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Hilbert fragmentation can be used to obtain a much tighter bound on truncation 
uncertainties
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For U(1) gauge theory, we can plug the explicit matrix elements to find

!0. A rough way of doing this is to pick !0 so that the leading order contribution to the leakage error
is smaller than 1.

To make this discussion concrete, we will apply these results to estimate errors in the truncated
simulation of a single plaquette in a U(1) lattice gauge theory. The electric basis states are given by
|n→ where n is an integer, and the Hamiltonian is given by

Ĥ = 2g2Ê2 + 1
2g2

(
2 ↑ ↭̂ ↑ ↭̂†

)
(12)

Ê =
→∑

n=↑→
n |n→ ↓n| (13)

↭̂ =
→∑

n=↑→
|n→ ↓n + 1| . (14)

We can split this up as

Ĥ = Ĥ! + V̂! , (15)

with

Ĥ! = 2g2Ê2 + 1
2g2

(
2 ↑ ↭̂! ↑ ↭̂†

!

)

↭̂! =
!∑

n=↑!
|n→ ↓n + 1|

V̂! = ↑
1

2g2

∑

|n|↓!
|n→ ↓n + 1| + h.c. . (16)

This implies that for k ↔ !0 we have

↓k + 1|V̂!0 |k→ = ↑
1

2g2

↓k|Ĥ!0 |k→ = 2g2k2 . (17)

We therefore find

(e↑iĤt
↑ e↑iĤ!t) |ω(0)→ =i(↑1)!+1↑!0

( 1
2g2

)2(!+1↑!0) !∑

k=!0


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t
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2
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1
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



↗ (c!0 |! + 1→ + c↑!0 |↑! ↑ 1→) , (18)

where c±!0 are the slowly varying norms of ↓±!| e↑iĤ!t!0 |ω(0)→. Defining the leakage amplitude by

L(g, !, !0, T ) = maxt<T
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∣∣∣∣∣∣∣∣
, (19)

the leading error in the truncated state is at most

∣∣∣(e↑iĤt
↑ e↑iĤ!t) |ω(0)→

∣∣∣ ↘ 2L(g, !, !0, T )
( 1

2g2

)!↑!0

. (20)
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Figure 1: Maximum error in the expectation of Ê2 as a function of time on a single plaquette with g = 0.5 and a
max evolution time of T = 30. The blue, green, and purple lines correspond to using di!erent electric basis states
as the initial state. The red curve is the error bound in Eq. (22), computed using !0 = 4.

To get an idea of how this scales, we can place an upper bound on L(g, !, !0, T ). The integral in the
definition of this function can be exactly evaluated to be a sum of exponentials multiplied by di!erent

prefactors. There are at most 2!→!0 such exponentials and the largest prefactor is
(

1
2g2

)!→!0 (2!0→1)!!
(2!→1)!!

where n!! = n → (n ↑ 2) → (n ↑ 4) → · · · → 1. This lets us upper bound L(g, !, !0, T ) by

L(g, !, !0, T ) ↓

( 1
g2

)!→!0 (2!0 ↑ 1)!!
(2! ↑ 1)!! . (21)

Note that this is a loose bound as it neglects destructive interference between many fast oscillating
phases in the actual value of the integral. Regardless, this predicts that the leading error due to
truncation converges as a factorial and is time-independent.

To understand the performance of these error estimates, we apply these techniques to estimate the
error in the expectation of the electric energy Ê2. Using the leading correction to the states, it can be
seen that the leading error in the expectation of the electric energy is

∣∣∣↔ω| eiĤtÊ2e→iĤt
|ω↗ ↑ ↔ω| eiĤ!tÊ2e→iĤ!t

|ω↗

∣∣∣ ↓ 2(! + 1)2
( 1

4g4

)!→!0

L(g, !, !0, T )2 (22)

We can now compare this bound against the numerical calculation of this expectation values. Ê2

was measured as a function of time for a single plaquette with g = 0.5 and maximum evolution time
of T = 30. The evolution with ! = 20 was treated as the exact evolution and was compared to
the evolution with lower truncations. The maximum error in the expectation of Ê2 achieved when
beginning in di!erent electric basis states, |n↗, is shown in Fig. 1. As this figure shows, the bound on
the error from Eq. (22) correctly upper bounds the actual error for all of these initial states. Note that
the bound becomes tighter for initial states with larger electric energies.
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IBM Heron results for 42 triangles and 72 petals
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Figure: Lattice geometry of initial state and time evolution.



Tensor Networks for lattice field theories: beyond 1+1d

Z3 LGT in (2+1)d

Robaina et al., Phy. Rev. Lett. 126, 050401 (2021)

Z2 LGT in 2+1d

Di Marcantonio et al., arXiv:2505.23853

Xu et al., arXiv:2507.01950

U(1) Quantum Link Model in (2+1)d

T. Felser et al., Phys. Rev. X 10, 041040 (2020)

U(1) Quantum Link Model in (3+1)d

G. Magnifico et al., Nat. Commun. 12, 3600 (2021)

DESY. | Tensor Networks for ,Lattice Field Theory | Stefan Kühn | Hamiltonian Lattice Gauge Theories: Status, Novel Developments and Applications, ECT*, 02.09.2025 Page 22

G. Magnifico, G. Cataldi, M. Rigobello, P. Majcen, D. Jaschke, P. Silvi, S. Montangero, Commun. Phys. 8, 322 (2025)



Synergies with Quantum Computing

Tensor Networks for circuit compression: scattering in the Thirring model

> Simulation after compressing the initial part of the evolution and the time evolution

operators

DESY. | Tensor Networks for ,Lattice Field Theory | Stefan Kühn | Hamiltonian Lattice Gauge Theories: Status, Novel Developments and Applications, ECT*, 02.09.2025 Page 42

Y. Chai, J. Gibbs, V. R. Pascuzzi, Z. Holmes, SK, F. Tacchino, I. Tavernelli, arXiv:2507.17832



Dispersion-relation scheme in θ ≠ 0

• Fit the data for each meson using ΔE = M2 + b2ΔK2

29

 disappear  
sigma (singlet) and pion (triplet) are degenerating at 

η θ/2π > 0.2

θ = π

E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 09 (2024) 155
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Introduction to the SU(2) QLM Representations of SO(5) Numerics Setting the scale Outlook

The String Tension
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