Mapping a critical point on pion condensate line in isospin phase diagram from Lee-Yang zeros

Sabarnya Mitra

Faculty of Physics, Bielefeld University

Phys.Rev.D 112 (2025) 1, 014511, arXiv: 2401.14299 [hep-lat]

Plan of talk

- Motivation and domain of this work
- Core methodology and working lattices
- Zeroes, results and their stability
- Mapping a critical point on the critical line
- Radius of convergence and subsequent observations
- Overlap problem and its severity
- Conclusion and Outlook

Motivation

Brandt et. al.: PRD 97 (2018) 5, 054514, arXiv: 1712.08190 [hep-lat]

So, what happens here??

The Theory: Symmetry

Different onsets in phase diagram

As we find

The prevailing notions so far

FIG. 1. Phase diagram of QCD at finite isospin density.

Son, Stephanov *PRL*

$$\mu_I = \mu_u - \mu_d$$
Adopted here in this work
$$\mu_I^c = m_{\pi}$$

So, what we do here??

Brandt et. al. *PRD*

$$\mu_I = \frac{\mu_u - \mu_d}{2}$$

$$\mu_I^c = \frac{m_\pi}{2}$$

WORKING FORMULATION??

Working formulation

To evaluate the zeros, we use the familiar Newton-Raphson formulation:

$$\mu_{n+1} = \mu_n - \frac{\mathcal{Z}(\mu_n)}{\mathcal{Z}'(\mu_n)}, \quad \mu \equiv \mu_I$$

- $\mathscr{Z}'(\mu_n) = \left[\partial \mathscr{Z}/\partial \mu\right]_{\mu=\mu_n}$ (Isospin partition function $\longrightarrow \mathscr{Z}$)
- μ_n ($n \ge 0 \in \mathbb{Z}^+$) \longrightarrow estimate obtained on n^{th} iteration. What iteration???
- Start from an initial guess μ_0 and continue iteratively , unless $|\mu_{n+1} \mu_n| \leq \epsilon$

$$|\mu_{n+1} - \mu_n| \le \epsilon$$

In this work, we choose $\epsilon = 0.002$

Tolerance

So, how is $\mathcal{Z}(\mu_I)$ defined here???

$$\mathcal{Z}\left(\mu_{I}, V, T\right) = \int DU e^{-S_{g}[U]} \left[\det M\left(\mu_{I}, V, T\right) \right]$$

$$= \left\langle \exp \left[\sum_{n=1}^{N} \frac{\mu_I^n}{n!} D_n^{(u)} \right] \right\rangle$$
 Unbiased exponential resummation

SM, Hegde; **PRD 108 (2023) 3, 034502**, arXiv: **2302.06460 [hep-lat]**

 $\langle O \rangle$ calculated on gauge ensemble generated at $\mu_I = 0$

$$D_n = \frac{\partial^n}{\partial \mu_I^n} \ln \left[\det M \right] \bigg|_{\mu_I = 0} \quad \text{, and } D_n^{(u)} \text{ contains } \underline{\text{unbiased corrections}}$$

These corrections are important to reproduce the exact Taylor coefficients order-by-order. (Upto fourth order here)

SM, Hegde, Schmidt; PRD 106 (2022), 3, 034504, arXiv: 2205.08517 [hep-lat]

And now the working lattice

Lattice setup

- (2+1)-flavor Highly Improved Staggered Quark (HISQ) action
- Working lattices \longrightarrow $32^3 \times 8$ lattices (higher volumes in future)
- Total of 20K configurations $(N_{conf} = 20K)$
- Working temperatures \longrightarrow $125 \le T \le 171$ MeV
- Physical light and strange quark masses, for each temperature $(m_{\ell} = m_s / 27)$

How do we implement the simulations???

