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approximations

K. Zambello1 D. A. Clarke2 J. Goswami2 C. Schmidt2

S. Singh3 F. Di Renzo4 P. Dimopoulos4

1 University of Pisa and INFN 2 University of Bielefeld

3 University of Bonn 4 University of Parma and INFN

Trento, 08/09/2025
0/36



Introduction
QCD phase diagram

▶ Goal: we want to investigate the critical points in the QCD phase
diagram

▶ We can think of at least three critical regions:

(1) The Roberge-Weiss transition region

(2) The chiral transition region

(3) The region around the critical endpoint of QCD

Fig. from Phys.Rev. D 93, 74504 (2016)

▶ More broadly, we aim to investigate the singularities of QCD in the
complex µ-plane.
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Introduction
Yang-Lee edge singularities

▶ There is a deep connection between phase transitions and the
singularities in the complex plane.

The free energy has a branch cut on
the imaginary axis for the symmetry
breaking field h. The branch point is
known as Yang-Lee edge singularity.

oooooooo[Yang, Lee (1952)]

Fig. from New J. Phys. 19, 083009 (2017)

▶ Why are YLE singularities useful?

(1) If for T → Tc the YLE singularities end up on real axis this signals
the presence of a physical phase transition

(2) At T ̸= Tc the presence of a YLE singularities determines a finite
radius of convergence

▶ Strategy: find the location of critical points by tracking the location
of the YLEs as a function of the thermodynamical parameters.

2/36



Introduction
The multi-point Padé method

▶ How do we get the information that we need from lattice data?

Because of the sign problem we cannot directly explore regions at
real (or even complex) chemical potentials.

▶ In our approach:

(1) We perform simulations at imaginary µ

(2) We calculate the Taylor coefficients of a given observable

(3) We merge the results using multi-point Padé approximants

We can extract information about the singularities of the observable
by studying the uncanceled poles of the rational approximants.

▶ This Padé resummation scheme is a combination of the Taylor
expansion and analytic continuation methods.

Multi-point vs single-point Padé: replace the need for expensive
high order Taylor coefficients with cheaper low order Taylor
coefficients at multiple points.
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Introduction
The multi-point Padé method

▶ We look for a function of the form

Rn,m(µ) =
pn(µ)

qm(µ)
=

a0 + a1µ+ a2µ
2 + . . .+ anµ

n

1 + b1µ+ b2µ2 + . . .+ bmµm

that matches the Taylor coefficients of the observable.

▶ Multi-point Padé: we determine ai , bi by imposing

∂ j

µjRn,m(µ
(k)) = ∂ j

µj ⟨O⟩(µ(k))

This yields a nonlinear system of eqs, but the problem can be linearized
pn(µ

(k)) = ⟨O⟩(µ(k))qm(µ
(k))

p′
n(µ

(k)) = ⟨O⟩′(µ(k))qm(µ
(k)) + ⟨O⟩(µ(k))q′

m(µ
(k))

p′′
n (µ

(k)) = ⟨O⟩′′(µ(k))qm(µ
(k)) + 2⟨O⟩′(µ(k))q′

m(µ
(k)) + ⟨O⟩(µ(k))q′′

m(µ
(k))

. . .

Alternatively we use a χ2 minimization approach, i.e. we minimize

χ2
generalized =

∑
k,j

(∂j
µjRn,m(µ

(k))− ∂j
µj ⟨O⟩(µ(k)))2/(∆∂j

µj ⟨O⟩(µ(k)))2
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A first success: the Roberge-Weiss transition
Numerical set-up

As a first practical application, we consider Nf = 2 + 1 QCD in the
high-temperature regime.

▶ We simulate highly improved staggered quarks (HISQ) in
Nf = 2 + 1 QCD using 363 × 6 lattices

▶ Observables: χ1
B,Q ≡ 1

Z
∂Z

∂µ̂B,Q
and their first µ̂B -derivative

▶ 4 temperatures (T = 195.0, 190.0, 185.0, 179.5 MeV )

▶ O(10) imaginary chemical potentials in [0, iπ]

▶ Enlarge interval to [0, 2iπ] by mirroring data using periodicity and
parity

0 1 2 3 4 5 6

Im[µB/T ]

−0.4

−0.2

0.0

0.2

0.4

I
m

[χ
1 B

]

