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Equation of state, heavy-ion collisions and freezeout

Equation of state is the key ingredient of hydrodynamics.

Hydrodynamics describes evolution of HIC fireball.

However, experiments measure
particle multiplicities, not hydro-
dynamic variables (densities).

Freezeout is an essential step
connecting theory with experi-
ment.
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Standard freezeout (Cooper-Frye)

In each hydro cell at freezeout local values of T (x), µ(x), u(x)

are translated into

local phase-space distribution 〈fA(x)〉 = eµ̂(x)qA+β(x)u(x)·pA .
where µ̂ = µ/T , β = 1/T ,

andA is a set of particle quantum numbers

such as charge (qA), 4-momentum (pA),

i.e., phase-space coordinates.

〈fA〉 gives us single-particle observables.

For fluctuations we need (at least) 〈δfAδfB〉.
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Fluctuations

Hydrodynamics is intrinsically stochastic: dissipation means
there are fluctuations.

Fluctuations, especially non-gaussian, are essential for mapping
QCD phase diagram and locating QCD critical point.

Hydrodynamic evolution of fluctuations
— a lot of recent progress — a subject for a different talk.

This talk — freezeout of fluctuations.

Example of application – next talk.
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Earlier work, problems and questions

“Fluctuating Cooper-Frye”. Naively: Kapusta-Muller-MS 2011

δfA =
(
δµ̂ ∂

∂µ̂ + δT ∂
∂T + δu ∂

∂u

)
〈fA(µ̂, T, u)〉

Then, multiplicity fluctuation correlator:

〈δfAδfB〉 = 〈δµ̂δµ̂〉︸ ︷︷ ︸
from hydro
δµ̂ = χ−1δn

(
∂

∂µ̂
〈fA〉

)(
∂

∂µ̂
〈fB〉

)
+ . . . (∗)

Problem:
consider ideal gas, no correlations, i.e. 〈fAfB〉 = 〈fA〉δAB,

but there are fluctuations of δµ̂, δT , etc. even in ideal gas ⇒
equation (∗) produces incorrect result: spurious correlations.
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Source of the problem and a solution

Correlated particle pairs erroneously include “pairs” made of the
same particle counted twice.

Li-Springer-MS ’13, Plumberg-Kapusta ’20
A solution for charge fluctuations – subtract the contribution of
ideal gas to 〈δnδn〉 in hydrodynamics and apply equation (∗)
only to the remainder:

〈δnδn〉 ≡ 〈δnδn〉ideal + ∆〈δnδn〉, (δn = χδµ̂)

〈δfAδfB〉 = 〈fA〉δAB + ∆〈δnδn〉
(
χ−1 ∂

∂µ̂
〈fA〉

)(
χ−1 ∂

∂n
〈fB〉

)
︸ ︷︷ ︸

balance function
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Thermal smearing and “self-correlations”
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Open questions

How to deal with

Temperature, velocity fluctuations?

Non-gaussian fluctuations?

Maximum entropy freezeout:

Pradeep-MS PhysRevLett.130.162301 [2211.09142]
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Revisit one-point/single-particle observables

Conservation laws constrain particle phase-space distributions:

〈n(x)〉 =
∑

A qA〈fA(x)〉 and 〈ε(x)uµ(x)〉 =
∑

A p
µ
A〈fA(x)〉;

or, generally, 〈Ψa〉 =
∑

A P
A
a 〈fA〉,

where PAa – contribution of particle A to (conserved) quantity Ψa.

Problem: these equations for 〈fA〉 have infinitely many solutions.

Which solution maximizes Bolzmann entropy? (minimum bias)

S0 = −
∑

A〈fA〉 log〈fA〉

Answer: 〈fA〉 = eµ̂qA+βu·pA — Cooper-Frye.

Fluctuations? Pradeep-MS 2022
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Maximum entropy freezeout of fluctuations

We want to match fluctuations of Ψa at freezeout

to fluctuations of fA, so that Ψa =
∑

A P
A
a fA event-by-event

i.e., GAB ≡ 〈δfAδfB〉 must obey (PA
a = {qA, pA, . . . })

〈δΨaδΨb〉︸ ︷︷ ︸
Hab

=
∑
AB

PAa P
B
b 〈δfAδfB〉︸ ︷︷ ︸

GAB

Again, for GAB, there are infinitely many solutions.

Entropy?
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Entropy of fluctuations

Entropy is a functional of fluctuations, i.e., of GAB:

S2 = S0 +
1

2
Tr
[
logGḠ−GḠ+ 1

]
︸ ︷︷ ︸

relative entropy

, where ḠAB = − δ2S0
δ〈fA〉δ〈fB〉

.

This follows from Srel[P] = P log P̄/P,

where P = P[f ] is the probability distribution of fA, i.e., func-
tional of 〈fA〉, 〈δfAδfB〉 ≡ GAB, etc.

and P̄ is P for ideal hadron gas (reference distirbution).