Implementation

• Choose the initial complex μ_0 from the complex set

$$S = \{\mu_0 : 0 \le \operatorname{Re}\left(\mu_0\right) \le 2 \text{ , } 0 \le \operatorname{Im}\left(\mu_0\right) \le 2\}$$

in steps of 0.1 on each direction , along Re $\left(\mu_0\right)$ & Im $\left(\mu_0\right)$

Choose the tolerance value

$$\epsilon = 0.002$$

Choose the upper bound of the number of iterations

$$N_{max} = 10^8$$

with $N_{conf} = 20K$, $N_B = 50$ (bootstrap samples)

 $\mu_{NR}^{(b)}$ \longrightarrow estimate of the Newton-Raphson root in $b^{\it th}$ bootstrap sample

Final estimates:

$$\sigma_{NR}^{2}(\mu_{0}) = \frac{1}{50} \sum_{b=1}^{50} \left\{ \mu_{NR}^{(b)} - \mu_{NR}(\mu_{0}) \right\}^{2}$$

Variance

Results 2.1 1.8 $Im (\mu_I/T)$ 1.5 **Nearest** Lee-Yang 1.2 zero μ_I^0 0.9 T = 125 MeV 0.6 0.3 $\phi = 0.151 \; \pi$ Re (μ_I/T) **Closest** to point of expansion 0.0 0.9 1.2 0.3 0.6 1.5 1.8 2.1 0.0 \rightarrow origin (0,0) here Complex μ_I plane

- Individual error bars on roots are **only** shown here for μ_I^0 .
- Elliptical representation of errors: major and minor axes.
- This line shows one quarter of the circle of convergence.
- μ_I^0 makes an **angle** ϕ (radian units) with the real μ_I axis.

$$\phi = \tan^{-1} \left[\frac{\mu_{I,i}^T}{\mu_{I,r}^T} \right]$$

Other T's??

• μ_I^0 approaching real axis with reducing T (reducing angle ϕ)

How stable (reliable) are these results ??

• Expecting to find real $\mu_I^0 \Rightarrow \text{ genuine critical point}$ at lower T

Stability of results

New estimates \leftarrow using μ_I^0 as initial guesses

- Good agreement (overlap) with the old ←⇒ new estimates of the roots / zeros
- The present estimates of zeros are reliable !!!

What about other T ??

All possible critical points for T = 135 MeV as initial guesses

$$\mu_0 = (m_\pi \cos \phi, m_\pi \sin \phi) , \phi = \left\{ \frac{n\pi}{12} , 1 \le n \le 6 \right\}$$

Commendable agreement upto T = 151 MeV

Reliable therefore, at least for this work

:. Let's analyse these 0's

Real and imaginary parts of μ_I^0

• $\mu_{I,r}^T \sim \mathrm{Re}\left(\mu_I^0\right)$ close to m_π for lower values of T

• Monotonically reducing $\mu_{I,i}^T$ $\sim \operatorname{Im}\left(\mu_I^0\right)$ with decreasing T

Also, Increasing errors for $\mu_{I,r}^T$ and $\mu_{I,i}^T$ for T < 140 MeV

signs of possible "vicinity of critical point(s)"

Radius of convergence (RoC):

(Note,
$$|\mu_I^0| = \mu_I^\rho / T$$
)

$$\mu_I^{\rho} = \sqrt{\left(\mu_{I,r}^T\right)^2 + \left(\mu_{I,i}^T\right)^2}$$

Dimensional (in MeV units)

• Monotonic reduction : $\mu_I^{
ho}$ decrease with T for $125 \le T \le 151$ MeV

Qualitatively consistent with χPT predictions

• $\mu_I^{
ho} \sim m_\pi$, within errors for $T=135~{
m MeV}$

Can it indicate possible critical point / line???

• Resumed susceptibility χ_6^R deviates sharply from Taylor counterpart results for $\mu_I > m_\pi$ (good agreement for $\mu_I < m_\pi$)

similar to

Manifesting divergence

1

Possible phase transition signatures

Borsanyi et. al.: PRD 109, 054509 (2024), arXiv: 2308.06105 [hep-lat]

RoC : $\mu_I^{\rho} \longrightarrow \text{good indicator of } \pi\text{-boundary}$, at least in low T

However

$$\mu_{I,i}^T \neq 0$$

for $T \le 135$ MeV

Non-zero **imaginary** part

 $\left(\mu_{I}^{c},T_{I}^{c}\right)=\left(m_{\pi},135\right)$ is $\frac{\text{NOT}}{\text{A CRITICAL POINT}}$

So, analyse lower T...