T = 179.50 MeV

T = 185.00 MeV

T = 190.00 MeV

T = 195.00 MeV

0 1 2 3 4 5 6

Im[µB/T ]

0.0

0.5

1.0

1.5

2.0

2.5

−
I
m

[χ
2 B

]
T = 179.50 MeV

T = 185.00 MeV

T = 190.00 MeV

T = 195.00 MeV

5/36



A first success: the Roberge-Weiss transition
Padé approximation

We approximate χ1
B with R5

5 and R11
11 in the interval [0, 2iπ] using the χ2

method:

⇒ signature of branch cut singularities lying at µB/T = iπ

▶ Some zero/poles cancellations appear when we increase the order of
the ansatz, but the location of the branch cut singularity is stable

The location of the branch cut singularity is also stable with respect
to the method used for building the approximation (χ2 vs linearized
system)
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A first success: the Roberge-Weiss transition
Temperature dependence

T = 179.5 MeV T = 185.0 MeV

T = 190.0 MeV T = 195.0 MeV

⇒ signature of branch cut singularities pinching the imaginary axis
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A first success: the Roberge-Weiss transition
Temperature dependence

In summary,
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▶ For all temperatures we find singularities lying on µ̂B = iπ. We find
compatible results using the Padé approximants for χ1

B (upward
triangles) and χ1

Q (downward triangles).

▶ Are these the YLE singularities associated to the RW critical point?
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A first success: the Roberge-Weiss transition
Scaling analysis

Theoretical expectations:

▶ Magnetic EoS: M(h, t) = h
1
δ fG (z) +Mreg (h, t), where

▶ t = t−1
0

TRW−T
TRW

and h = h−1
0

µ̂B−iπ
iπ are scaling fields

▶ fG is a scaling function depending only on the scaling variable

z = t/h
1
βδ

▶ β and δ are the critical exponents [3d ,Z(2) universality class]

▶ We can solve t/h
1
βδ = zc ≡ |zc |e i

π
2βδ

→ µ̂R
YLE = ±π( z0

|zc | )
βδ(TRW−T

TRW
)βδ , µ̂I

YLE = π

Scaling analysis:

▶ We can fit the real part of the singularities using the ansatz:

µ̂R
YLE = a(TRW−T

TRW
)βδ + b

→ estimate non-universal parameter TRW from fit parameters
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A first success: the Roberge-Weiss transition
Scaling analysis

▶ By fitting our data using βδ = 1.5635 we obtain the estimate
TRW = 207.08(35) MeV . We can also estimate the continuum
limit by a global fit of Nt = 4, 6, 8 data, assuming

a(Nt) = a0 + a2/N
2
t

TRW (Nt) = TRW
0 + TRW

2 /N2
t

▶ We find TRW = 211.1(3.1) MeV , in good agreement with a
previous work by the Pisa group

Phys.Rev.D 93 (2016) 7, 074504
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The critical endpoint
Interval sensitivity

What happens at lower temperatures? At T = 120 MeV we find what
looks like a second singularity when we restrict the fit interval from
[0, 2iπ] to [0, iπ]. This hints at the existence of a second critical point in
a distinct region of the phase diagram.

We can also look at the density plots of the solutions from several
intervals of different length and center:
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The critical endpoint
Interval sensitivity

For comparison, see the density plot at T ∼ TRW
[the dashed line is iπ]

Poles are strongly localized in a single spot lying at iπ, with possibly a
second, faint and sparsely distributed spot which is barely noticeable.

We observe two regimes:

▶ High temperatures: almost no interval sensitivity, strong signal for
the Roberge-Weiss YLEs

▶ Low temperatures: interval sensitivity, signal for a second kind of
YLE singularity?
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The critical endpoint
Interval sensitivity

▶ Notice that the interval sensitivity is
something we have been aware for a
while, from our experiments with toy
models.

