Maximum entropy freezeout of fluctuations

M. Stephanov

with Maneesha Pradeep: PhysRevLett.130.162301 [2211.09142]

Equation of state, heavy-ion collisions and freezeout

- Equation of state is the key ingredient of hydrodynamics.
- Hydrodynamics describes evolution of HIC fireball.
- However, experiments measure particle multiplicities, not hydrodynamic variables (densities).
- Freezeout is an essential step connecting theory with experiment.

Standard freezeout (Cooper-Frye)

• In each hydro cell at freezeout local values of T(x), $\mu(x)$, u(x) are translated into

local phase-space distribution $\langle f_A(x) \rangle = e^{\hat{\mu}(x)q_A + \beta(x)u(x) \cdot p_A}$. where $\hat{\mu} = \mu/T$, $\beta = 1/T$, and A is a set of particle quantum numbers such as charge (q_A) , 4-momentum (p_A) , i.e., phase-space coordinates.

Standard freezeout (Cooper-Frye)

• In each hydro cell at freezeout local values of T(x), $\mu(x)$, u(x) are translated into

local phase-space distribution $\langle f_A(x) \rangle = e^{\hat{\mu}(x)q_A + \beta(x)u(x) \cdot p_A}$. where $\hat{\mu} = \mu/T$, $\beta = 1/T$, and A is a set of particle quantum numbers such as charge (q_A) , 4-momentum (p_A) , i.e., phase-space coordinates.

 \blacksquare $\langle f_A \rangle$ gives us single-particle observables.

For fluctuations we need (at least) $\langle \delta f_A \delta f_B \rangle$.

Fluctuations

- Hydrodynamics is intrinsically stochastic: dissipation means there are fluctuations.
- Fluctuations, especially non-gaussian, are essential for mapping QCD phase diagram and locating QCD critical point.
- Hydrodynamic evolution of fluctuations
 a lot of recent progress a subject for a different talk.
- This talk freezeout of fluctuations.
- Example of application next talk.

Earlier work, problems and questions

"Fluctuating Cooper-Frye". Naively:

Kapusta-Muller-MS 2011

$$\delta f_A = \left(\delta \hat{\mu} \frac{\partial}{\partial \hat{\mu}} + \delta T \frac{\partial}{\partial T} + \delta u \frac{\partial}{\partial u}\right) \langle f_A(\hat{\mu}, T, u) \rangle$$

Then, multiplicity fluctuation correlator:

$$\langle \delta f_A \delta f_B \rangle = \underbrace{\langle \delta \hat{\mu} \delta \hat{\mu} \rangle}_{\mbox{from hydro}} \quad \left(\frac{\partial}{\partial \hat{\mu}} \langle f_A \rangle \right) \left(\frac{\partial}{\partial \hat{\mu}} \langle f_B \rangle \right) + \dots \tag{*}$$

Earlier work, problems and questions

"Fluctuating Cooper-Frye". Naively:

Kapusta-Muller-MS 2011

$$\delta f_A = \left(\delta \hat{\mu} \frac{\partial}{\partial \hat{\mu}} + \delta T \frac{\partial}{\partial T} + \delta u \frac{\partial}{\partial u}\right) \langle f_A(\hat{\mu}, T, u)\rangle$$

Then, multiplicity fluctuation correlator:

$$\langle \delta f_A \delta f_B \rangle = \underbrace{\langle \delta \hat{\mu} \delta \hat{\mu} \rangle}_{\mbox{from hydro}} \quad \left(\frac{\partial}{\partial \hat{\mu}} \langle f_A \rangle \right) \left(\frac{\partial}{\partial \hat{\mu}} \langle f_B \rangle \right) + \dots \tag{*}$$

Problem:

consider ideal gas, no correlations, i.e. $\langle f_A f_B \rangle = \langle f_A \rangle \delta_{AB}$,

but there are fluctuations of $\delta \hat{\mu}$, δT , etc. even in ideal gas \Rightarrow equation (*) produces incorrect result: spurious correlations.

Source of the problem and a solution

Correlated particle pairs erroneously include "pairs" made of the same particle counted twice.

■ A solution for charge fluctuations – subtract the contribution of ideal gas to $\langle \delta n \delta n \rangle$ in hydrodynamics and apply equation (*) only to the remainder:

$$\begin{split} \langle \delta n \delta n \rangle &\equiv \langle \delta n \delta n \rangle_{\text{ideal}} + \Delta \langle \delta n \delta n \rangle, \qquad (\delta n = \chi \delta \hat{\mu}) \\ \langle \delta f_A \delta f_B \rangle &= \langle f_A \rangle \delta_{AB} + \underbrace{\Delta \langle \delta n \delta n \rangle \left(\chi^{-1} \frac{\partial}{\partial \hat{\mu}} \langle f_A \rangle \right) \left(\chi^{-1} \frac{\partial}{\partial n} \langle f_B \rangle \right)}_{\text{balance function}} \end{split}$$

Thermal smearing and "self-correlations"

Open questions

How to deal with

- Temperature, velocity fluctuations?
- Non-gaussian fluctuations?

