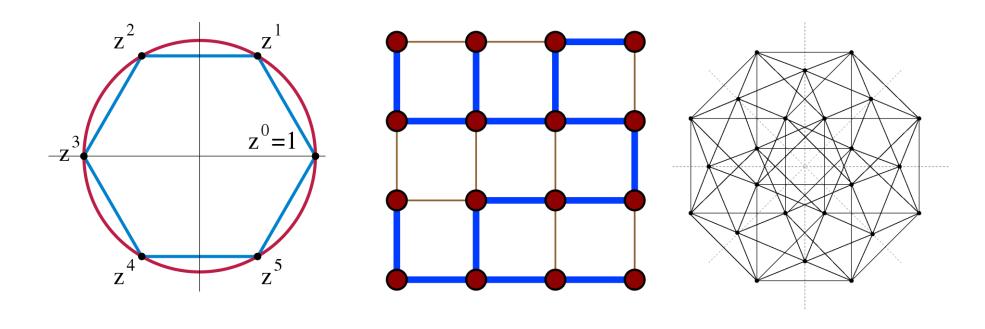
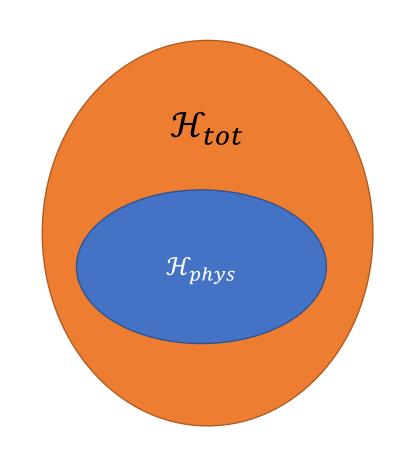
How many states are gauge-invariant?



Alessandro Mariani University of Turin, Italy

 $\mathcal{H}_{tot} \quad \xrightarrow{\quad \mathsf{Gauss'Law} \quad } \quad \mathcal{H}_{phys}$

Only states which satisfy the **Gauss law** are **physical**.



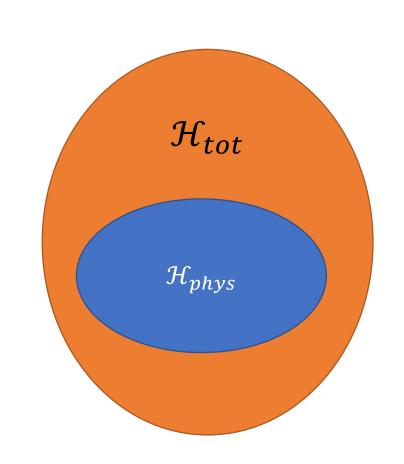
$$\mathcal{H}_{tot}$$
 Gauss' Law \mathcal{H}_{phys}

Only states which satisfy the **Gauss law** are **physical**.

When working in gauge-invariant formulations:

It is useful to know how many states are gauge-invariant:

- 1) Resource estimation
- 2) Crosscheck



Bosonic QFTs have infinite-dimensional Hilbert space

Many ways have been designed to make the Hilbert space finite-dimensional:

Bosonic QFTs have infinite-dimensional Hilbert space

Many ways have been designed to make the Hilbert space finite-dimensional:

Quantum Link Models

Truncation in electric field basis

Finite subgroups

Orbifold

q-deformation

Mixed basis

Fuzzy

Finite subsets

Many more...

Bosonic QFTs have infinite-dimensional Hilbert space

Many ways have been designed to make the Hilbert space finite-dimensional:

Quantum Link Models

Truncation in electric field basis

Finite subgroups

Mixed basis

Orbifold

q-deformation

Fuzzy

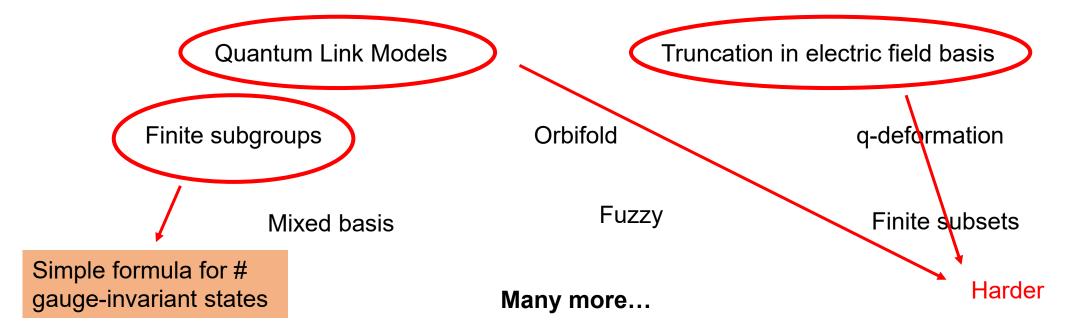
Finite subsets

Simple formula for # gauge-invariant states

Many more...

Bosonic QFTs have infinite-dimensional Hilbert space

Many ways have been designed to make the Hilbert space finite-dimensional:



Finite gauge groups

Idea: replace the gauge group (a Lie group) with a **finite subgroup** *G*.

e.g.
$$\mathbb{Z}_N \leq U(1)$$
, $Q_8 \leq SU(2)$, $S(1080) \leq SU(3)$

The link variable $U \in G$ can take only finitely-many values.

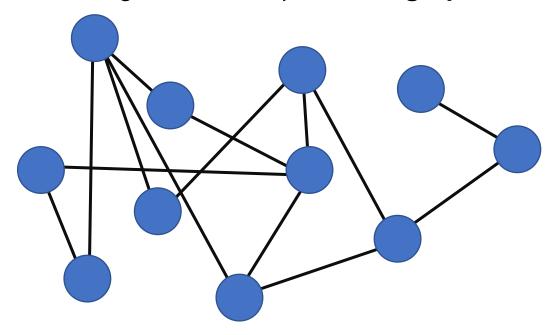
Hilbert space is finite-dimensional.

- Continuum limit via improved actions [Alexandru et al '19, '22]
- Can construct Hamiltonian [Orland '91, Harlow & Ooguri '18, Mariani, Pradhan, Ercolessi '23]

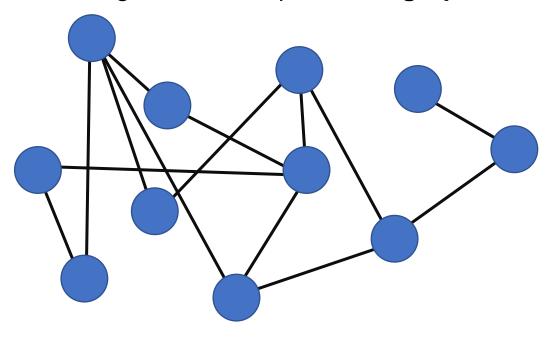


[Hasenfratz & Niedermayer '01]

Setting: discretize space as a **graph**:

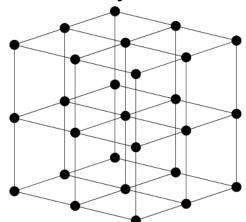


Setting: discretize space as a **graph**:

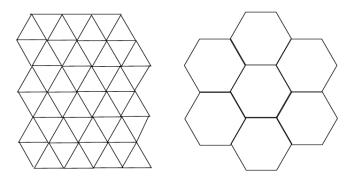


Many interesting special cases:

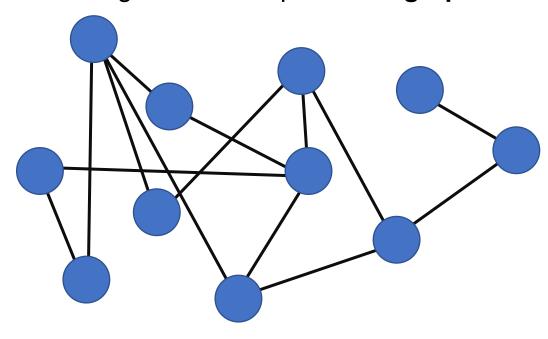
hypercubic lattices in d dimensions, with open, periodic or mixed boundary conditions



triangular, honeycomb lattices, etc.



