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Analytic structure of Fermi gas pressure

‣ Pressure of the massive fermi gas looks like, 

‣
The closest branch points to the origin occur at the, 

‣ These singularities in the complex plane set the radius of 
convergence of Taylor series at , 

p(T, μ) =
g

6π2 ∫
∞

0
dp

p4

p2 + m2 [ 1

e( p2 + m2−μ)/T + 1
+

1

e( p2 + m2+μ)/T + 1 ] .

μ
T

= ± m
T

± iπ .

μ = 0

R = ( m
T )2 + π2 .
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Taylor series of fermi gas
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Lower order Taylor expansion 
approximate the original function 

very well. 
Larger order co-efficient show 

oscillatory behaviour indicating that 
the limiting singularity are in 

complex plane. 
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Radius of convergence estimator

5

Branch point!!
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Thermodynamics using Lattice QCD

‣ The Taylor series of the QCD pressure at finite temperature and density: 

 

‣ Cumulants at vanishing chemical potential, 

P(T, ⃗μ )
T4

=
1

VT3
ln𝒵QCD =

∞

∑
i, j,k=0

1
i!j!k!

χBQS
ijk ̂μi

B ̂μj
Q ̂μk

S , ̂μ = μ/T

χBQS
ijk (T,0) =

∂i+j+kP/T4

∂ ̂μi, j,k
X μX=0

, X = B, Q, S

6

𝒵QCD = ∫ 𝒟U det[M(mu, μu)]1/4det[M(md, μd)]1/4 det[M(ms, μs)]1/4 e−SG(U)

The partition function of QCD:

Real chemical potential makes the determinant 
complex,

3

and their scaling properties are understood in terms of universal properties of the QCD partition function and its
derivatives in the vicinity of the QCD chiral phase transition [7, 20]. To make use of this knowledge in a quantitative
comparison with experimental results, lattice QCD calculations close to the continuum are needed.
In this paper we present an analysis of fluctuations in, and correlations among, conserved charges using numerical

calculations in (2+1)-flavor QCD at three values of the lattice cut-off 1. For these calculations we exploit an O(a2)
improved action consisting of a tree-level improved gauge action combined with the highly improved staggered fermion
action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of our results in different temperature intervals
and consider two different zero-temperature observables for the determination of the temperature scale used for
extrapolations to the continuum limit. This allows us to quantify systematic errors in our calculation. In an appendix,
we discuss the relation between temperature scales deduced from different zero-temperature observables and the
propagation of their cut-off dependence into the cut-off dependence of thermodynamic observables.

II. FLUCTUATIONS OF CONSERVED CHARGES FROM LATTICE QCD; THE HADRON
RESONANCE GAS AND THE IDEAL GAS LIMIT

To calculate fluctuations of baryon number (B), electric charge (Q) and strangeness (S) from (lattice) QCD we
start from the QCD partition function with non-zero light (µu, µd) and strange quark (µs) chemical potentials. The
quark chemical potentials can be expressed in terms of chemical potentials for baryon number (µB), strangeness (µS)
and electric charge (µQ),

µu =
1

3
µB +

2

3
µQ ,

µd =
1

3
µB −

1

3
µQ ,

µs =
1

3
µB −

1

3
µQ − µS . (1)

The starting point of the analysis is the pressure p given by the logarithm of the QCD partition function,

p

T 4
≡

1

V T 3
lnZ(V, T, µB, µS , µQ) . (2)

Fluctuations of the conserved charges and their correlations in a thermalized medium are then obtained from its
derivatives evaluated at !µ = (µB, µQ, µS) = 0,

χ̂X
2 ≡

χX
2

T 2
=

∂2p/T 4

∂µ̂2
X

∣

∣

∣

∣

!µ=0

, (3)

χ̂XY
11 ≡

χXY
11

T 2
=

∂2p/T 4

∂µ̂X∂µ̂Y

∣

∣

∣

∣

!µ=0

, (4)

with µ̂X ≡ µX/T and X, Y = B, Q, S. Explicit expressions for the calculation of these susceptibilities in terms of
generalized light and strange quark number susceptibilities are given in [20].
As all these derivatives are evaluated at !µ = 0, the expectation values of all net charge numbers δNX ≡ NX −NX̄ ,

with NX (NX̄), denoting the number of particles (anti-particles), vanish, i.e., 〈δNX〉 = 0. The susceptibilities, i.e.,
the quadratic fluctuations of the charges, are then given by

χ̂X
2 = 〈(δNX)2〉/V T 3 . (5)

A. The hadron resonance gas

We will compare results for fluctuations and correlations defined by Eqs. (3) and (4) with hadron resonance gas
model calculations. The partition function of the HRG model can be split into mesonic and baryonic contributions,

pHRG

T 4
=

1

V T 3

∑

i∈ mesons

lnZM
Mi

(T, V, µQ, µS)

1 Preliminary results of this work had been presented at Quark Matter 2011 [24] and PANIC 2011 [25].

HISQ, -flavorNf = 2 + 1
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Expansion coefficients of the Taylor series

‣ For the  dataset, we have generated   
gauge configurations per T.