▶ 1-d Thirring model:

Multi-point Padé approximation using
an R10

10 ansatz with different fit ranges,
µI ∈ [−2, 2], [−4, 4], [0, 4]

→ we recover different singularities
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The critical endpoint
Numerical set-up

We performed new simulations in the low-temperature regime. Similar
set-up:

▶ HISQ action, Nf = 2 + 1 flavours,
363 × 6 lattices

▶ Observable: χB
1,2(T , µB)

▶ 5 temperatures
(T = 120.0, 136.1, 157.5, 166.6 MeV )

▶ 10 imaginary chemical potentials
between 0 and iπ

▶ Observable extended to a larger
interval [−iπ, iπ] using periodicity and
parity
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The critical endpoint
Numerical set-up

We need to account for the interval sensitivity → sliding window analysis

▶ Approximate χB
1,2(T , µB) with a

rational function

▶ Calculate zeros of the numerator and
denominator

▶ Remove near cancelling pairs, keep
poles in the first quadrant closest to
the center of the interval

▶ Boostrap over the data

▶ Iterate over 55 intervals of varying
length (from π to 2π) and center

▶ Perform scaling fits on randomly
chosen intervals and collect the results
for further analysis
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The critical endpoint
Scaling analysis

As for the scaling fits:

▶ The scaling fields for the CEP critical region are unknown. We can
make use of a linear ansatz [Stephanov (2006), Basar (2021)]

t = αt(T − TCEP) + βt(µB − µCEP)

h = αh(T − TCEP) + βh(µB − µCEP)

▶ This leads to the scaling equations:

Re(µYLE ) = µCEP+c1(T−TCEP)+c2(T−TCEP)
2+O((T−TCEP)

3)

Im(µYLE ) = c3(T − TCEP)
βδ

▶ The fit coefficient c1 = −αh/βh is the inverse slope of the critical
line at the critical point
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The critical endpoint
Numerical results

Numerical results from O(105) fits using an
R3
3 ansatz and 55 intervals:

▶ Histograms show a signal for a CEP
candidate at

TCEP = 105+8
−18 MeV

µCEP
B = 422+80

−35 MeV

▶ Small differences between AIC
weighted (orange) and non AIC
weighted (blue)

▶ 1σ confidence ellipses from best
scaling fit

▶ µCEP
B /TCEP ∼ 4
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The critical endpoint
Systematics - sources

The analysis is subject to several sources of systematics that we should
discuss.

Systematics from the Padé approximation:

▶ Interval chosen for the rational approximation

▶ Order of the rational approximation ansatz

▶ Others: approximation method? truncation order? observable?

Systematics from the lattice:

▶ Finite-size effects

▶ Cut-off effects
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The critical endpoint
Systematics - interval sensitivity

The density plots show a temperature-dependent non-trivial structure.

Blob at iπ moving to lower Re(µB) as T increases. Second blob moving
to larger Re(µB), Im(µB), either merging with first blob or becoming
fainter.

[T = 120, 145, 157.5 MeV , clockwise order, 1σ confidence ellipses from best scaling fit for R3
3 (black) / R5

5 (grey)]
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The critical endpoint
Systematics - interval sensitivity

We took the interval sensitivity into account by using a sliding window
analysis. Moreover, we can also compare the results with and without the
statistical bootstrap.

→ statistical errors on µCEP
B ∼ systematic uncertainty
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The critical endpoint
Systematics - order of the ansatz

By visual inspection, we have seen that usually poles are stable with
respect to the ansatz. Still, we can be more systematic and rerun the
analysis with R3

3 , R
4
4 and R5

5 approximants.

→ The results for the CEP are compatible, the small difference between

AIC weighted and non AIC weighted becomes even smaller. The YLEs

from the best fits are compatible as well, but within very large errors.
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The critical endpoint
Systematics - approximation method

Approximation method: zeros/poles structure from linear solver (left) vs
χ2
gen minimization (right) at T = 145 MeV , for intervals [0, iπ] (top) and

[0, i2π] (bottom) → no difference (apart from cancelling pairs)
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The critical endpoint
Systematics - truncation order

Truncation error: difficult to obtain a complete estimate because we
don’t have a good SNR for high order derivatives.