Setting: discretize space as a **graph**:



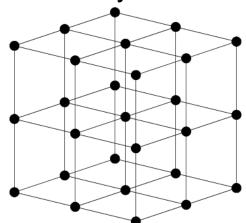
Put one group element $g_l \in G$ per link l

Orthonormal basis of Hilbert space $|g_l\rangle$

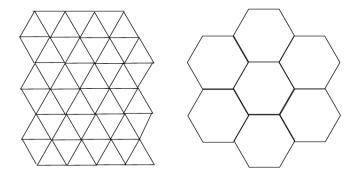
$$\mathcal{H}_{tot} = \bigotimes_{links} \mathbb{C}[G]$$

Many interesting special cases:

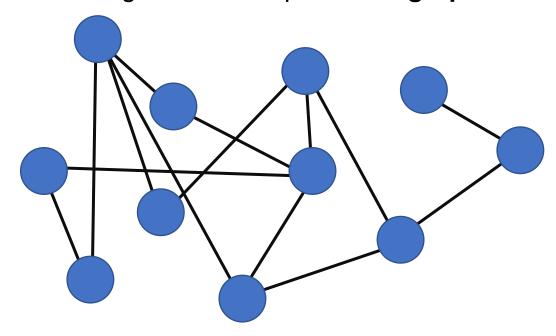
hypercubic lattices in d dimensions, with open, periodic or mixed boundary conditions



triangular, honeycomb lattices, etc.



Setting: discretize space as a **graph**:



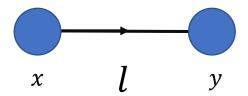
Put one group element $g_l \in G$ per link l

Orthonormal basis of Hilbert space $|g_l\rangle$

$$\mathcal{H}_{tot} = \bigotimes_{links} \mathbb{C}[G]$$

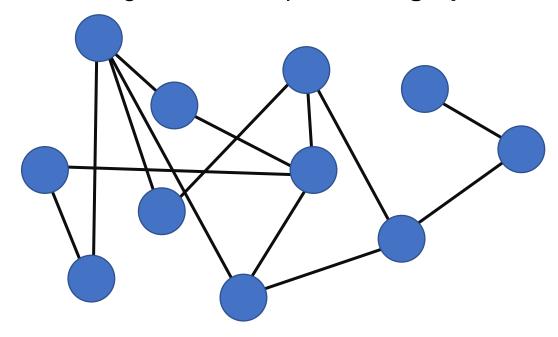
Gauge transformations act as:

$$\mathcal{G}|g_l\rangle = |g_x g_l g_y^{-1}\rangle$$



Same action On every link

Setting: discretize space as a **graph**:



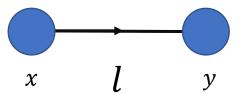
Put one group element $g_l \in G$ per link l

Orthonormal basis of Hilbert space $|g_l\rangle$

$$\mathcal{H}_{tot} = \bigotimes_{links} \mathbb{C}[G]$$

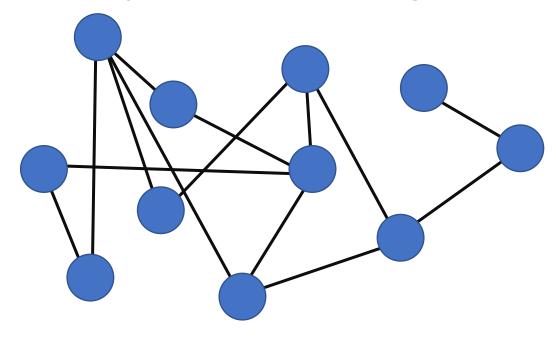
Gauge transformations act as:

$$\mathcal{G}|g_l\rangle = |g_x g_l g_y^{-1}\rangle$$



Same action On every link

Setting: discretize space as a **graph**:

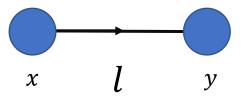


Put one group element $g_l \in G$ per link lOrthonormal basis of Hilbert space $|g_l\rangle$

$$\mathcal{H}_{tot} = \bigotimes_{links} \mathbb{C}[G]$$

Gauge transformations act as:

$$\mathcal{G}|g_l\rangle = |g_x g_l g_y^{-1}\rangle$$



Gauge-invariant states satisfy:

$$\mathcal{G}|\psi\rangle = |\psi\rangle$$

They form the physical Hilbert space

$$\mathcal{H}_{phys}$$

Counting gauge-invariant states

Write down explicit projector $P: \mathcal{H}_{tot} \to \mathcal{H}_{phys}$

$$P = \frac{1}{|G|^V} \sum_{\mathcal{G} \in G^V} \mathcal{G}$$

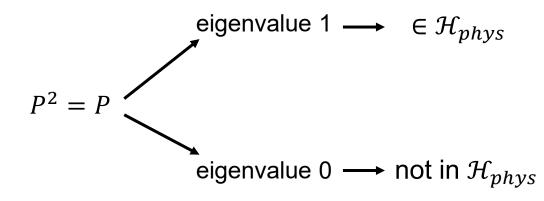
$$P^2 = P$$

Counting gauge-invariant states

Write down explicit projector $P: \mathcal{H}_{tot} \to \mathcal{H}_{phys}$

$$P = \frac{1}{|G|^V} \sum_{\mathcal{G} \in G^V} \mathcal{G}$$

$$\dim \mathcal{H}_{phys} = \operatorname{tr} P = \frac{1}{|G|^V} \sum_{\mathcal{G} \in G^V} \operatorname{tr} \mathcal{G}$$



[Mariani, Pradhan, Ercolessi '23] [Mariani '24, '25]

The dimension of the physical subspace

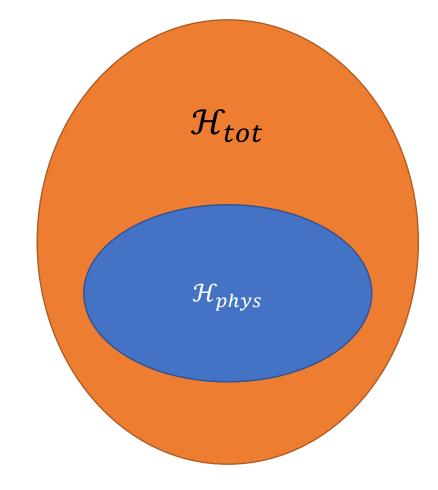
For a **pure gauge theory** with arbitrary finite group *G* on an arbitrary lattice with *V* sites and *E* links:

$$\dim \mathcal{H}_{tot} = |G|^E$$

$$\dim \mathcal{H}_{phys} = \sum_{C} \left(\frac{|G|}{|C|} \right)^{E-V}$$

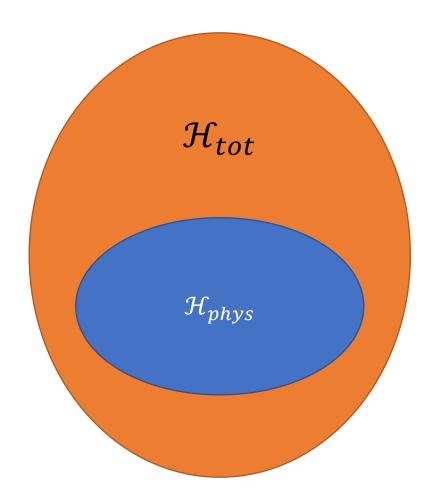
 \mathcal{C} are the **conjugacy classes** of \mathcal{G} , i.e. \mathcal{G}_1 and \mathcal{G}_2 are in the same \mathcal{C} iff $\mathcal{G}_2 = \mathcal{G} \mathcal{G}_1 \mathcal{G}^{-1}$.

Remember assumption: Gauss law the same everywhere.