Maximum entropy freezeout:

Pradeep-MS PhysRevLett.130.162301 [2211.09142]

Revisit one-point/single-particle observables

Conservation laws constrain particle phase-space distributions:

$$\begin{split} \langle n(x)\rangle &= \textstyle\sum_A q_A \langle f_A(x)\rangle \quad \text{and} \quad \langle \epsilon(x) u^\mu(x)\rangle = \textstyle\sum_A p_A^\mu \langle f_A(x)\rangle; \\ \text{or, generally, } \langle \Psi_a\rangle &= \textstyle\sum_A P_a^A \langle f_A\rangle, \end{split}$$

where P_a^A – contribution of particle A to (conserved) quantity Ψ_a .

Problem: these equations for $\langle f_A \rangle$ have infinitely many solutions.

Revisit one-point/single-particle observables

Conservation laws constrain particle phase-space distributions:

$$\begin{split} \langle n(x) \rangle &= \textstyle \sum_A q_A \langle f_A(x) \rangle \quad \text{and} \quad \langle \epsilon(x) u^\mu(x) \rangle = \textstyle \sum_A p_A^\mu \langle f_A(x) \rangle; \\ \text{or, generally, } \langle \Psi_a \rangle &= \textstyle \sum_A P_a^A \langle f_A \rangle, \end{split}$$

where P_a^A – contribution of particle A to (conserved) quantity Ψ_a .

Problem: these equations for $\langle f_A \rangle$ have infinitely many solutions.

Which solution maximizes Bolzmann entropy? (minimum bias)

$$S_0 = -\sum_A \langle f_A \rangle \log \langle f_A \rangle$$

Answer: $\langle f_A \rangle = e^{\hat{\mu}q_A + \beta u \cdot p_A}$ — Cooper-Frye.

Revisit one-point/single-particle observables

Conservation laws constrain particle phase-space distributions:

$$\begin{split} \langle n(x) \rangle &= \textstyle \sum_A q_A \langle f_A(x) \rangle \quad \text{and} \quad \langle \epsilon(x) u^\mu(x) \rangle = \textstyle \sum_A p_A^\mu \langle f_A(x) \rangle; \\ \text{or, generally, } \langle \Psi_a \rangle &= \textstyle \sum_A P_a^A \langle f_A \rangle, \end{split}$$

where P_a^A – contribution of particle A to (conserved) quantity Ψ_a .

Problem: these equations for $\langle f_A \rangle$ have infinitely many solutions.

Which solution maximizes Bolzmann entropy? (minimum bias)

$$S_0 = -\sum_A \langle f_A \rangle \log \langle f_A \rangle$$

Answer: $\langle f_A \rangle = e^{\hat{\mu}q_A + \beta u \cdot p_A}$ — Cooper-Frye.

Fluctuations?

Pradeep-MS 2022

Maximum entropy freezeout of fluctuations

 \blacksquare We want to match *fluctuations* of Ψ_a at freezeout

to fluctuations of f_A , so that $\Psi_a = \sum_A P_a^A f_A$ event-by-event

i.e.,
$$G_{AB} \equiv \langle \delta f_A \delta f_B \rangle$$
 must obey
$$(P_a^A = \{q_A, p_A, \dots\})$$

$$\underbrace{\langle \delta \Psi_a \delta \Psi_b \rangle}_{H_{ab}} = \sum_{AB} P_a^A P_b^B \underbrace{\langle \delta f_A \delta f_B \rangle}_{G_{AB}}$$

Again, for G_{AB} , there are infinitely many solutions.

Maximum entropy freezeout of fluctuations

• We want to match fluctuations of Ψ_a at freezeout

to fluctuations of f_A , so that $\Psi_a = \sum_A P_a^A f_A$ event-by-event

i.e.,
$$G_{AB} \equiv \langle \delta f_A \delta f_B \rangle$$
 must obey
$$(P_a^A = \{q_A, p_A, \dots\})$$

$$\underbrace{\langle \delta \Psi_a \delta \Psi_b \rangle}_{H_{ab}} = \sum_{AB} P_a^A P_b^B \underbrace{\langle \delta f_A \delta f_B \rangle}_{G_{AB}}$$

Again, for G_{AB} , there are infinitely many solutions.

