Can we make a statement on the QCD critical point by lattice data from just one temperature?

Probabilities in certain rings in the complex plane

Region \mathcal{R} (MeV)	$P(\mathcal{R})$	
	lattice	HRG mock
387-502	8.8%	9.7%
420 - 750	1.9%	4.6%
420 – 632	1.3%	4.1%
540.0-664.2	0.41%	0.49%

With yc about zero, $|y_c| \le 0.1 \text{ MeV}$: $P_{\text{LAT}} = 0$

Our analyses provide direct evidence for smooth, analytic thermodynamics at T=108 MeV

What is the best trial fit function for the analysis of the low temperature small-volume QCD data?

Analyses using critical ansatz in the complex plane

Critical ansatz: Ansatz III:
$$f(\mu_B) = A \cosh(\mu_B) + \frac{C(|\mu_B - \mu_{B,c}|^{\alpha} + |\mu_B + \mu_{B,c}|^{\alpha})}{C(|\mu_B - \mu_{B,c}|^{\alpha} + |\mu_B + \mu_{B,c}|^{\alpha})}$$

$$\alpha = 1 + \sigma_{\text{LYE}} = 1.085$$

In the complex plane to fit the LQCD data:

Gliozzi and Rago, JHEP 10 (2014) 042 [1403.6003]

$$f(i\theta_B) = A(T) \cos(\theta_B) + C \left[\left(x_c^2 + (\theta_B - y_c)^2 \right)^{\alpha/2} + \left(x_c^2 + (\theta_B + y_c)^2 \right)^{\alpha/2} \right]$$

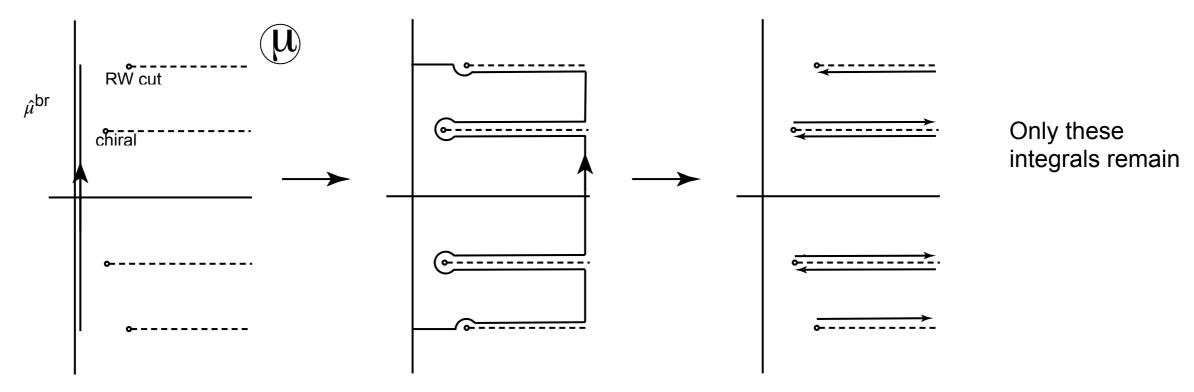
- Lee-Yang edge singularity (x_c, y_c)

_ Radius of convergence
$$|\mu_{B,c}|_{min} = \left(\sqrt{x_c^2 + y_c^2}\right)_{min}$$

20

Do we know anything about LYZ beyond YLE and RW?

· We can deform the integration contour to integrate along the cuts



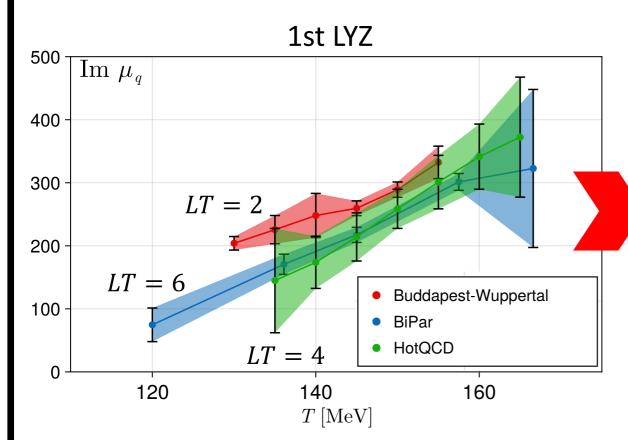
· Assume that we can express the density along the cuts as

$$n_B(\hat{\mu}) = \underbrace{A(\hat{\mu} - \hat{\mu}^{\mathrm{br}})^{\sigma}}_{\text{Leading order non-analytic part}}^{\text{edge coefficient, } \sigma > -1}_{\text{edge coefficient, } \sigma > -1} + \underbrace{\sum_{n=0}^{\infty} a_n (\hat{\mu} - \hat{\mu}^{\mathrm{br}})^n}_{analytic part}$$

