On Convergence and Efficiency of Quantum Imaginary Time Evolution

Tobias Hartung

Northeastern University - London

In collaboration with K. Jansen (DESY Zeuthen)

2025/09/02

VQS Objective

•000

Find a quantum state $|\psi\rangle$ that minimizes a given cost function Cost.

Summary

VQS Objective

Find a quantum state $|\psi\rangle$ that minimizes a given cost function Cost.

Example

•000

Let H be a Hamiltonian. Find the ground state $|\psi_{gs}\rangle$ minimizing the energy $Cost(|\psi\rangle) := \langle \psi | H | \psi \rangle$.

VQS Ansatz

0000

• Quantum device starts initialized in some initial state |init).

0000

- Quantum device starts initialized in some initial state init).
- ▶ Apply a sequence of quantum gates G_i ($1 \le j \le N_G$) to produce the state

$$|\psi\rangle = G_{N_G} \cdots G_1 |\text{init}\rangle$$
.

VQS Ansatz

0000

- Quantum device starts initialized in some initial state linit).
- ▶ Apply a sequence of quantum gates G_i ($1 \le j \le N_G$) to produce the state

$$|\psi\rangle = G_{N_G} \cdots G_1 |\text{init}\rangle$$
.

Some of these gates are depend on a parameter ϑ_k $(1 \le k \le N \le N_G)$, e.g.,

where $R_G(\vartheta_k) = \exp\left(-\frac{i}{2}\vartheta_k G\right)$ is a rotation gate.

0000

VQS Algorithm (aka the abstract compiler)

▶ A Parametric Quantum Circuit C (for us) is the map

C: parameter space $\mathcal{P} \to \text{unitaries}$ on quantum device Hilbert space $U(\mathcal{H})$,

i.e., C only contains the gate sequence.

0000

- ▶ A Parametric Quantum Circuit C (for us) is the map
 - C: parameter space $\mathcal{P} \to \text{unitaries}$ on quantum device Hilbert space $U(\mathcal{H})$,
 - i.e., C only contains the gate sequence.
- ▶ VQS quantum part: use quantum device to measure cost function $Cost(C(\vartheta)|init)$) at a given parameter set ϑ .

VQS Algorithm (aka the abstract compiler)

▶ A Parametric Quantum Circuit C (for us) is the map

C: parameter space $\mathcal{P} \to \text{unitaries}$ on quantum device Hilbert space $U(\mathcal{H})$,

- i.e., C only contains the gate sequence.
- ▶ VQS quantum part: use quantum device to measure cost function $Cost(C(\vartheta)|init)$) at a given parameter set ϑ .
- ▶ VQS classical part: use classical feedback loop optimizer to solve

$$\vartheta \mapsto \operatorname{Cost}(C(\vartheta)|\operatorname{init}\rangle) \to \min.$$

▶ "gnostic" approaches like QAOA

"agnostic" approaches

Summary

0000

- "gnostic" approaches like QAOA
 - ► A LOT of parameters ⇒ classical optimization becomes inefficient
 - ▶ deep circuits ⇒ hardware limitations, intractable asymptotic scaling
- "agnostic" approaches

000

- "gnostic" approaches like QAOA
 - ► A LOT of parameters ⇒ classical optimization becomes inefficient
 - ▶ deep circuits ⇒ hardware limitations, intractable asymptotic scaling
- "agnostic" approaches
 - no convergence guarantees
 - best-approximations can be very difficult to obtain

000

- "gnostic" approaches like QAOA
 - ► A LOT of parameters ⇒ classical optimization becomes inefficient
 - ▶ deep circuits ⇒ hardware limitations, intractable asymptotic scaling
- "agnostic" approaches
 - no convergence guarantees
 - best-approximations can be very difficult to obtain

Quantum Imaginary Time Evolution

- convergence guarantees
- efficient compilation for bounded order systems

Convergence

• consider Hamiltonian H with eigenvalues $\lambda_0 = \ldots = \lambda_{\mu-1} < \lambda_{\mu} \leq \ldots \leq \lambda_N$ and corresponding eigenbasis $|\psi_0\rangle, \dots, |\psi_N\rangle$ with $N=2^Q-1$ for a Q-qubit system