Nτ = 8 ∼ 1.5 million

7
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Lee yang zeros from Padé approximants

‣ Lee Yang : Phase transitions are related to singularities of the 
Taylor series on the real axis.


‣ If all the expansion coefficients are of same sign, could be an 
indication that the singularity of the series is on the real axis 
and hence is an indication of a critical point.


‣ Alternatively, one could construct Padé approximants which 

are rational functions of the form,  , and evaluate 

its singularities.

f(x) =

a
∑
i=0

cixi

1 +
b

∑
j=0

djx j

8
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Useful Formulas

9

‣ One can construct various  Padé’s from the above 
series.[ ]


‣ The convergence of Padé approximants will be unaffected by a 
singularity in the complex plane contrary to the Taylor series.


‣ The poles of the Padé approximants closest to the origin determine 
the radius of convergence.


‣ The poles of a general  Padé’s are the usual ratio 
estimator (  ) and Mercer Roberts estimator (  )[ *For two pair of 
complex poles] of radius of convergence of the Taylor series.

[m,2] and [n,4]
m ∈ {2,4,6} and n ∈ {2,4}

[m,2] and [n,4]
rn
c rMR

c

ΔP/T4 =
4

∑
k=1

P2k(T ) ̂μ2k
B = (x̄2 + x̄4 + c6,2x̄6 + c8,2x̄8)P2/P4, x̄ =

P4

P2
̂μB

Reminder :  are strictly positive for all temperatures.P2 and P4

rMR
c =

cn+2 cn−2 − c2
n

cn+4 cn − c2
n+2

1/4

, n even
G. N. Mercer and A. J. Roberts, 
SIAM J. Appl. Math. 50, 1547 
(1990) 

9
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z± =
c8,2 − c6,2 ± (c8,2 − c+

8,2)(c8,2 − c−
8,2)

2(c8,2 − c2
6,2)

; c±
8,2 = − 2 + 3c6,2 ± 2(1 − c6,2)3/2

Constraints for a real pole of  Padé[4,4]

10

P[4,4] =
(1 − c6,2)x̄2 + (1 − 2c6,2 + c8,2) x̄4

(1 − c6,2) + (c8,2 − c6,2)x̄2 + (c2
6,2 − c8,2)x̄4

Reminder : Critical points are related to the singularities on the real axis. 
All expansion coefficients have to be positive for a singularity in the real axis. 

 are negative for temperature range, .χB,6
0 , χB,8

0 T ∈ [135 : 165] MeV

Values(including sign) of 
 which are 

related to  are 
crucial to have a pole in the 

real axis.

c6,2 and c8,2
χB

6 and χB
8

z ≡ x̄

Poles can be written as,

-4
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Padé approximations

• Lee-yang theorem: Singularity in the real axis is a hint for a critical 
point.

11

0 1 2 3 4 5
Re µ̂+

B,c
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Singularity of the 
pressure series using 

a [4,4] padè 
constructed from 8th 

order Taylor series 

Bound for CEP : 
TCEP < 132 MeV, ̂μB/T > 2.5

H.T. Ding et al, 
Phys.Rev.Lett. 123 (2019) 6, 062002

D. Bollweg et. al (HotQCD collaboration),Phys.Rev.D 105 (2022) 7, 074511, 
J. Goswami  et. al (HotQCD collaboration), Acta 
Phys.Polon.Supp. 16 (2023) 1, 76
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 Location of the poles from  Padé approximants for QCD[4,4]

12

Poles are complex for the temperature range, 
. 

The possibility of occurrence of a real pole 
cannot be ruled out for 

T ∈ [135 : 165] MeV

T < 135 MeV

Only complex poles having a positive real part 
are shown. 

The poles show a tendency to move to real axis 
for T < 135 MeV

Bound for CEP is,  
 < 135 MeV. 

Consistent with  [arXiv:1903.04801]
TCEP

TCEP < Tchiral
c ( ∼ 130 MeV)

°1 0 1 2
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Radius of convergence from diagonal Padé approximants

13

rc,2 = 12χ̄B
2 /χ̄B

4

rc,4 = rc,2 |z+z− |1/4 =
12χ̄B,2

0

χ̄B,4
0

1 − c6,2

c2
6,2 − c8,2

1/4

The radius of convergence of 
 Padé in the 

temperature range 
 obtained as, 

. 
This is also the current updated 

estimate for the radius of convergence 
( ) from a  Taylor series.