Entropy?

Entropy of fluctuations

\blacksquare Entropy is a functional of fluctuations, i.e., of G_{AB} :

$$S_2 = S_0 + \underbrace{\frac{1}{2} \mathrm{Tr} \left[\log G \bar{G} - G \bar{G} + 1 \right]}_{\text{relative entropy}} \text{, where } \bar{G}_{AB} = -\frac{\delta^2 S_0}{\delta \langle f_A \rangle \delta \langle f_B \rangle}.$$

ightharpoonup This follows from $S_{\rm rel}[\mathcal{P}] = \mathcal{P} \log \bar{\mathcal{P}}/\mathcal{P}$,

where $\mathcal{P}=\mathcal{P}[f]$ is the probability distribution of f_A , i.e., functional of $\langle f_A \rangle$, $\langle \delta f_A \delta f_B \rangle \equiv G_{AB}$, etc.

and $\bar{\mathcal{P}}$ is \mathcal{P} for ideal hadron gas (reference distirbution).

We maximize S with respect to \mathcal{P} subject to conservation laws.

Maximum entropy solution

Relative entropy is maximized (subject to constraints) by

$$(G^{-1})^{AB} = (\bar{G}^{-1})^{AB} + (H^{-1} - \bar{H}^{-1})^{ab} P_a^A P_b^B$$

- **▶** Note: when $H = \bar{H} \rightarrow G = \bar{G}$ ideal gas (reference) correlator.
- Similar expressions for non-gaussian correlators.
- Linearizing in $\Delta H \equiv H \bar{H}$ we obtain the desired generalization of earlier results:

$$G_{AB} = \underbrace{\bar{G}_{AB}}_{\text{baseline}} + \underbrace{\Delta H_{ab} P_A^a P_B^b}_{\text{correlations}},$$

where
$$P_A^a \equiv (\bar{H}^{-1})^{aa'} P_{a'}^{A'} \bar{G}_{A'A}$$
.

[cf.
$$\Delta \langle \delta f_A \delta f_B \rangle = \langle \delta n \delta n \rangle \left(\chi^{-1} q_A \langle f_A \rangle \right) \left(\chi^{-1} \right) q_B \langle f_B \rangle$$
]

Non-gaussian correlators ($n \ge 3$ particles)

Linearied equations are simple and intuitive in terms of

$$\Delta G_{AB} = G_{AB} - \bar{G}_{AB}, \quad \Delta H_{ab} = H_{ab} - \bar{H}_{ab}, \text{-"relative correlator"}$$

$$\underline{\hat{\Delta}G_{ABC}} = G_{ABC} - \left[\underline{\bar{G}_{ABC}} + \underline{3\Delta G_{AD}\bar{G}_{BC}^D}\right]_{\overline{ABC}} \leftarrow \text{permutation average}$$
 irreducible

$$\widehat{\Delta}H_{abc} = H_{abc} - \left[\bar{H}_{abc} + 3\Delta H_{ad}\bar{H}_{bc}^d\right]_{\overline{abc}}$$

- $\hat{\Delta}G_{ABC}$ (Irreducibe Relative Correlator)
 vanishes for an uncorrelated hadron gas,
 as well as for a gas with only 2-particle correlations.
- $\int_A \int_B \int_C \hat{\Delta} G_{ABC}$ is a factorial cumulant

correlation

Non-gaussian correlators ($n \ge 3$ particles)

Linearied equations are simple and intuitive in terms of

$$\Delta G_{AB} = G_{AB} - \bar{G}_{AB}, \quad \Delta H_{ab} = H_{ab} - \bar{H}_{ab}, \quad \text{``relative correlator''}$$

$$\underline{\hat{\Delta}G_{ABC}}_{\text{irreducible}} = G_{ABC} - \Big[\underline{\bar{G}_{ABC}}_{A \bullet \bullet_{C}} + \underbrace{3\Delta G_{AD}\bar{G}_{BC}^{D}}_{A \bullet_{VVVV} \bullet_{C}^{B}}\Big]_{\overline{ABC}} \leftarrow \text{permutation average correlation}$$

$$\widehat{\Delta}H_{abc} = H_{abc} - \left[\bar{H}_{abc} + 3\Delta H_{ad}\bar{H}_{bc}^d\right]_{\overline{abc}}$$

- $\hat{\Delta}G_{ABC}$ (Irreducibe Relative Correlator)
 vanishes for an uncorrelated hadron gas,
 as well as for a gas with only 2-particle correlations.
- $\int_A \int_B \int_C \hat{\Delta} G_{ABC}$ is a factorial cumulant
- Maximum entropy method gives:

$$\Delta G_{AB} = \Delta H_{ab} P_A^a P_B^b, \quad \hat{\Delta} G_{ABC} = \hat{\Delta} H_{abc} P_A^a P_B^b P_C^c, \quad \text{etc.}$$

Why Factorial Cumulants

Factorial Cumulants (FC) are better measures of particle correlations

Three reasons:

Maximum Entropy freezeout:

Pradeep, MS <u>2211.09142</u>

FC are integrals of $\hat{\Delta}G_n$ (the irreducible particle correlators), which are directly related to hydrodynamic correlators.