- ▶ consider Hamiltonian H with eigenvalues $\lambda_0 = \ldots = \lambda_{\mu-1} < \lambda_{\mu} \leq \ldots \leq \lambda_N$ and corresponding eigenbasis $|\psi_0\rangle, \ldots, |\psi_N\rangle$ with $N = 2^Q 1$ for a Q-qubit system
- ▶ aim to implement

$$|\psi(t)\rangle = \frac{e^{-tH}|\psi(0)\rangle}{\|e^{-tH}|\psi(0)\rangle\|_2}$$

Convergence

Variational Quantum Simulations

- consider Hamiltonian H with eigenvalues $\lambda_0 = \ldots = \lambda_{\mu-1} < \lambda_{\mu} \le \ldots \le \lambda_N$ and corresponding eigenbasis $|\psi_0\rangle, \ldots, |\psi_N\rangle$ with $N = 2^Q 1$ for a Q-qubit system
- ▶ aim to implement

$$|\psi(t)\rangle = \frac{e^{-tH}|\psi(0)\rangle}{\|e^{-tH}|\psi(0)\rangle\|_2}$$

• for $|\psi(t)\rangle = \sum_{j=0}^{N} \alpha_j(t) |\psi_j\rangle$ and assuming $\exists j < \mu : \alpha_j(0) \neq 0$:

$$\alpha_{j}(t) = \frac{\alpha_{j}(0)}{\sqrt{\sum_{k=0}^{N} |\alpha_{k}(0)|^{2} e^{-2t(\lambda_{k} - \lambda_{j})}}} \to \begin{cases} \frac{\alpha_{j}(0)}{\sqrt{\sum_{k=0}^{\mu - 1} |\alpha_{k}(0)|^{2}}} &, j < \mu, \\ 0 &, j \ge \mu. \end{cases}$$

¹This is true with probability 1 assuming non-zero hardware noise.

Absence of critical slowing down

▶ let $\operatorname{pr}_{T_{|\psi(t)\rangle}\partial B_{\mathcal{H}}(0,1)}$ be the orthoprojector onto the tangent space of the unit sphere $\partial B_{\mathcal{H}}(0,1)$ at the state $|\psi(t)\rangle$, then

$$\frac{d}{dt}|\psi(t)\rangle = \langle \psi(t)|H|\psi(t)\rangle|\psi(t)\rangle - H|\psi(t)\rangle = -\mathrm{pr}_{T_{|\psi(t)\rangle}\partial B_{\mathcal{H}}(0,1)}H|\psi(t)\rangle$$

• let $\operatorname{pr}_{T_{|\psi(t)}} \partial B_{\mathcal{H}}(0,1)$ be the orthoprojector onto the tangent space of the unit sphere $\partial B_{\mathcal{H}}(0,1)$ at the state $|\psi(t)\rangle$, then

$$\frac{d}{dt}|\psi(t)\rangle = \langle \psi(t)|H|\psi(t)\rangle|\psi(t)\rangle - H|\psi(t)\rangle = -\operatorname{pr}_{T_{|\psi(t)\rangle}\partial B_{\mathcal{H}}(0,1)}H|\psi(t)\rangle$$

hence with
$$E(t) := \langle \psi(t) | H | \psi(t) \rangle$$
: $E'(t) = -2 \left\| \operatorname{pr}_{T_{|\psi(t)\rangle} \partial B(0,1)} H | \psi(t) \rangle \right\|_{2}^{2} \le 0$

• let $\operatorname{pr}_{T_{|\psi(t)}} \partial B_{\mathcal{H}}(0,1)$ be the orthoprojector onto the tangent space of the unit sphere $\partial B_{\mathcal{H}}(0,1)$ at the state $|\psi(t)\rangle$, then

$$\frac{d}{dt}|\psi(t)\rangle = \langle \psi(t)|H|\psi(t)\rangle|\psi(t)\rangle - H|\psi(t)\rangle = -\operatorname{pr}_{T_{|\psi(t)\rangle}\partial B_{\mathcal{H}}(0,1)}H|\psi(t)\rangle$$