[Mariani, Pradhan, Ercolessi '23] [Mariani '24]

As of this week, formulas also for scalar and fermionic matter, as well as twisted boundary conditions:



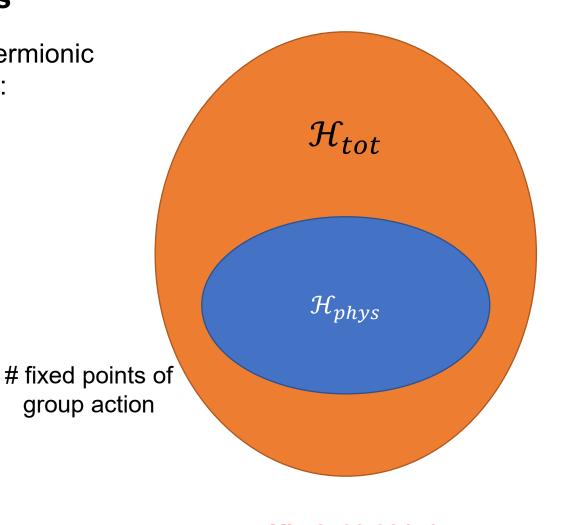
As of this week, formulas also for scalar and fermionic matter, as well as twisted boundary conditions:

Scalar fields:

$$\dim \mathcal{H}_{phys} = \sum_{C} \left(\frac{|G|}{|C|} \right)^{E-V} |\operatorname{Fix}(C)|^{V}$$

Scalar field valued in an arbitrary finite set S, its local Hilbert space is $\mathbb{C}[S]$.

G acts on *S* via group action.



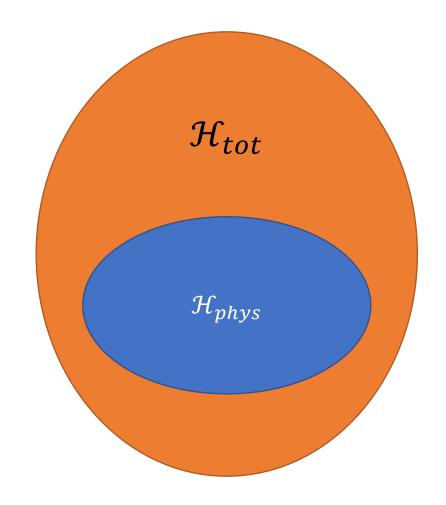
arXiv:2509.02173

As of this week, formulas also for scalar and fermionic matter, as well as twisted boundary conditions:

Fermion fields:

$$\dim \mathcal{H}_{phys} = \sum_{C} \left(\frac{|G|}{|C|} \right)^{E-V} \det (1 + \rho(C))^{VN_s}$$

Fermions live in ρ representation of G.



arXiv:2509.02173

As of this week, formulas also for scalar and fermionic matter, as well as twisted boundary conditions:

e.g. C-periodic boundary conditions:

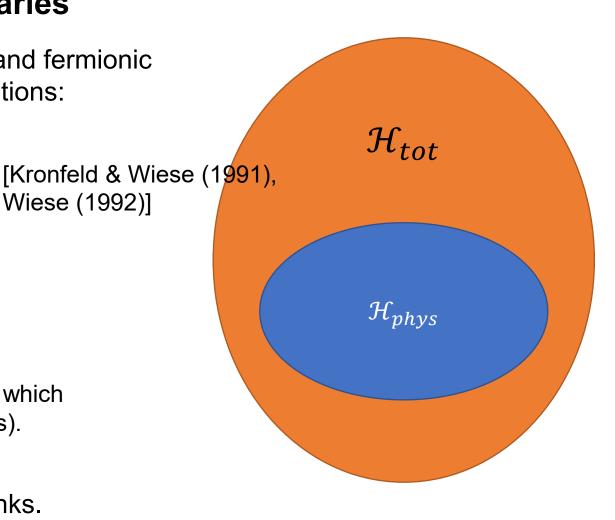
$$G |$$
 $)^{E-V}$

Wiese (1992)]

 $\dim \mathcal{H}_{phys} = \sum_{C \in C^{-1}} \left(\frac{|G|}{|C|} \right)^{E-V}$

i.e. sum over only those conjugacy classes *C* which are self-inverse (they contain all their inverses).

Gauss law acts differently on boundary links.



