé (N=11)	0.185	0.707	0.225	3.666

Uniformization Map: crossing the branch cut

$$w = hr^{-\beta\delta}$$
$$z = Mr^{-\beta}$$

Ising model: w = F(z)

$$F(z) = z + z^3$$
 (mean field)

High Temperature $(T>T_c)$

high T *sheet r>0*

$$z(w) = w - w^3 + 3w^5 - 12w^7 + \dots$$
high T expansion

Low Temperature $(T < T_c)$

Uniformization: crossing the branch cut

w plane

high T sheet r>0

$$w \to w(\tau) = i(-1 + 2\lambda(\tau))$$

$$\lambda(\tau) = \frac{\theta_2^4(\tau)}{\theta_2^4(\tau)}$$
 (elliptic modular function)

$$\tau(\zeta) = i \left(\frac{1 + i\zeta}{1 - i\zeta} \right)$$

$$\theta_2(\tau) = \sum_{n=1}^{\infty} e^{2\pi i \tau (n+1/2)^2}, \quad \theta_3(\tau) = \sum_{n=1}^{\infty} e^{2\pi i \tau n^2}$$

Uniformization: crossing the branch cut

r<0

Low T sheet = Schwartz reflection of the high T sheet (modular transformation)

Uniformization

$$w = F(z) = z + z^3$$
 (mean field)

$$z_1(w) = -\frac{2i}{\sqrt{3}} \left[{}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right) - \text{c.c.} \right]$$

$$z_2(w) = \frac{2i}{\sqrt{3}} {}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right)$$

$$\lambda(\tau) = \frac{\theta_2^4(\tau)}{\theta_3^4(\tau)} \quad \theta_2(\tau) = \sum_{n = -\infty}^{\infty} e^{2\pi i \tau (n + 1/2)^2}, \quad \theta_3(\tau) = \sum_{n = -\infty}^{\infty} e^{2\pi i \tau n^2}$$

$$w(\tau) = i(-1 + 2\lambda(\tau))$$

 $z(\tau)$: single valued

"uniformization"

[Bateman, Higher Transcendal Functions I]

Uniformization

Jumping sheets in *w* plane

Interactive realization:

https://people.math.osu.edu/costin.9/classes.html

Uniformization: higher Riemann sheets

Uniformization: crossing the branch cut