[2,2] and [4,4]

T ∈ [135 : 165] MeV
̂μc
B ∼ [2.5 : 5.5]

rc ̂μ8
B

Bound for CEP is,  
.̂μCEP

B > 2.5

2

2.5

3

3.5

4

4.5

5

5.5

6

135 140 145 150 155 160 165

rc,n

T [MeV]

n=2
n=4
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Distribution of the poles from bootstrap sampling

The distribution of the closest singularity (LYEs) obtained by 
bootstrapping over the data

14

Pr
el

im
in

ar
y

MADE is a modified autoencoder 
architecture designed for distribution 

estimation in machine learning, 
enabling the modelling of complex, 

dependent distributions.

We want to learn the 
probability distribution of 
the LYEs using machine 

learning modelling.
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Learning Temperature-Conditioned Pole Distributions with 
Conditional MAF

‣ Goal: model the conditional distribution of complex poles as a 
function of temperature,

Motivation:

‣  Smooth interpolation in ; sample plausible pole clouds at 
arbitrary temperature.

‣ Exact likelihood for calibration and quantitative diagnostics.
Preprocessing:

‣ Z-score standardization per dimension (train-set stats).

‣ Train/val split on triples .

p(y ∣ x = T ), y = [Re
Im] ∈ ℝ2, x ∈ ℝ .

T

(Re, Im, T )

15
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Conditional Probability & Chain Rule

‣   Conditional probability: For random variables  with ,

‣  Analogy: A = “carry an umbrella”, B = “it is raining.”  Then  is 
the probability I carry an umbrella “given” that it’s raining.  Clearly 

, because the context (rain) changes the likelihood.

‣   Chain rule (autoregressive factorization). 

‣   For a vector  and context ,

‣   In our case , so,  

A, B p(B) > 0

p(A ∣ B) =
p(A, B)

p(B)
, p(A, B) = p(A ∣ B) p(B) = p(B ∣ A) p(A) .

p(A ∣ B)

p(A ∣ B) ≫ p(A)

y = (y1, …, yD) x

p(y ∣ x) =
D

∏
i=1

p(yi ∣ y<i, x), y<i = (y1, …, yi−1) .

D = 2 (Re, Im)
p(y ∣ x) = p(y1 ∣ x) p(y2 ∣ y1, x) .

16
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From Joint to Autoregressive Factorization

‣ For a 2D variable  conditioned on x (temperature):

‣ Chain rule : 

‣ Key idea: instead of modeling one complicated -dimensional 
density, we reduce it to a sequence of D one-dimensional 
conditionals.

‣ This factorization motivates MADE/MAF: masks enforce the 
dependence on , while (temperature) is injected 
unmasked, yielding a tractable Jacobian and exact log-
likelihood.

y = (y1, y2)
p(y ∣ x) = p(y1, y2 ∣ x)

p(y1, y2 ∣ x) = p(y1 ∣ x) p(y2 ∣ y1, x)
D

y<i x

17
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Conditional Normalizing Flow

‣ A normalizing flow is just an invertible change of variables: 
, where z is mapped into a simple Gaussian.

‣ So instead of modeling p(y∣x) directly, we model the 
transformation that maps it to Gaussian space.

‣

‣  

‣ Conditioning:(temperature) is injected unmasked into all 
MADE layers so  varies smoothly with T.

z = fθ(y; x)

log pθ(y ∣ x) = log p(z) − log |det Jfθ(y; x) |

log p(z) = −
1
2

| |z | |2 −
D
2

log(2π), D = 2.

fθ

18

We learn an invertible map that sends the pole distribution to a 
Gaussian. The log-likelihood splits into the Gaussian prior term and a 
Jacobian correction. Temperature enters unmasked in every MADE 
layer, so the learned transformation depends smoothly on T.
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MADE and MAF Implementation

‣ How do we actually build such an invertible map?

‣ Each conditional factor is modelled as a Gaussian with autoregressive 
parameters: , predicted 
by a neural network.

‣ MADE (Masked Autoencoder):
• Neural network with binary masks on connections.
• Ensures depend only on , not on .
• Ensures  can depend on .

‣ MAF (Masked Autoregressive Flow):

, 

Stacking  MADE layers with permutations increases flexibility.

p(yi ∣ y<i, x) = 𝒩(yi μi(y<i, x), σ2
i (y<i, x))

μ1, σ1 x y2

μ2, σ2 (y1, x)

zi =
yi − μi(y<i, x)

σi(y<i, x)
log det J = − ∑

i

log σi

K

19
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Validation of the flow transformation (Gaussianization + Q-Q 
plots)

‣ First we check that the normalizing flow correctly maps the input 
distribution into an isotropic Gaussian.