But

No further data for T < 125 MeV available on these lattices

Extrapolate $\mu_{I,i}^T$ and μ_I^ρ in T , to lower T

1. Find :
$$T=T_I^c$$
 \ni $\mu_{I,i}^T=0$, and hence, $\mu_I^0\left(T_I^c\right)\in\mathbb{R}$

2. Find :
$$\mu_I^{
ho}$$
 at $T=T_I^c$: $\Rightarrow \mu_I^c$ $\left\{ \text{ since, at } T=T_I^c \text{ , } \mu_I^{
ho}=\operatorname{Re}\left(\mu_I^0\right) \right\}$

Thus, obtain an estimate of a critical point $\left(\mu_{I}^{c},T_{I}^{c}\right)$

This lies on the present state-of-the-art pion condensate line in the QCD isospin phase diagram. \iff Nomenclature with $\mu_I^c=m_\pi$ (One of the achievements).

within error bars

Some observations related to this RoC ...

Order-by-order deviations **beyond** μ_I^{ρ}

for different T

• Qualitatively, deviations $\rightarrow \chi > M > \Delta P$

for both Re (μ_I) and Im (μ_I)

$$\rho_R = \left| \mu_I^0 \right|$$

$$M_n = \frac{c_{2n}}{c_{2n}}$$

$$M_n = \left| \frac{c_{2n+2} c_{2n-2} - c_{2n}^2}{c_{2n+4} c_{2n} - c_{2n+2}^2} \right|^{1/2}$$

$$\frac{\Delta P}{T^4} = \sum_{n=1}^{N} c_n \left(\frac{\mu_I}{T}\right)^n$$

More order-by-order stable \rightarrow Mercer-Roberts estimates M_n

• M_n estimates approach $\rho_R = \mu_I^{\rho}/T$

$$\rho_R = \mu_I^{\rho}/T$$

For all the three T

For higher order μ_I derivatives of ΔP

Kurtosis κ

$$\kappa = M_4 / \sigma^4$$

$$M_4 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^4$$

Here,
$$N = N_{conf}$$

$$\sigma = \left(\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2\right)^{1/2}$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Results???

describing distribution D

$$D = \left\{ R_i(\mu_I) : i = 1, 2, \dots, N_{conf} \right\}, \quad R(\mu_I) = \det M(\mu_I) / \det M(0)$$

Overlap problem

- Controllable until Radius of convergence (drastic after that) \rightarrow for all the three T.
- Indicates the efficacy of $\mu_I=0$ extrapolations to determine finite μ_I observables .
- This truly breaks down and is unreliable beyond the Radius of convergence $\mu_I^
 ho$

Summary

- Present estimates of Lee-Yang zeros \rightarrow map to a critical point \Rightarrow exists on the present state-of-the-art π -cond. line (within error bars).
- Early indications of a phase transition here, from monotonic reduction of Im (μ_I^0) with reducing T, while Re (μ_I^0) approaching m_π .
- The root estimate results so far, show stability and well-defined convergence.
- Radius of convergence (RoC) is a good indicator of this π-condensate line, with divergences manifesting beyond this RoC, for different observables.
- Good agreement: RoC ←⇒ MR estimates for higher order observables.
- Overlap problem becoming noticeably <u>severe</u> beyond this RoC.

Future works and Outlook

• Simulations at higher lattice volumes (larger N_{σ} for same N_{τ})

Finite-V analysis

if these zeros truly **become real** \rightarrow confirm a **phase transition**, and

NOT a crossover

From a LY zero perspective

THANK YOU FOR YOUR ATTENTION

Backup slides

The nomenclature of isospin

$$B = \frac{1}{3} (N_u + N_d + N_s) , S = -N_s, I = \frac{1}{2} (N_u - N_d)$$

$$\mu_B = \frac{3}{2}(\mu_u + \mu_d) \qquad \qquad \mu_I = (\mu_u - \mu_d)$$

$$B_u = B_d = B_s = 1/3$$
 (Baryons are 3-quark systems)

$$|I_p| = |I_n| = 1/2$$
, since $2I + 1 = 2$ (proton and neutron)

Thus,
$$I_u = -I_d$$
 and $|I_u| = |I_d| = 1/2$