28/29

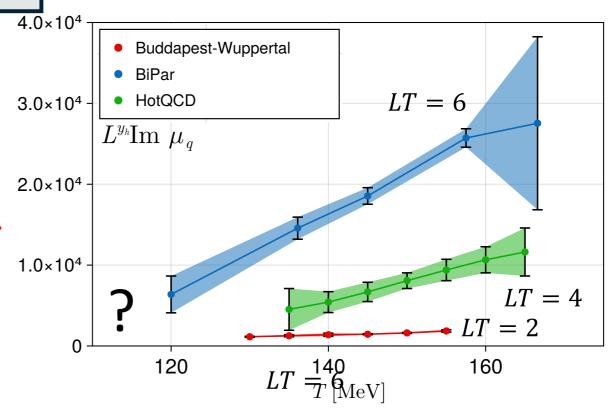
Single LYZ method in N_f=2+1 QCD

$$L^{y_h} h_{LY}^{(n)}(L^{y_t} t) = X_n + Y_n L^{y_t} t + \mathcal{O}(t^2)$$



Pure imaginary chemical potential

+ Pade approximation



Lattice result is still high temperature.

$$T_{\rm c} = 90 - 100 \,{\rm MeV?}$$

What is the size of the scaling region? Is there a mean-field region?

YLE OF THE CEP

Sometimes (e.g. for lattice and experiment) $(T_{\rm CEP},\mu_{\rm CEP})$ not directly accessible. Then:

- reconstruct YLE location for available T and μ
- extrapolate to $\text{Im } \mu_{\text{YLE}} = 0$ to locate CEP

(see talks of Adam, Basar, Goswami, Schmidt, Zambello, ...)

How to extrapolate?

- if data is in scaling region of CEP: use universality
- but how large is scaling region?

O(4)-scaling of light chiral limit (physical m_s):

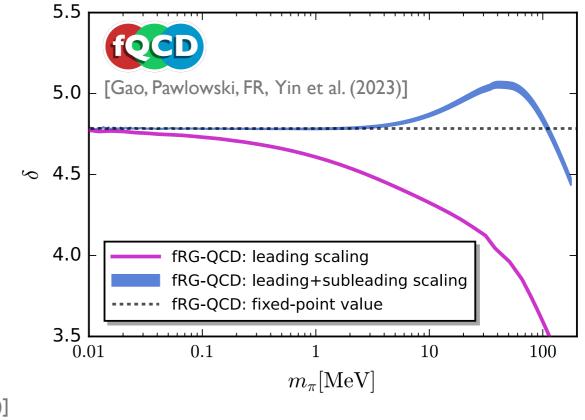
- $m_{\pi} \lesssim 5 \, \text{MeV}$ at $T = T_c$
- $T_c T \lesssim 7 \,\mathrm{MeV}$ at $m_\pi = 0$

CEP scaling region probably also small

[Fu, Luo, Pawlowski, FR, Yin (2021, 2023)]

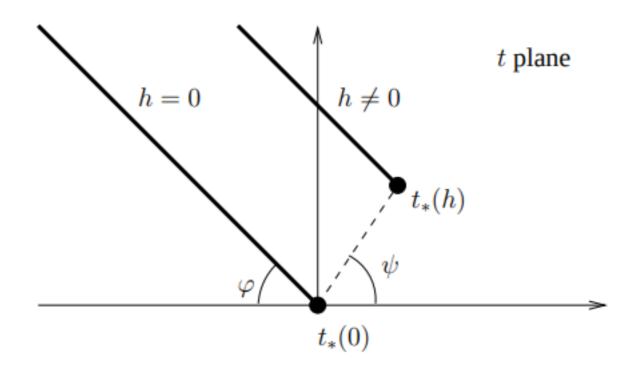
non-universal information necessary

(see talks of Gao and Pawlowski)



$$\begin{split} \bar{\Delta}_l(m_\pi) &= B_c \, m_\pi^{2/\delta} \big(1 + a_m m_\pi^{2\theta_H}\big) + c_1 \, m_\pi^2 + c_2 \, m_\pi^4 \\ \text{break down for } m_\pi \gtrsim 25 \, \text{MeV} \end{split}$$

See attached figure from the Misha's paper; is the line $h \neq 0$ parallel to the h = 0 line? The derivation for the angles φ and ψ is based on the continuity of Omega and is given by the critical properties of the underlying universality class. It does not seem to translate to $h \neq 0$. So do we actually know the direction of the cut?



M. Stephanov, Phys. Rev. D 73 (2006) 094508

How do we transition from the exp(-V) to power law in performing the extrapolation of the Faylor series expansion. We need factorial divergence of the coefficience. Do we see this n the data?