- hence with $E(t) := \langle \psi(t) | H | \psi(t) \rangle$: $E'(t) = -2 \left\| \operatorname{pr}_{T_{|\psi(t)|} \partial B(0,1)} H | \psi(t) \rangle \right\|_{2}^{2} \le 0$
- ritical slowing down requires $E'(t) \approx 0$, but then $|\psi(t)\rangle \approx$ eigenstate of H, and by monotonicity of $\alpha_j(t)$ this can only happen if the evolution is (almost) converged

Summary

Variational Quantum Simulations

• let
$$\Delta := \lambda_{\mu} - \lambda_0$$
 be the energy gap, then for $t \gg 0$

$$\left\| |\psi(t)\rangle - \lim_{\tau \to \infty} |\psi(\tau)\rangle \right\|_2^2 \le \frac{e^{-2t\Delta}}{\left(\sum_{j=0}^{\mu-1} |\alpha_j(0)|^2\right)^3} |1 + \mathcal{O}(e^{-2t\Delta})|^2$$

Rate of convergence

• let $\Delta := \lambda_{\mu} - \lambda_0$ be the energy gap, then for $t \gg 0$

$$\left\| |\psi(t)\rangle - \lim_{\tau \to \infty} |\psi(\tau)\rangle \right\|_2^2 \le \frac{e^{-2t\Delta}}{\left(\sum_{j=0}^{\mu-1} |\alpha_j(0)|^2\right)^3} |1 + \mathcal{O}(e^{-2t\Delta})|^2$$

• fidelity
$$f(t) = \sum_{j=0}^{\mu-1} |\alpha_j(t)|^2 \ge (1 + f(0)^{-1} e^{-2t\Delta})^{-1}$$

Summary

Rate of convergence

Variational Quantum Simulations

• let $\Delta := \lambda_{tt} - \lambda_0$ be the energy gap, then for $t \gg 0$

$$\left\| |\psi(t)\rangle - \lim_{\tau \to \infty} |\psi(\tau)\rangle \right\|_2^2 \le \frac{e^{-2t\Delta}}{\left(\sum_{j=0}^{\mu-1} |\alpha_j(0)|^2\right)^3} |1 + \mathcal{O}(e^{-2t\Delta})|^2$$

- fidelity $f(t) = \sum_{j=0}^{\mu-1} |\alpha_j(t)|^2 \ge (1 + f(0)^{-1} e^{-2t\Delta})^{-1}$
- ightharpoonup fidelity threshold f guaranteed after critical evolution time:

$$t_f \ge \frac{\ln f - \ln(1 - f) - \ln(f(0))}{2\Delta}$$

Rate of convergence

Variational Quantum Simulations

• let $\Delta := \lambda_{tt} - \lambda_0$ be the energy gap, then for $t \gg 0$

$$\left\| |\psi(t)\rangle - \lim_{\tau \to \infty} |\psi(\tau)\rangle \right\|_2^2 \le \frac{e^{-2t\Delta}}{\left(\sum_{j=0}^{\mu-1} |\alpha_j(0)|^2\right)^3} |1 + \mathcal{O}(e^{-2t\Delta})|^2$$

- fidelity $f(t) = \sum_{j=0}^{\mu-1} |\alpha_j(t)|^2 \ge (1 + f(0)^{-1} e^{-2t\Delta})^{-1}$
- ightharpoonup fidelity threshold f guaranteed after critical evolution time:

$$t_f \ge \frac{\ln f - \ln(1 - f) - \ln(f(0))}{2\Delta}$$

• if $f(0) \propto 2^{-Q}$ can be achieved, then critical evolution time $t_f \in \mathcal{O}(Q/\Delta)$

0000

Combinatorial optimization

- $f(0) = 2^{-Q}\mu$ trivially achievable
- ▶ per shot success probability $p(t) \ge (1 + 2^Q \mu^{-1} e^{-2t\Delta})^{-1}$

Summary

0000

- $f(0) = 2^{-Q}\mu$ trivially achievable
- ▶ per shot success probability $p(t) \ge (1 + 2^Q \mu^{-1} e^{-2t\Delta})^{-1}$
- using $S \gg 1$ shots: total success chance = $1 (1 p(t))^S \approx 1 e^{-p(t)S}$