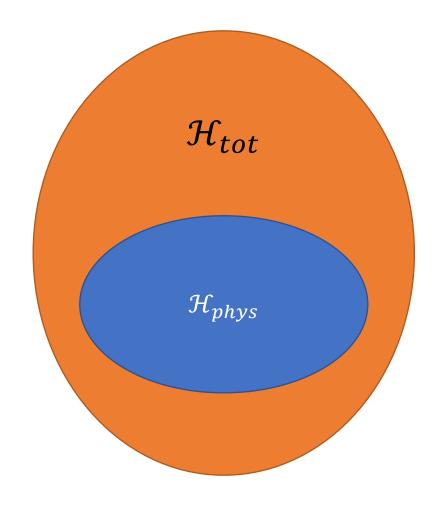
arXiv:2509.02173

$$\mathcal{H}_{tot}$$
 Gauss' Law \mathcal{H}_{phys}

(traced) Wilson loops **do not** necessarily span \mathcal{H}_{phys}

For SU(N) Wilson loops in the fundamental span \mathcal{H}_{phys} .

[Durhuus '80, Sengupta '94, Lévy '04]



See [Mariani '24] for a summary.

$$\mathcal{H}_{tot}$$
 Gauss' Law \mathcal{H}_{phys}

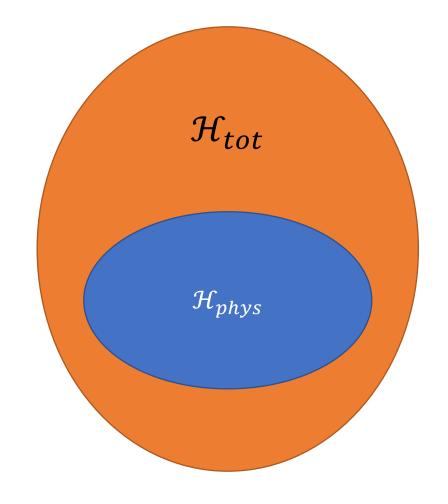
(traced) Wilson loops **do not** necessarily span \mathcal{H}_{phys}

For SU(N) Wilson loops in the fundamental span \mathcal{H}_{phys} .

For direct products of SU(N), U(N), SO(N), O(N) and Abelian groups, Wilson loops span \mathcal{H}_{phys} , but **all irreps may be needed** (e.g. SO(2N)).

For other groups such as G_2 it is **not known**.

[Durhuus '80, Sengupta '94, Lévy '04]



See [Mariani '24] for a summary.

 $\mathcal{H}_{tot} \quad \xrightarrow{\mathsf{Gauss'Law}} \quad \mathcal{H}_{phys}$

(traced) Wilson loops **do not** necessarily span \mathcal{H}_{phys}

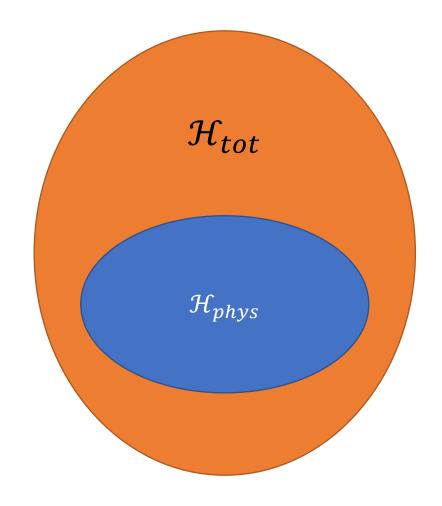
For SU(N) Wilson loops in the fundamental span \mathcal{H}_{phys} .

For direct products of SU(N), U(N), SO(N), O(N) and Abelian groups, Wilson loops span \mathcal{H}_{phys} , but **all irreps may be needed** (e.g. SO(2N)).

For other groups such as G_2 it is **not known**.

Cannot use Wilson loops for general description. (various other implications: entanglement entropy, etc)

[Durhuus '80, Sengupta '94, Lévy '04]



See [Mariani '24] for a summary.

$$\mathcal{H}_{tot}$$
 Gauss' Law \mathcal{H}_{phys}

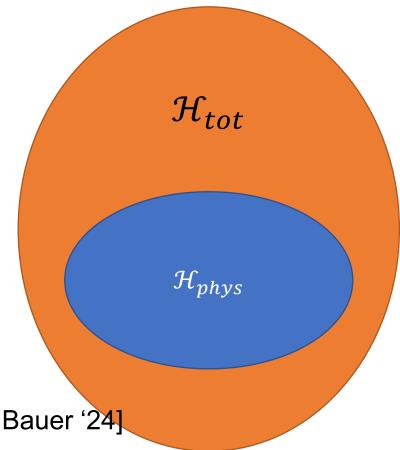
Not everything which works for SU(N) also works for truncations.

