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When working in gauge-invariant formulations:

It is useful to know how many states are gauge-invariant:

1) Resource estimation

2) Crosscheck
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Finite gauge groups

Idea: replace the gauge group (a Lie group) with a finite subgroup 𝐺.

e.g.     ℤ𝑁 ≤ 𝑈 1 ,

         𝑄8 ≤ 𝑆𝑈 2 ,

S(1080) ≤ 𝑆𝑈(3) 

The link variable 𝑈 ∈ 𝐺 can take only finitely-many values.

  Hilbert space is finite-dimensional.

[Hasenfratz & Niedermayer ’01]

- Continuum limit via improved actions [Alexandru et al ’19, ‘22]

- Can construct Hamiltonian [Orland ‘91, Harlow & Ooguri ’18,   

           Mariani, Pradhan, Ercolessi ’23] 
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Setting: discretize space as a graph:

Put one group element 𝑔𝑙 ∈ 𝐺 per link 𝑙

Orthonormal basis of Hilbert space |𝑔𝑙⟩

ℋ𝑡𝑜𝑡 = ໆ

𝑙𝑖𝑛𝑘𝑠

ℂ[𝐺]

Gauge transformations act as:

𝒢 𝑔𝑙 = |𝑔𝑥𝑔𝑙𝑔𝑦
−1⟩

𝑥 𝑦

Gauge-invariant states satisfy:

𝒢 𝜓 = 𝜓

ℋ𝑝ℎ𝑦𝑠

They form the physical Hilbert space

Same action

On every link

𝑙



Counting gauge-invariant states

Write down explicit projector 𝑃: ℋ𝑡𝑜𝑡 → ℋ𝑝ℎ𝑦𝑠

[Mariani, Pradhan, Ercolessi ‘23]

[Mariani ‘24, ‘25]
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Counting gauge-invariant states

Write down explicit projector 𝑃: ℋ𝑡𝑜𝑡 → ℋ𝑝ℎ𝑦𝑠

[Mariani, Pradhan, Ercolessi ‘23]

[Mariani ‘24, ‘25]

𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

𝒢 𝑃2 = 𝑃

dim ℋ𝑝ℎ𝑦𝑠 = tr 𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

tr 𝒢

eigenvalue 1 

eigenvalue 0 

∈ ℋ𝑝ℎ𝑦𝑠

not in ℋ𝑝ℎ𝑦𝑠
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The dimension of the physical subspace 

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For a pure gauge theory with arbitrary finite group 

𝐺 on an arbitrary lattice with 𝑉 sites and 𝐸 links:

dim ℋ𝑡𝑜𝑡 = 𝐺 𝐸

dim ℋ𝑝ℎ𝑦𝑠 = ෍

𝐶

𝐺

𝐶

𝐸−𝑉

𝐶 are the conjugacy classes of 𝐺, i.e. 𝑔1 and 𝑔2

are in the same 𝐶 iff 𝑔2 = 𝑔 𝑔1 𝑔−1.

[Mariani, Pradhan, Ercolessi ‘23]

[Mariani ‘24]
Remember assumption: Gauss law the same

everywhere.
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Matter fields and twisted boundaries
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As of this week, formulas also for scalar and fermionic 

matter, as well as twisted boundary conditions:
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Matter fields and twisted boundaries

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

As of this week, formulas also for scalar and fermionic 

matter, as well as twisted boundary conditions:

dim ℋ𝑝ℎ𝑦𝑠 = ෍

𝐶

𝐺

𝐶

𝐸−𝑉

Fix 𝐶 𝑉

Scalar field valued in an arbitrary finite set 𝑆,

its local Hilbert space is ℂ 𝑆 .

𝐺 acts on 𝑆 via group action.

Scalar fields:

# fixed points of

group action

arXiv:2509.02173 
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Matter fields and twisted boundaries

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

As of this week, formulas also for scalar and fermionic 

matter, as well as twisted boundary conditions:

dim ℋ𝑝ℎ𝑦𝑠 = ෍

𝐶

𝐺

𝐶

𝐸−𝑉

det 1 + 𝜌 𝐶
𝑉𝑁𝑠

Fermions live in 𝜌 representation of 𝐺.

Fermion fields:

arXiv:2509.02173 
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Matter fields and twisted boundaries

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

As of this week, formulas also for scalar and fermionic 

matter, as well as twisted boundary conditions:

dim ℋ𝑝ℎ𝑦𝑠 = ෍

𝐶, 𝐶=𝐶−1

𝐺

𝐶

𝐸−𝑉

Gauss law acts differently on boundary links.

e.g. C-periodic boundary conditions:

i.e. sum over only those conjugacy classes 𝐶 which

are self-inverse (they contain all their inverses).

[Kronfeld & Wiese (1991),

Wiese (1992)]

arXiv:2509.02173 
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ℋ𝑡𝑜𝑡

How to describe the physical subspace?

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

(traced) Wilson loops do not necessarily span ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For 𝑆𝑈(𝑁) Wilson loops in the fundamental span ℋ𝑝ℎ𝑦𝑠.

