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Variational Quantum Simulations Convergence Compilation Summary

Variational Quantum Simulations

VQS Objective

Find a quantum state ∣ψ⟩ that minimizes a given cost function Cost.

Example

Let H be a Hamiltonian. Find the ground state ∣ψgs⟩ minimizing the energy

Cost(∣ψ⟩) ∶= ⟨ψ∣H ∣ψ⟩ .
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VQS Ansatz

▸ Quantum device starts initialized in some initial state ∣init⟩.

▸ Apply a sequence of quantum gates Gj (1 ≤ j ≤ NG) to produce the state

∣ψ⟩ = GNG⋯G1 ∣init⟩ .

▸ Some of these gates are depend on a parameter ϑk (1 ≤ k ≤ N ≤ NG), e.g.,

∣0⟩ RY (ϑ1) RZ(ϑ3) ● RY (ϑ5) RZ(ϑ7)

∣0⟩ RY (ϑ2) RZ(ϑ4) RY (ϑ6) RZ(ϑ8)

where RG(ϑk) = exp (− i
2ϑkG) is a rotation gate.
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VQS Algorithm (aka the abstract compiler)

▸ A Parametric Quantum Circuit C (for us) is the map

C ∶ parameter space P → unitaries on quantum device Hilbert space U(H),

i.e., C only contains the gate sequence.

▸ VQS quantum part: use quantum device to measure cost function
Cost(C(ϑ) ∣init⟩) at a given parameter set ϑ.

▸ VQS classical part: use classical feedback loop optimizer to solve

ϑ↦ Cost(C(ϑ) ∣init⟩) →min .
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common compilation obstacles

▸ “gnostic” approaches like QAOA

▸ A LOT of parameters ⇒ classical optimization becomes inefficient
▸ deep circuits ⇒ hardware limitations, intractable asymptotic scaling

▸ “agnostic” approaches

▸ no convergence guarantees
▸ best-approximations can be very difficult to obtain

Quantum Imaginary Time Evolution

▸ convergence guarantees
▸ efficient compilation for bounded order systems
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Convergence
▸ consider Hamiltonian H with eigenvalues λ0 = . . . = λµ−1 < λµ ≤ . . . ≤ λN and

corresponding eigenbasis ∣ψ0⟩ , . . . , ∣ψN ⟩ with N = 2Q − 1 for a Q-qubit system

▸ aim to implement

∣ψ(t)⟩ = e−tH ∣ψ(0)⟩
∥e−tH ∣ψ(0)⟩∥2

▸ for ∣ψ(t)⟩ = ∑N
j=0 αj(t) ∣ψj⟩ and assuming1 ∃j < µ ∶ αj(0) ≠ 0:

αj(t) =
αj(0)√

∑N
k=0 ∣αk(0)∣2e−2t(λk−λj)

→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αj(0)
√

∑
µ−1
k=0 ∣αk(0)∣

2
, j < µ,

0 , j ≥ µ.

1

This is true with probability 1 assuming non-zero hardware noise.
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Absence of critical slowing down

▸ let prT∣ψ(t)⟩∂BH(0,1) be the orthoprojector onto the tangent space of the unit
sphere ∂BH(0,1) at the state ∣ψ(t)⟩, then

d

dt
∣ψ(t)⟩ = ⟨ψ(t)∣H ∣ψ(t)⟩ ∣ψ(t)⟩ −H ∣ψ(t)⟩ = −prT∣ψ(t)⟩∂BH(0,1)H ∣ψ(t)⟩

▸ hence with E(t) ∶= ⟨ψ(t)∣H ∣ψ(t)⟩: E′(t) = −2 ∥prT∣ψ(t)⟩∂B(0,1)H ∣ψ(t)⟩∥
2

2
≤ 0

▸ critical slowing down requires E′(t) ≈ 0, but then ∣ψ(t)⟩ ≈ eigenstate of H, and
by monotonicity of αj(t) this can only happen if the evolution is (almost)
converged
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Rate of convergence
▸ let ∆ ∶= λµ − λ0 be the energy gap, then for t≫ 0