Summary

Combinatorial optimization

- $f(0) = 2^{-Q}\mu$ trivially achievable
- per shot success probability $p(t) \ge (1 + 2^Q \mu^{-1} e^{-2t\Delta})^{-1}$
- using $S \gg 1$ shots: total success chance = $1 (1 p(t))^S \approx 1 e^{-p(t)S}$
- only small per shot success probability threshold ε required

- $f(0) = 2^{-Q}\mu$ trivially achievable
- per shot success probability $p(t) \ge (1 + 2^Q \mu^{-1} e^{-2t\Delta})^{-1}$
- using $S \gg 1$ shots: total success chance = $1 (1 p(t))^S \approx 1 e^{-p(t)S}$
- only small per shot success probability threshold ε required
- $p(t) \ge \varepsilon$ guaranteed for

$$t \ge \frac{Q \ln 2 - \ln \mu + \ln \varepsilon - \ln(1 - \varepsilon)}{2\Delta} \in \mathcal{O}(Q/\Delta)$$

- express H as Pauli sum $\sum_j a_j S_j$ with $a_j \in \mathbb{R}$ and S_j tensor product of single-qubit Paulis (X, Y, Z, I)
- ▶ Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially

- express H as Pauli sum $\sum_i a_i S_i$ with $a_i \in \mathbb{R}$ and S_i tensor product of single-qubit Paulis (X, Y, Z, I)
- \blacktriangleright Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially
 - ▶ Heisenberg model: order 2, constant coefficients ✓

- ▶ express H as Pauli sum $\sum_{i} a_{i}S_{j}$ with $a_{j} \in \mathbb{R}$ and S_{j} tensor product of single-qubit Paulis (X, Y, Z, I)
- \blacktriangleright Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially
 - ▶ Heisenberg model: order 2, constant coefficients ✓
 - ▶ local models with reasonable continuum limit \checkmark (probably²)

²cf. also K. Liegener's talk

- ▶ express H as Pauli sum $\sum_{i} a_{i}S_{j}$ with $a_{j} \in \mathbb{R}$ and S_{j} tensor product of single-qubit Paulis (X, Y, Z, I)
- \blacktriangleright Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially
 - ▶ Heisenberg model: order 2, constant coefficients ✓
 - ▶ local models with reasonable continuum limit \checkmark (probably²)
 - ▶ QUBO (order 2) with polynomially scaling coefficients ✓

²cf. also K. Liegener's talk

- ▶ express H as Pauli sum $\sum_{i} a_{i}S_{j}$ with $a_{j} \in \mathbb{R}$ and S_{j} tensor product of single-qubit Paulis (X, Y, Z, I)
- \blacktriangleright Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially
 - ▶ Heisenberg model: order 2, constant coefficients ✓
 - ▶ local models with reasonable continuum limit \checkmark (probably²)
 - ▶ QUBO (order 2) with polynomially scaling coefficients ✓
 - realistic combinatorial optimization: many real-world problems have super-polynomial order scaling \checkmark/\checkmark

²cf. also K. Liegener's talk

- express H as Pauli sum $\sum_j a_j S_j$ with $a_j \in \mathbb{R}$ and S_j tensor product of single-qubit Paulis (X, Y, Z, I)
- ▶ Hamiltonian of order B: each S_i has at most B non-trivial factors
- class of bounded order systems: family of Hamiltonians of order B and coefficients a_i scale at most polynomially
 - ▶ Heisenberg model: order 2, constant coefficients ✓
 - b local models with reasonable continuum limit ✓(probably²)
 - ▶ QUBO (order 2) with polynomially scaling coefficients ✓
 - realistic combinatorial optimization: many real-world problems have super-polynomial order scaling \checkmark/\checkmark
 - ▶ factoring: order 4 but doesn't have polynomial coefficient scaling 🗡

