Toward Efficient Trotter-Suzuki Schemes for Long-Time Quantum Dynamics

Marko Maležič, Johann Ostmeyer

3.9.2025

Trento ECT*, Hamiltonian LGT workshop

- Accurate long-time quantum simulations are challenging in complex systems
- Limits on access to observables and ground state properties
- Accumulation of errors in time both on classical and quantum hardware

- Quantum computers also face hardware problems, e.g.
 Decoherence and gate depth
- Improving theoretical methods could reduce simulation error
- Time evolution operator:

$$U(t) = e^{-iHt} \approx [S_n(h)]^{t/h}$$

- Quantum computers also face hardware problems, e.g.
 Decoherence and gate depth
- Improving theoretical methods could reduce simulation error
- Time evolution operator:

$$U(t) = e^{-iHt} \approx [S_n(h)]^{t/h}$$

- Quantum computers also face hardware problems, e.g.
 Decoherence and gate depth
- Improving theoretical methods could reduce simulation error
- Time evolution operator:

$$U(t) = e^{-iHt} \approx [S_n(h)]^{t/h}$$

Time evolution

- Schrödinger equation: $i\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$
- Solved by the time evolution operator $U(t)=e^{-iHt}:|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- Imaginary time evolution $(t=-i\tau):|\psi(0)\rangle=\lim_{\tau\to\infty}e^{-H\tau}|\psi(0)\rangle$

Time evolution

- Schrödinger equation: $i\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$
- Solved by the time evolution operator $U(t)=e^{-iHt}:|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- Imaginary time evolution $(t=-i\tau):|\psi(0)\rangle=\lim_{\tau\to\infty}e^{-H\tau}|\psi(0)\rangle$
- Analytical solutions possible for simple, small and symmetric systems
- Exact diagonalization possible for small systems (e.g. spin chains with $L\lesssim 20$)
- Exchange scalability for a discretization error using Trotterizations

$$U(t) \approx [S_n(h)]^{t/h}$$

Baker-Campbell-Hausdorf formula

- Hamiltonian with two terms: H = A + B
- BCH formula: $e^{Ah}e^{Bh}=e^{(A+B)h+\frac{h^2}{2}[A,B]-\frac{h^3}{24}[A,[A,B]]+\frac{h^3}{12}[B,[B,A]]+\mathcal{O}(h^4)}$

Baker-Campbell-Hausdorf formula

- Hamiltonian with two terms: H = A + B
- BCH formula: $e^{Ah}e^{Bh}=e^{(A+B)h+\frac{h^2}{2}[A,B]-\frac{h^3}{24}[A,[A,B]]+\frac{h^3}{12}[B,[B,A]]+\mathcal{O}(h^4)}$
- Non-commuting case: $e^{Ah}e^{Bh}=e^{(A+B)h+\mathcal{O}(h^2)}\,$ Order n=1
- Leapfrog (Verlet) scheme: $e^{\frac{A}{2}h}e^{Bh}e^{\frac{A}{2}h}=e^{(A+B)h+\mathcal{O}(h^3)}$ Order n=2
- Symmetric schemes lead to even orders without much cost

Scheme construction

- Construction of higher order decompositions $(n \ge 4)$
- Suzuki and Yoshida methods Construction using lower order schemes
- Both methods fail to find maximally efficient schemes

Scheme construction

- Construction of higher order decompositions $(n \ge 4)$
- Omelyan's method Construction from scratch
- Assume symmetric (not necessarily real) parameters $(a_1=a_{q+1},\ b_1=b_q)$

$$e^{(A+B)h+O_1h+O_3h^3+O_5h^5} = e^{a_1Ah}e^{b_1Bh} \cdots e^{b_qBh}e^{a_{q+1}Ah}$$

- Notation: Stage, $e^{a_i A_i h}$
 - Ramp (up, down)
 - No. cycles q

Omelyan's method

• Assume symmetric (not necessarily real) parameters $(a_1=a_{q+1},\ b_1=b_q)$

$$e^{(A+B)h+O_1h+O_3h^3+O_5h^5} = e^{a_1Ah}e^{b_1Bh} \cdots e^{b_qBh}e^{a_{q+1}Ah}$$