Why Factorial Cumulants

Factorial Cumulants (FC) are better measures of particle correlations

Three reasons:

Maximum Entropy freezeout:

Pradeep, MS <u>2211.09142</u>

FC are integrals of $\hat{\Delta}G_n$ (the irreducible particle correlators), which are directly related to hydrodynamic correlators.

Acceptance dependence:

Ling, MS <u>1512.09125</u>, Bzdak, Koch, Strodthoff <u>1607.07375</u>

FC are monomials of Δy for small Δy ; NC are polynomials.

Why Factorial Cumulants

Factorial Cumulants (FC) are better measures of particle correlations

Three reasons:

Maximum Entropy freezeout:

- Pradeep, MS <u>2211.09142</u>
- FC are integrals of $\hat{\Delta}G_n$ (the irreducible particle correlators), which are directly related to hydrodynamic correlators.
- **▶** Acceptance dependence: Ling, MS 1512.09125, Bzdak, Koch, Strodthoff 1607.07375 FC are monomials of Δy for small Δy ; NC are polynomials.
- Normal Cumulants (NC) quantify non-gaussianity;
 FC quantify non-poissonianity, i.e., irreducible correlations.
 - NC are for densities (continuous); FC are for multiplicities (discrete).

Comparison to legacy approach for critical fluctuations

The contribution of critical fluctuations matches the simple model often used in the literature (MS 2011):

$$\delta f_A^{\rm critical} = \delta \sigma \left(\frac{\partial}{\partial \sigma} \langle f_A \rangle \right)$$

where critical field σ couples to mass so that $\delta m_A = g_A \delta \sigma$.

Thus
$$\langle \delta f_A \delta f_B \rangle = \underbrace{\langle f_A \rangle \delta_{AB}}_{\text{Poisson baseline}} + \underbrace{\langle \delta \sigma \delta \sigma \rangle \left(\frac{\partial}{\partial \sigma} \langle f_A \rangle \right) \left(\frac{\partial}{\partial \sigma} \langle f_B \rangle \right)}_{\text{critical contribution}}$$

- ullet Similar. But, within maximum entropy approach, we do not need to know the couplings g_A of the critical mode. All we need is already in the equation of state.
- And ME approach is not limited to most singular contributions.

Equation of state near CP

Universality: QCD pressure singularity matches Ising model Gibbs free energy:

$$\begin{split} P_{\rm QCD}(\mu,T)/T_c^4 &= -G_{\rm Ising}(h,r) \\ &+ \text{less singular terms} \,, \end{split}$$

(from Parotto et al.)

$$h(\mu, T) = h_T \Delta T + h_\mu \Delta \mu = -\frac{\cos \alpha_1 \Delta T + \sin \alpha_1 \Delta \mu}{w T_c \sin(\alpha_1 - \alpha_2)};$$

$$r(\mu, T) = r_T \Delta T + r_\mu \Delta \mu = \frac{\cos \alpha_2 \Delta T + \sin \alpha_2 \Delta \mu}{\rho w T_c \sin(\alpha_1 - \alpha_2)},$$

Matching parameters w, ρ , α_1 , α_2 characterize the critical point, in addition to its location T_c , μ_c .

Equilibrium estimates for critical contribution to factorial cumulants of proton multiplicities

Karthein, MP, Rajagopal, Stephanov, Yin (in preparation) 2508,19237

Signal depends sensitively on ΔT , w, ρ , e.g., the amplitude $\sim w^{-6/5} \Delta T^{k-6/5}$, the width/shift $\sim w^{-2/5} \rho^{-1} \Delta T^{-3/5}$.

Thus, these parameters (T_c, μ_c, w, ρ) could be constrained by data.

Concluding summary

- Maximum entropy approach for single-particle observables
 traditional Cooper-Frye freezeout.
- Maximum entropy approach solves the problem of freezing out of hydrodynamic fluctuations, respecting conservation laws.
- The method is very general and works for gaussian and non-gaussian, for critical and non-critical fluctuations.
- Agrees with existing (ad hoc) methods where such are available.
- Allows predicting the magnitude of CP signatures directly in terms of the EOS parameters.