Alternatives:

- Representation basis / spin networks [Baez '94]
- untraced Wilson loops (maximal tree gauge fixing)

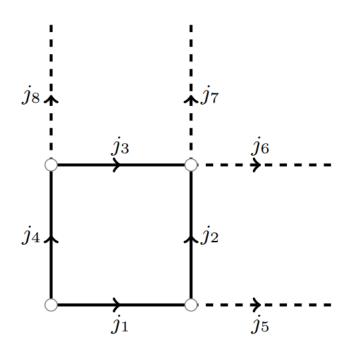
Finite groups: [Mariani '24]

Other contexts: [Grabowska, Kane, Bauer '24], [Burbano, Bauer '24]



Consider the U(1) Quantum Link Model on an arbitrary graph, with spin $s \in \frac{1}{2}\mathbb{Z}$.

On each link the electric field takes a value $j_l = -s, -s + 1, ..., s - 1, s$



Consider the U(1) Quantum Link Model on an arbitrary graph, with spin $s \in \frac{1}{2}\mathbb{Z}$.

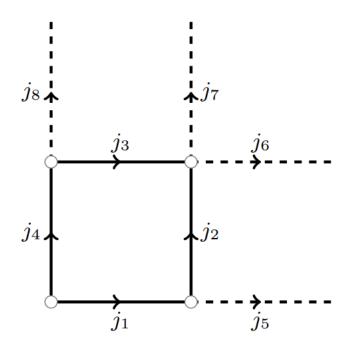
On each link the electric field takes a value

$$j_l = -s, -s + 1, ..., s - 1, s$$

Gauge-invariant states (for example on a square lattice) satisfy

$$j_1 + j_2 - j_3 - j_4 = 0$$

For the four links attached to the site.



Consider the U(1) Quantum Link Model on an arbitrary graph, with spin $s \in \frac{1}{2}\mathbb{Z}$.

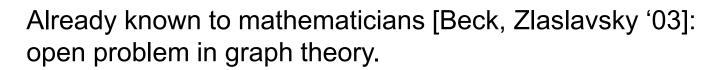
On each link the electric field takes a value

$$j_l = -s, -s + 1, ..., s - 1, s$$

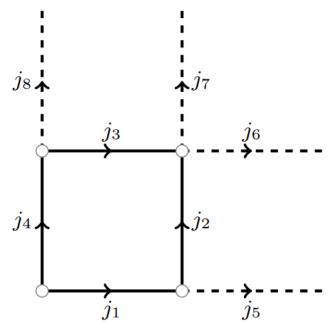
Gauge-invariant states (for example on a square lattice) satisfy

$$j_1 + j_2 - j_3 - j_4 = 0$$

For the four links attached to the site.



Mathematicians have shown that $\dim \mathcal{H}_{phys}^{QLM} = \text{polynomial in } s.$ [Kochol '02]



Consider the U(1) Quantum Link Model on an arbitrary graph, with spin $s \in \frac{1}{2}\mathbb{Z}$.

On each link the electric field takes a value

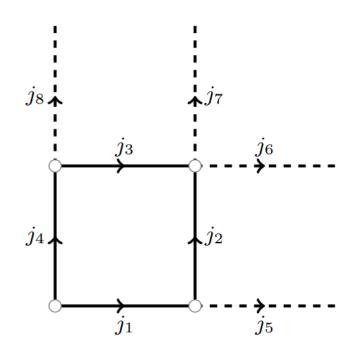
$$j_l = -s, -s + 1, ..., s - 1, s$$

Gauge-invariant states (for example on a square lattice) satisfy

$$j_1 + j_2 - j_3 - j_4 = 0$$

For the four links attached to the site.