²cf. also K. Liegener's talk

000

Variational Quantum Simulations

- ▶ H has at most $\binom{Q}{B}4^B$ many summands a_iS_i
- ightharpoonup Trotterize with time-step δ

$$e^{-tH} = \prod_{\tau=1}^{t/\delta} \prod_{j} e^{-\delta a_j S_j}$$

Summary

Variational Quantum Simulations

- H has at most $\binom{Q}{B}4^B$ many summands a_iS_i
- ightharpoonup Trotterize with time-step δ

$$e^{-tH} = \prod_{\tau=1}^{t/\delta} \prod_{j} e^{-\delta a_j S_j}$$

Compilation Task

Find circuits $C_{j,\tau}(\vartheta_{j,\tau})$ that act like the corresponding $e^{-\delta a_j S_j}$ including normalization.

$$|\psi(t)\rangle = \frac{e^{-tH}|\psi(0)\rangle}{\|e^{-tH}|\psi(0)\rangle\|_{2}} = \frac{\prod_{\tau=1}^{t/\delta} \prod_{j} e^{-\delta a_{j}S_{j}} |\psi(0)\rangle}{\|e^{-tH}|\psi(0)\rangle\|_{2}} = \prod_{\tau=1}^{t/\delta} \prod_{j} C_{j,\tau}(\vartheta_{j,\tau}) |\psi(0)\rangle$$

000

Compiler

• each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{j,\tau}(\vartheta_{j,\tau})$ only acts on B qubits

Summary

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{i,\tau}(\vartheta_{i,\tau})$ only acts on B qubits
- ansatz for $C_{i,\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{j,\tau}(\vartheta_{j,\tau})$ only acts on B qubits
- ansatz for $C_{j,\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{j,\tau}\rangle$ be the state of the evolution prior to applying $C_{j,\tau}(\vartheta_{j,\tau})$

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{i,\tau}(\vartheta_{i,\tau})$ only acts on B qubits
- ansatz for $C_{i\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{i,\tau}\rangle$ be the state of the evolution prior to applying $C_{i,\tau}(\vartheta_{i,\tau})$
- to find $\vartheta_{i,\tau}$: maximize $\Omega(\delta,\vartheta_{i,\tau}) := \langle \psi_{i,\tau} | e^{-\delta a_j S_j} C_{i,\tau}(\vartheta_{i,\tau}) | \psi_{i,\tau} \rangle$

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{i,\tau}(\vartheta_{i,\tau})$ only acts on B qubits
- ansatz for $C_{i\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{i,\tau}\rangle$ be the state of the evolution prior to applying $C_{i,\tau}(\vartheta_{i,\tau})$
- to find $\vartheta_{i,\tau}$: maximize $\Omega(\delta,\vartheta_{i,\tau}) := \langle \psi_{i,\tau} | e^{-\delta a_j S_j} C_{i,\tau}(\vartheta_{i,\tau}) | \psi_{i,\tau} \rangle$
 - trivial: $\Omega(0,\cdot)$ maximized with $\vartheta_{i,\tau}=0$

000

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{i,\tau}(\vartheta_{i,\tau})$ only acts on B qubits
- ansatz for $C_{i\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{i,\tau}\rangle$ be the state of the evolution prior to applying $C_{i,\tau}(\vartheta_{i,\tau})$
- to find $\vartheta_{i,\tau}$: maximize $\Omega(\delta,\vartheta_{i,\tau}) := \langle \psi_{i,\tau} | e^{-\delta a_j S_j} C_{i,\tau}(\vartheta_{i,\tau}) | \psi_{i,\tau} \rangle$
 - trivial: $\Omega(0,\cdot)$ maximized with $\vartheta_{i,\tau} = 0$
 - Ω fitted using measurements $\langle \psi_{i,\tau} | \sigma | \psi_{i,\tau} \rangle$ of at most $4^B\binom{Q}{D}$ B-qubit Paulis σ .