[Durhuus ’80, Sengupta ’94, Lévy ‘04]

See [Mariani ‘24] for a summary.
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[Durhuus ’80, Sengupta ’94, Lévy ‘04]

See [Mariani ‘24] for a summary.
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How to describe the physical subspace?

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

(traced) Wilson loops do not necessarily span ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For 𝑆𝑈(𝑁) Wilson loops in the fundamental span ℋ𝑝ℎ𝑦𝑠.

For direct products of 𝑆𝑈(𝑁), 𝑈 𝑁 , 𝑆𝑂 𝑁 , 𝑂(𝑁) and 

Abelian groups, Wilson loops span ℋ𝑝ℎ𝑦𝑠, but all irreps

may be needed (e.g. 𝑆𝑂 2𝑁 ). 

For other groups such as 𝐺2 it is not known.

[Durhuus ’80, Sengupta ’94, Lévy ‘04]

Cannot use Wilson loops for general description.

(various other implications: entanglement entropy, etc)
See [Mariani ‘24] for a summary.



30

ℋ𝑡𝑜𝑡

How to describe the physical subspace?

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

Not everything which works for 𝑆𝑈(𝑁) also

works for truncations.

Alternatives:

- Representation basis / spin networks [Baez ‘94]

- untraced Wilson loops (maximal tree gauge fixing)

  Finite groups: [Mariani ’24]
  Other contexts: [Grabowska, Kane, Bauer ‘24], [Burbano, Bauer ‘24]
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ℤ .

On each link the electric field takes a value

𝑗𝑙 = −𝑠, −𝑠 + 1, … , 𝑠 − 1, 𝑠

Gauge-invariant states (for example on a square 

lattice) satisfy

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0
For the four links attached to the site.

Already known to mathematicians [Beck, Zlaslavsky ‘03]: 

open problem in graph theory.

Mathematicians have shown that

dim ℋ𝑝ℎ𝑦𝑠
𝑄𝐿𝑀

= polynomial in 𝑠. [Kochol ‘02]



What about Quantum Link Models?

Consider the 𝑈(1) Quantum Link Model on an 

arbitrary graph, with spin 𝑠 ∈
1

2
ℤ .

On each link the electric field takes a value

𝑗𝑙 = −𝑠, −𝑠 + 1, … , 𝑠 − 1, 𝑠

Gauge-invariant states (for example on a square 

lattice) satisfy

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0
For the four links attached to the site.

dim ℋ𝑝ℎ𝑦𝑠
𝑄𝐿𝑀

 does not depend simply

on 𝐸 and 𝑉 (more geometric info needed)

On an arbitrary graph, with arbitrary spin on each link, and arbitrary charges

the problem is #P-hard. [e.g. Baldoni-Silva et al ’03]



What about Quantum Link Models?

Consider the 𝑈(1) Quantum Link Model on an 

arbitrary graph, with spin 𝑠 ∈
1

2
ℤ .

On each link the electric field takes a value

𝑗𝑙 = −𝑠, −𝑠 + 1, … , 𝑠 − 1, 𝑠

Gauge-invariant states (for example on a square 

lattice) satisfy

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0
For the four links attached to the site.

Compare with ℤ𝑁, 𝑁 = 2𝑠 + 1 where the condition is

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0 (mod 𝑁)
where 𝑗 = 0, 1, … , 𝑁 − 1. Then here the answer is

𝑁𝐸−𝑉+1



What about electric field truncations?

Choose an eigenbasis of the electric field ⟩|𝑗𝑚𝑛 , where 𝑗
indexes the irreps of 𝑆𝑈(𝑁). Truncate to 𝑗 ≤ 𝑗max.
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What about electric field truncations?

dim ℋ𝑝ℎ𝑦𝑠 = tr 𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

tr 𝒢

Choose an eigenbasis of the electric field ⟩|𝑗𝑚𝑛 , where 𝑗
indexes the irreps of 𝑆𝑈(𝑁). Truncate to 𝑗 ≤ 𝑗max.

Can write again:

To compute the trace, need character identity:

෍

𝑗∈Irrep

𝜒𝑗 𝑔 ∗𝜒𝑗 ℎ = ቐ
𝐺

𝐶
if 𝑔, ℎ ∈ 𝐶 (same conjugacy class)

0 otherwise

But if we keep only some irreps (i.e. 𝑗 ≤ 𝑗max) the formula no 

longer simplifies.



Conclusions

Can compute dim ℋ𝑝ℎ𝑦𝑠 for finite groups 

in various settings.

For other truncation methods, the 

problem is not so easy.

Not everything which works for 𝑆𝑈(𝑁) 

also works for truncations thereof.
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For finite subgroup 𝐺 ≤ SU(𝑁) in 4D (zero temperature, pure gauge)

0 ∞

SU(𝑁)

𝐺
𝑔2

Deconfined Confined Transition

For 𝐺 finite, the transition is only first order

   effective theory

   requires improvement

Finite subgroups

[Hasenfratz & Niedermayer ’01]


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40