 $\dim \mathcal{H}_{phys}^{QLM}$ does not depend simply on E and V (more geometric info needed)



On an arbitrary graph, with arbitrary spin on each link, and arbitrary charges the problem is #P-hard. [e.g. Baldoni-Silva et al '03]

Consider the U(1) Quantum Link Model on an arbitrary graph, with spin $s \in \frac{1}{2}\mathbb{Z}$.

On each link the electric field takes a value

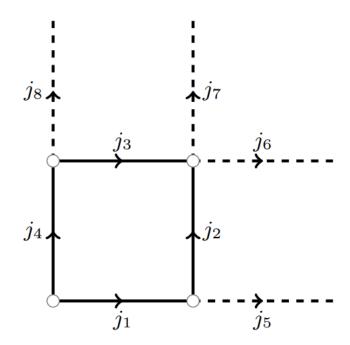
$$j_l = -s, -s + 1, ..., s - 1, s$$

Gauge-invariant states (for example on a square lattice) satisfy

$$j_1 + j_2 - j_3 - j_4 = 0$$

For the four links attached to the site.

Compare with \mathbb{Z}_N , N=2s+1 where the condition is $j_1+j_2-j_3-j_4=0\ (\mathrm{mod}\ N)$ where $j=0,1,\ldots,N-1$. Then here the answer is N^{E-V+1}



What about electric field truncations?

Choose an eigenbasis of the electric field $|jmn\rangle$, where j indexes the irreps of SU(N). Truncate to $j \leq j_{\text{max}}$.

What about electric field truncations?

Choose an eigenbasis of the electric field $|jmn\rangle$, where j indexes the irreps of SU(N). Truncate to $j \leq j_{\text{max}}$.

Can write again:

$$\dim \mathcal{H}_{phys} = \operatorname{tr} P = \frac{1}{|G|^V} \sum_{G \in G^V} \operatorname{tr} G$$

What about electric field truncations?

Choose an eigenbasis of the electric field $|jmn\rangle$, where j indexes the irreps of SU(N). Truncate to $j \leq j_{\text{max}}$.

Can write again:

$$\dim \mathcal{H}_{phys} = \operatorname{tr} P = \frac{1}{|G|^V} \sum_{G \in G^V} \operatorname{tr} G$$

To compute the trace, need character identity:

$$\sum_{j \in \text{Irrep}} \chi_j(g)^* \chi_j(h) = \begin{cases} \frac{|G|}{|C|} & \text{if } g, h \in C \text{ (same conjugacy class)} \\ 0 & \text{otherwise} \end{cases}$$

But if we keep only some irreps (i.e. $j \le j_{max}$) the formula no longer simplifies.

Conclusions

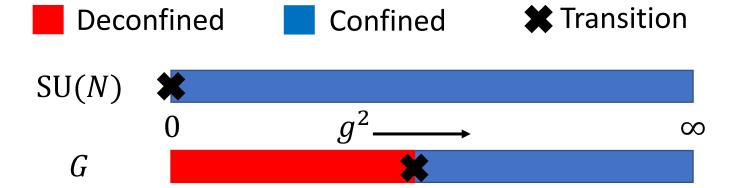
Can compute $\dim \mathcal{H}_{phys}$ for finite groups in various settings.

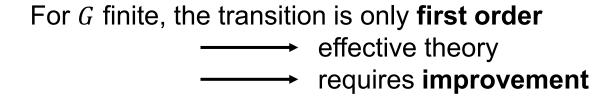
For other truncation methods, the problem is not so easy.

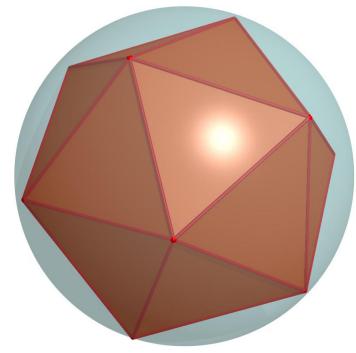
Not everything which works for SU(N) also works for truncations thereof.

Finite subgroups

For finite subgroup $G \leq SU(N)$ in 4D (zero temperature, pure gauge)







[Hasenfratz & Niedermayer '01]