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{j,\tau}(\vartheta_{j,\tau})$ only acts on B qubits
- ▶ ansatz for $C_{j,\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{j,\tau}\rangle$ be the state of the evolution prior to applying $C_{j,\tau}(\vartheta_{j,\tau})$
- to find $\vartheta_{j,\tau}$: maximize $\Omega(\delta,\vartheta_{j,\tau}) := \langle \psi_{j,\tau} | e^{-\delta a_j S_j} C_{j,\tau}(\vartheta_{j,\tau}) | \psi_{j,\tau} \rangle$
 - trivial: $\Omega(0,\cdot)$ maximized with $\vartheta_{j,\tau} = 0$
 - Ω fitted using measurements $\langle \psi_{j,\tau} | \sigma | \psi_{j,\tau} \rangle$ of at most $4^B \binom{Q}{B}$ B-qubit Paulis σ .
- construct $\vartheta_{j,\tau}$ via homotopy continuation from $\Omega(0,0)$ to $\Omega(\delta,\vartheta_{j,\tau})$

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{j,\tau}(\vartheta_{j,\tau})$ only acts on B qubits
- ▶ ansatz for $C_{j,\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{j,\tau}\rangle$ be the state of the evolution prior to applying $C_{j,\tau}(\vartheta_{j,\tau})$
- to find $\vartheta_{j,\tau}$: maximize $\Omega(\delta,\vartheta_{j,\tau}) := \langle \psi_{j,\tau} | e^{-\delta a_j S_j} C_{j,\tau}(\vartheta_{j,\tau}) | \psi_{j,\tau} \rangle$
 - trivial: $\Omega(0,\cdot)$ maximized with $\vartheta_{j,\tau} = 0$
 - Ω fitted using measurements $\langle \psi_{j,\tau} | \sigma | \psi_{j,\tau} \rangle$ of at most $4^B \binom{Q}{B}$ B-qubit Paulis σ .
- construct $\vartheta_{j,\tau}$ via homotopy continuation from $\Omega(0,0)$ to $\Omega(\delta,\vartheta_{j,\tau})$
- ▶ minimum viable stepsize δ guaranteed by a determinant being non-zero \Rightarrow polynomial scaling in B

- each $e^{-\delta a_j S_j}$ acts on at most B qubits $\Rightarrow C_{j,\tau}(\vartheta_{j,\tau})$ only acts on B qubits
- ansatz for $C_{j,\tau}$ with depth $5 \cdot 2^{B-1} 2$ and $2^{B+1} 1$ parameters [arXiv:2111.11489]
- let $|\psi_{j,\tau}\rangle$ be the state of the evolution prior to applying $C_{j,\tau}(\vartheta_{j,\tau})$
- to find $\vartheta_{j,\tau}$: maximize $\Omega(\delta,\vartheta_{j,\tau}) \coloneqq \langle \psi_{j,\tau} | e^{-\delta a_j S_j} C_{j,\tau}(\vartheta_{j,\tau}) | \psi_{j,\tau} \rangle$
 - ▶ trivial: $\Omega(0,\cdot)$ maximized with $\vartheta_{j,\tau} = 0$
 - Ω fitted using measurements $\langle \psi_{j,\tau} | \sigma | \psi_{j,\tau} \rangle$ of at most $4^B \binom{Q}{B}$ B-qubit Paulis σ .
- construct $\vartheta_{j,\tau}$ via homotopy continuation from $\Omega(0,0)$ to $\Omega(\delta,\vartheta_{j,\tau})$
- ▶ minimum viable stepsize δ guaranteed by a determinant being non-zero \Rightarrow polynomial scaling in B
- total compilation time polynomial in Q/Δ and acceptible noise ε
 - $\mathcal{O}(\text{poly}(Q/\Delta))$ time-steps with individual compilation cost $\mathcal{O}(Q^B \varepsilon^{-2})$

What have we got?

[arXiv:2506.03014]

Compilation

- convergence proof using imaginary time evolution
- efficiency proof of imaginary time evolution in terms of evolution time
- efficient compilation for large class of problems (bounded order systems)

What have we got?

[arXiv:2506.03014]

- convergence proof using imaginary time evolution
- efficiency proof of imaginary time evolution in terms of evolution time
- efficient compilation for large class of problems (bounded order systems)

What do we need?

better compilers

What have we got?

[arXiv:2506.03014]

- convergence proof using imaginary time evolution
- efficiency proof of imaginary time evolution in terms of evolution time
- efficient compilation for large class of problems (bounded order systems)

What do we need?

better compilers

Future ideas?

- approximate imaginary time evolution for some "bad" systems
- any other conditions on systems that allow us to conclude whether they can or cannot be solved efficiently