∥∣ψ(t)⟩ − lim
τ→∞
∣ψ(τ)⟩∥

2

2
≤ e−2t∆

(∑µ−1
j=0 ∣αj(0)∣2)

3
∣1 +O(e−2t∆)∣2

▸ fidelity f(t) = ∑µ−1
j=0 ∣αj(t)∣2 ≥ (1 + f(0)−1e−2t∆)

−1

▸ fidelity threshold f guaranteed after critical evolution time:

tf ≥
ln f − ln(1 − f) − ln(f(0))

2∆

▸ if f(0) ∝ 2−Q can be achieved, then critical evolution time tf ∈ O(Q/∆)
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Combinatorial optimization

▸ f(0) = 2−Qµ trivially achievable

▸ per shot success probability p(t) ≥ (1 + 2Qµ−1e−2t∆)−1

▸ using S ≫ 1 shots: total success chance = 1 − (1 − p(t))S ≈ 1 − e−p(t)S
▸ only small per shot success probability threshold ε required
▸ p(t) ≥ ε guaranteed for

t ≥ Q ln 2 − lnµ + ln ε − ln(1 − ε)
2∆

∈ O(Q/∆)
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Bounded order systems

▸ express H as Pauli sum ∑j ajSj with aj ∈ R and Sj tensor product of
single-qubit Paulis (X, Y , Z, I)

▸ Hamiltonian of order B: each Sj has at most B non-trivial factors
▸ class of bounded order systems: family of Hamiltonians of order B and

coefficients aj scale at most polynomially

▸ Heisenberg model: order 2, constant coefficients ✓
▸ local models with reasonable continuum limit ✓(probably2)
▸ QUBO (order 2) with polynomially scaling coefficients ✓
▸ realistic combinatorial optimization: many real-world problems have

super-polynomial order scaling ✓/✗
▸ factoring: order 4 but doesn’t have polynomial coefficient scaling ✗

2

cf. also K. Liegener’s talk
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Trotterization
▸ H has at most (QB)4

B many summands ajSj
▸ Trotterize with time-step δ

e−tH =
t/δ

∏
τ=1
∏
j

e−δajSj

Compilation Task

Find circuits Cj,τ(ϑj,τ) that act like the corresponding e−δajSj including
normalization.

∣ψ(t)⟩ = e−tH ∣ψ(0)⟩
∥e−tH ∣ψ(0)⟩∥2

= ∏
t/δ
τ=1∏j e

−δajSj ∣ψ(0)⟩
∥e−tH ∣ψ(0)⟩∥2

=
t/δ

∏
τ=1
∏
j

Cj,τ(ϑj,τ) ∣ψ(0)⟩
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Compiler
▸ each e−δajSj acts on at most B qubits ⇒ Cj,τ(ϑj,τ) only acts on B qubits

▸ ansatz for Cj,τ with depth 5 ⋅ 2B−1 − 2 and 2B+1 − 1 parameters [arXiv:2111.11489]

▸ let ∣ψj,τ ⟩ be the state of the evolution prior to applying Cj,τ(ϑj,τ)
▸ to find ϑj,τ : maximize Ω(δ, ϑj,τ) ∶= ⟨ψj,τ ∣ e−δajSjCj,τ(ϑj,τ) ∣ψj,τ ⟩

▸ trivial: Ω(0, ⋅) maximized with ϑj,τ = 0
▸ Ω fitted using measurements ⟨ψj,τ ∣σ ∣ψj,τ ⟩ of at most 4B(Q

B
) B-qubit Paulis σ.

▸ construct ϑj,τ via homotopy continuation from Ω(0,0) to Ω(δ, ϑj,τ)
▸ minimum viable stepsize δ guaranteed by a determinant being non-zero ⇒

polynomial scaling in B
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Variational Quantum Simulations Convergence Compilation Summary

What have we got? [arXiv:2506.03014]

▸ convergence proof using imaginary time evolution
▸ efficiency proof of imaginary time evolution in terms of evolution time
▸ efficient compilation for large class of problems (bounded order systems)

What do we need?
▸ better compilers

Future ideas?
▸ approximate imaginary time evolution for some “bad” systems
▸ any other conditions on systems that allow us to conclude whether they can or

cannot be solved efficiently
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