However, we can explore the effects of the truncation on the zeros-poles
structure at T = 157.5 MeV . At this temperature, the signal for χB

3 is
not entirely hidden by noise (and the effects of truncation seem small).
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The critical endpoint
Systematics - observable

Observable: the rational approximations for χ1
B and χ1

Q at T = 157.5
MeV (top) and 120 MeV (bottom) yield compatible results for the poles.
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The critical endpoint
Numerical results

Numerical results from O(105) fits using R3
3 ,R

4
4 ,R

5
5 and 55 intervals:
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The critical endpoint
Numerical results

Our current estimate is TCEP = 102+11
−23 MeV and µCEP

B = 428+162
−74 MeV .
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▶ Results in agreement with [Basar, arXiv: 2312.06952] and [Adam,
arXiv: 2507.13254] (with some tension)

▶ Location of the CEP fits nicely with the chiral crossover line

▶ Parametrization for the chiral crossover line:

1. Tpc(µB) = Tpc(0)
[
1 + kB

2 (µB/T )2 + kB
4 (µB/T )4

]
2. Tpc(µB) = Tpc(0)

[
1 + k̄B

2 (µB/Tpc(0))
2 + k̄B

4 (µB/Tpc(0))
4
]

Parameters: Tpc (0) = 156.5(1.5), kB2 = k̄B2 = −0.015(1), kB4 = k̄B4 = −0.0002(1)
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The critical endpoint
Systematics - lattice

▶ Finite-size effects: they are likely small. We use an Ns/Nt = 6 ratio,
larger than most finite temperature simulations.

▶ Chiral and deconfinement observables below 170 MeV very close to
the infinite volume limit.

▶ We estimate that the correction to the infinite volume scaling ansatz
would amount to shifting TCEP to larger values by ∼ 10 MeV .

Figs. from [Cuteri arXiv: 2205.12707]
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The critical endpoint
Systematics - lattice

▶ Cut-off effects: we can try to compare our Nt = 6 results with the
Nt = 8 results by HotQCD.

Single-point Padé approximation for the 8-th order Taylor expansion

of pressure, ∆p = p(T ,µB )
T 4 − p(T ,0)

T 4 =
∑∞

k=1 P2k(T )µ̂2k
B

Fig. from [Bollweg, arXiv: 2212.09043]
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The critical endpoint
Systematics - lattice

▶ After mapping the Taylor coefficients to an R4
4 rational ansatz

R4
4 (µ̂B) =

P2µ̂
2
B+(P4+(P2

2P8)/P
2
4 )µ̂

4
B

1+((P2P8)/P2
4 )µ̂

2
B−(P8/P4)µ̂4

B

they calculate its complex poles and find poles approaching the real
axis as T is decreased.
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The critical endpoint
Systematics - lattice

▶ Results in agreement within errors. Difference in central values
between Nt = 6 (green ellipse) and Nt = 8 (blue ellipse) could point
to cutoff effects which shift µB towards ∼ 650 MeV .

▶ However ellipses are still compatible within large uncertainties. Also
different systematics involved (single-point vs multi-point Padé).
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▶ But at the same time, [Basar arXiv: 2312.06952] also finds a larger
central value for µB for Nt = 8.
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Conclusions

To summarize:

▶ We have estimated the location of the QCD critical point by
tracking the YLE singularities in the complex plane as a function of
the temperature

▶ The analysis was performed using multi-point Padé approximations

▶ We have found TCEP = 102+11
−23 MeV and µCEP

B = 428+162
−74 MeV

▶ These findings are consistent with other recent studies and with the
current determination of the chiral crossover line

▶ These results are not extrapolated to the continuum yet

▶ A preliminary estimate of cutoff effects suggests a potentially larger
µCEP
B ∼ 650 MeV
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Thank you for listening!
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Backup slides
Comparison with the hadron resonance gas model

We can compare the Lattice data with mock data for the HRG model.

χ1,2
B : Lattice (green) vs HRG (black)

[T = 166.7 MeV (top), 120.0 MeV (bottom)]
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Backup slides
Comparison with the hadron resonance gas model

Zeros-poles structure for [0, π] and [0, 2π] at 166.7 MeV :

Zeros-poles structure for [0, π] and [0, 2π] at 120 MeV :
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Backup slides
Comparison with the hadron resonance gas model

∆χ1
B = χ1,Lattice

B - χ1,HRG
B (at T = 120 MeV )

Density plots: Lattice (left) vs HRG (right)

[T = 120.0 MeV (top), 157.5 MeV (bottom)]
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Backup slides
Comparison with the hadron resonance gas model

▶ Corrections to the HRG model become small at low temperature

▶ At T = 120 MeV , corrections to the observables are still
statistically significant

▶ However the zeros-poles structure of Lattice and HRG data are
compatible within errors

▶ Will (very) high-order Taylor coefficients be required for analyses at
lower temperatures?
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