We maximize S with respect to P subject to conservation laws.
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Maximum entropy solution

Relative entropy is maximized (subject to constraints) by

(G−1)AB = (Ḡ−1)AB + (H−1 − H̄−1)abPAa P
B
b

Note: when H = H̄ → G = Ḡ – ideal gas (reference) correlator.

Similar expressions for non-gaussian correlators.

Linearizing in ∆H ≡ H−H̄ we obtain the desired generalization
of earlier results:

GAB = ḠAB︸︷︷︸
baseline

+ ∆HabP
a
AP

b
B︸ ︷︷ ︸

correlations

,

where P aA ≡ (H̄−1)aa
′
PA

′
a′ ḠA′A.

[cf. ∆〈δfAδfB〉 = 〈δnδn〉
(
χ−1qA〈fA〉

) (
χ−1)qB〈fB〉

)
]

M. Stephanov Maximum Entropy Freezeout ECT* 2025 12 / 18



Non-gaussian correlators (n ≥ 3 particles)

Linearied equations are simple and intuitive in terms of

∆GAB = GAB−ḠAB, ∆Hab = Hab−H̄ab, – “relative correlator”

∆̂GABC︸ ︷︷ ︸
irreducible
correlation

= GABC−
[
ḠABC︸ ︷︷ ︸+ 3∆GADḠ

D
BC︸ ︷︷ ︸ ]ABC← permutation average

∆̂Habc = Habc −
[
H̄abc + 3∆HadH̄

d
bc

]
abc

∆̂GABC (Irreducibe Relative Correlator)
— vanishes for an uncorrelated hadron gas,

as well as for a gas with only 2-particle correlations.∫
A

∫
B

∫
C ∆̂GABC is a factorial cumulant

Maximum entropy method gives:

∆GAB = ∆HabP
a
AP

b
B, ∆̂GABC = ∆̂HabcP

a
AP

b
BP

c
C , etc.
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ḠABC︸ ︷︷ ︸+ 3∆GADḠ
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Why Factorial Cumulants

Factorial Cumulants (FC) are better measures of particle correlations

Three reasons:

Maximum Entropy freezeout: Pradeep, MS 2211.09142

FC are integrals of ∆̂Gn (the irreducible particle correlators),
which are directly related to hydrodynamic correlators.

Acceptance dependence: Ling, MS 1512.09125, Bzdak, Koch, Strodthoff 1607.07375

FC are monomials of ∆y for small ∆y; NC are polynomials.

Normal Cumulants (NC) – quantify non-gaussianity;
FC – quantify non-poissonianity, i.e., irreducible correlations.

NC are for densities (continuous);
FC are for multiplicities (discrete).
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Comparison to legacy approach for critical fluctuations

The contribution of critical fluctuations matches the simple model
often used in the literature (MS 2011):

δf criticalA = δσ

(
∂

∂σ
〈fA〉

)
where critical field σ couples to mass so that δmA = gAδσ.

Thus 〈δfAδfB〉 = 〈fA〉δAB︸ ︷︷ ︸
Poisson baseline

+ 〈δσδσ〉
(
∂

∂σ
〈fA〉

)(
∂

∂σ
〈fB〉

)
︸ ︷︷ ︸

critical contribution ∼ gAgB

Similar. But, within maximum entropy approach, we do not need
to know the couplings gA of the critical mode. All we need is
already in the equation of state.

And ME approach is not limited to most singular contributions.
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Equation of state near CP

Universality: QCD pressure singularity
matches Ising model Gibbs free energy:

PQCD(µ, T )/T 4
c = −GIsing(h, r)

+ less singular terms ,

(from Parotto et al.)

h(µ, T ) = hT∆T + hµ∆µ = −cosα1∆T + sinα1∆µ

wTc sin(α1 − α2)
;

r(µ, T ) = rT∆T + rµ∆µ =
cosα2∆T + sinα2∆µ

ρwTc sin(α1 − α2)
,

Matching parameters w, ρ, α1, α2 characterize the critical point,
in addition to its location Tc, µc.
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Signal depends sensitively on ∆T , w, ρ, e.g.,

the amplitude ∼ w−6/5∆T k−6/5, the width/shift ∼ w−2/5ρ−1∆T−3/5.

Thus, these parameters (Tc, µc, w, ρ) could be constrained by data.
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Concluding summary

Maximum entropy approach for single-particle observables
= traditional Cooper-Frye freezeout.

Maximum entropy approach solves the problem of freezing out
of hydrodynamic fluctuations, respecting conservatoin laws.

The method is very general and works for gaussian and non-
gaussian, for critical and non-critical fluctuations.

Agrees with existing (ad hoc) methods where such are available.

Allows predicting the magnitude of CP signatures directly in
terms of the EOS parameters.
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