‣ The histograms of the latent dimensions align very well with 
, and the , plots confirm near-perfect Gaussianity.

‣ This ensures the flow transformation is behaving as expected.
N(0,1) Q − Q

20
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Likelihood Calibration

‣ Next, we look at the post-hoc negative log-likelihood distribution for both training-like 
and validation-like samples. 

‣ The excellent overlap demonstrates that the model is not overfitting, and the 
likelihood calibration is robust.

21
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Model vs Data: Pole Distributions

‣ Now we compare the pole distributions learned by the model (orange) with the original 
bootstrap data (blue) at different temperatures.

‣ The ellipses represent the 2σ contours.

‣ We see that across a wide range of , the model reproduces both the shape and spread of 
the pole clouds.

‣ At lower , the distribution tends to broaden and shift, and the model captures this smoothly.

T

T

22
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Machine learning model for the LYEs

MADE : masked auto encoder for 
density estimation.

In future Work : We want to use 
MADE to classify LYEs related 

to chiral phase transition  
 and LYEs related to 

CEP on several volumes and 
Quark masses.

(ml → 0)

p(Re ̂μB, Im ̂μB |T, ml, Nσ)

Simulations with the smaller 
than physical quark masses 

are ongoing.

23
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CEP extrapolation

24

Possible LYEs for QCD CEP

Symmetry of the transition: Z(2) 
Unknown map to universal theory  
 
Linear map: 

G. Basar used this scaling to identify the critical point in the Gross-Neveu model. 
In principle it should work for QCD as well, if one is able to get enough LYE in the red region. 

[Gokce Basar, arXiv:2105.08080] 

Possible scenario: 

15 

Critical endpoint scaling: an outlook 

Scaling law: 

(slope of the transition line at the critical point) 
(depends on the relative angle between the h and t axes) 

Many parameters are unknown! 

The QCD CEP belongs to  universality class,  however the scalings are unknown.Z(2)

Scaling in the vicinity of the QCD critical point   
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Scaling fields are unknown, a frequently used ansatz is given by a linear mapping 

 t

 h T

 μB μcep

 Tcep

t = αt(T − Tcep) + βt(μB − μcep)
h = αh(T − Tcep) + βh(μB − μcep)

For the Lee-Yang edge singularity we obtain  

μLY = μcep − c1(T − Tcep) + ic2 |zc |−βδ (T − Tcep)βδ ,

Real part: 
linear in T

Imaginary part: 
power law

The coefficient only 
depends on the slope 
of the crossover line

c1 = βT /βμ

 T

To visualise the scaling we use some ad-hoc values 
μcep = 500 − 630 MeV
Tcep = Tpc(1 − κB

2 ̂μ2
B)

κB
2 = 0.012

Tpc = 156.5 MeV
c1 = 0.024
c2 = 0.5
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A linear mapping, 

μLY = μcep − c1(T − Tcep) + ic2 |zc |−βδ (T − Tcep)βδ

Scaling in the vicinity of the QCD critical point   
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Tpc = 156.5 MeV
c1 = 0.024
c2 = 0.5

17

Some educated guess on the unknown 
parameters;

LYEs with many unknown parameters, 

Approaching smaller T

Stephanov, Phys. Rev. D, 
73.9, 094508 (2006) 

BI-P
arm

a pre
lim

ina
ry

BI-P
arm

a pre
lim

ina
rymulti-point Padé, arXiv:2110.15933

[4,4] Padé, arXiv:2202.09184

Machine Learning model

Extrapolated estimate for the 
CEP from HotQCD ( ) and 

Multi-point Padè ( )  is,
Nτ = 8
Nτ = 6
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Summary and Outlook

‣ We discuss the analytic structure of fermi gas and QCD at 
finite temperature and chemical potentials with Taylor 
expansions and Pade approximations.

‣ We also show how [4,4] pade constructed from a eight order 
Taylor expansion shows a trend for the poles to go to the real 
axis at low temperatures.

‣ Furthermore we show that these singularities obtained from 
[4,4] pade is consistent with expected Lee yang edge 
singularities and fall on the similar scaling as obtained from the 
multi point pade poles.

‣ We also explain how to learn density estimation of real and 
imaginary distribution of poles using a neural network.

25

Thank you for your attention!!
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Useful Formulas

26

‣

ΔP/T4 =
4

∑
k=1

P2k(T ) ̂μ2k
B = (x̄2 + x̄4 + c6,2x̄6 + c8,2x̄8)P2/P4, x̄ =

P4

P2
̂μB

Reminder :  are strictly positive for all temperatures.P2 and P4

26

P[4,4] =
(1 − c6,2)x̄2 + (1 − 2c6,2 + c8,2) x̄4

(1 − c6,2) + (c8,2 − c6,2)x̄2 + (c2
6,2 − c8,2)x̄4