• Valid if, $\, \nu = \sigma = 1 \,$ which is guaranteed by:

$$\sum_{i} a_i = \sum_{i} b_i = 1$$

$$O_{1} = (\nu - 1)A + (\sigma - 1)B,$$

$$O_{3} = \alpha C_{1} + \beta C_{2}, \quad C_{1} = [A, [A, B]], \quad C_{2} = [B, [B, A]],$$

$$O_{5} = \sum_{k=1}^{6} \gamma_{k} D_{k}, \quad D_{1} = [A, [A, [A, [A, A, B]]]], \quad D_{2} = [A, [A, [B, A, B]]],$$

$$D_{3} = [B, [A, [A, A, A, B]]], \quad D_{4} = [A, [B, B, B, B]],$$

$$D_{5} = [B, [B, [A, [B, A]]]], \quad D_{6} = [B, [B, B, B, B]]].$$

Omelyan's method

• Assume symmetric (not necessarily real) parameters $(a_1=a_{q+1},\ b_1=b_q)$

$$e^{(A+B)h+O_1h+O_3h^3+O_5h^5} = e^{a_1Ah}e^{b_1Bh}\cdots e^{b_qBh}e^{a_{q+1}Ah}$$

• Order n=4 satisfied by:

$$\alpha(a_i, b_i) = \beta_i(a_i, b_i) = 0$$

• Order n=6 satisfied by:

$$\gamma_j(a_i,b_i)=0$$

$$O_{1} = (\nu - 1)A + (\sigma - 1)B,$$

$$O_{3} = \alpha C_{1} + \beta C_{2}, \quad C_{1} = [A, [A, B]], \quad C_{2} = [B, [B, A]],$$

$$O_{5} = \sum_{k=1}^{6} \gamma_{k} D_{k}, \quad D_{1} = [A, [A, [A, [A, B]]]], \quad D_{2} = [A, [A, [B, [A, B]]]],$$

$$D_{3} = [B, [A, [A, [A, B]]]], \quad D_{4} = [A, [B, [B, [B, A]]]],$$

$$D_{5} = [B, [B, [A, [B, A]]]], \quad D_{6} = [B, [B, [B, A]]]].$$

Omelyan's method

- "A decomposition is efficient if its leading order errors are small compared to the no. cycles q it requires"
- Error definition: ${\rm Err}_2(a_i,b_i)=\sqrt{|\alpha|^2+|\beta|^2}$, ${\rm Err}_4(a_i,b_i)=\sqrt{\sum_{i=1}^6|\gamma_i|^2}$, where we assume orthogonality of the basis
- Efficiency definition: $\mathrm{Eff}_2 = \frac{1}{q^2\mathrm{Err}_2}$, $\mathrm{Eff}_4 = \frac{1}{q^4\mathrm{Err}_4}$

Omelyan's method

• With increased order and no. cycles the error manifold complexity rises

Omelyan's method

• With increased order and no. cycles the error manifold complexity rises

- Verlet or Leapfrog scheme (q=1)
 - Simple, yet performs very well
 - Valid, if high precision is not desired
- Omelyan's scheme (q=2)
 - One free parameter to optimize
 - Comparable to Leapfrog

- Forest-Ruth scheme (q = 3)
 - Poor performance
- Omelyan's Forest-Ruth scheme (q = 4)
 - One free parameter
- Suzuki's scheme (q = 5)
 - Favourable error accumulation
- Blanes-Moan (q = 6)
 - Highly efficient order 4 scheme

- Forest-Ruth scheme (q = 3)
 - Poor performance
- Omelyan's Forest-Ruth scheme (q = 4)
 - One free parameter
- Suzuki's scheme (q = 5)
 - Favourable error accumulation
- Blanes-Moan (q = 6)
 - Highly efficient order 4 scheme

- Yoshida (q=7)
 - Unusual scheme $(n_p = 8, n_c = 10)$
 - Extremely poor efficiency
- Blanes-Moan (q = 10)
 - One of the best order 6 schemes
- New found schemes
 - Improvement over the known schemes

Order 6

- Yoshida (q=7)
 - Unusual scheme $(n_p = 8, n_c = 10)$
 - Extremely poor efficiency
- Blanes-Moan (q = 10)
 - One of the best order 6 schemes
- New found schemes
 - Improvement over the known schemes
 - Also explored the local minima

Efficiency at different orders n (First 100 schemes)

- The Heisenberg XXZ model: $H=\sum_{i=1}^L \left(J^x\sigma_i^x\sigma_{i+1}^x+J^y\sigma_i^y\sigma_{i+1}^y+J^z\sigma_i^z\sigma_{i+1}^z+h_i\sigma_i^z\right)$, $J^{\alpha}=1$
- Correspondence with quantum computers (local gates)
- $\, \bullet \, {\rm Periodic \, spin \, chain \, of \, length \, } \, L = 6 \,$
- Estimate error using the Frobenius norm:

Error(t) =
$$||U(t) - S(h)^{t/h}||_F$$
, $U(t) \approx [S(h)]^{t/h}$

Evolve until time t=10.0, using some time step \hbar

- Correspondence between the experimental and theoretical error is not exact
- Investigate the properties of the parameters (a_i, b_i)
- Optimally: All parameters are exactly the same: $a_i = b_i = x_{
 m opt.}, \quad x_{
 m opt.} = rac{1}{q}$
- Add a term to the theoretical error function:

$$((1 - a)Err)^{2} + (a\bar{x})^{2}$$

$$\bar{x} = \sum_{i} (a_{i} - x_{\text{opt.}}) + \sum_{i} (b_{i} - x_{\text{opt.}})$$

Error comparison at 14 cycles, $a=2.000\times 10^{-6}$

Outlook and future work

- We extended Omelyan's method to a general framework for optimizing Trotter-Suzuki decompositions and found novel schemes
- In progress: Theoretical-Experimental error correspondence
 - Order 8 scheme optimization
 - Research of non-unitary schemes with complex parameters
- Future work: Order 10 recursive formulae
 - Test optimized schemes on quantum hardware

Arbitrary no. stages adaptation

- Every scheme with 2 stages is applicable to an arbitrary no. stages
- Transition from stage-based to a ramp based approach:

Arbitrary no. stages adaptation

- Every scheme with 2 stages is applicable to an arbitrary no. stages
- Transition from stage-based to a ramp based approach:

$$e^{h\sum_{k=1}^{\Lambda}A_k + \mathcal{O}(h^{n+1})} = \left(\prod_{k=1}^{\Lambda}e^{A_kc_1h}\right) \left(\prod_{k=\Lambda}^{1}e^{A_kd_1h}\right) \cdots \left(\prod_{k=1}^{\Lambda}e^{A_kc_qh}\right) \left(\prod_{k=\Lambda}^{1}e^{A_kd_qh}\right)$$

Framework details

ullet Coefficients lpha , eta and γ_j are polynomials of parameters a_i , b_i

$$e^{(A+B)h+O_1h+O_3h^3+O_5h^5} = e^{\frac{a_2}{2}Ah}e^{\frac{b_1}{2}Bh}e^{a_1Ah}e^{\frac{b_1}{2}Bh}e^{\frac{a_2}{2}Ah}$$

• Denote a scheme $\Phi^{(i_A,i_B)}$ at iteration (i_A,i_B)

$$e^{\frac{a_2}{2}Ah}e^{\frac{b_1}{2}Bh}e^{a_1Ah}e^{\frac{b_1}{2}Bh}e^{\frac{a_2}{2}Ah} \to e^{\frac{a_2}{2}Ah}e^{\Phi^{(1,1)}}e^{\frac{a_2}{2}Ah} \to e^{\Phi^{(2,1)}}$$

General form:

$$\Phi^{(i_A,i_B)} = \left(\nu^{(i_A)}A + \sigma^{(i_B)}B\right)h + \left(\alpha^{(i_A,i_B)}C_1 + \beta^{(i_A,i_B)}C_2\right)h^3 + h^5 \sum_k \gamma_k^{(i_A,i_B)}D_k + \cdots$$

$$i_A \qquad i_B$$

where:
$$u^{(i_A)} = \sum_{i=1}^{i_A} a_i, \quad \sigma^{(i_B)} = \sum_{i=1}^{i_B} b_i$$

Framework details

 Use the BCH formula to derive the recursive formulae for the coefficients

$$e^{\Phi^{(i,i-1)}} = e^{\frac{a_i}{2}Ah} e^{\Phi^{(i-1,i-1)}} e^{\frac{a_i}{2}Ah}$$

Order 2 coefficients recursive formulae:

$$\alpha^{(i,i-1)} = \alpha^{(i-1,i-1)} + \alpha a_i^2 \sigma^{(i-1)} - \beta a_i \nu^{(i-1)} \sigma^{(i-1)},$$
$$\beta^{(i,i-1)} = \beta^{(i-1,i-1)} + \beta a_i \left(\sigma^{(i-1)}\right)^2$$

• Higher order derivations become much more involved

Framework details

- The error function defines a high-dimensional manifold in parameters a_i and b_i
- Dimension: $n_p=q+1$, $n_c\in(2,4,10,\ldots)$
- Goal: minimize this manifold to identify global and local minima

$$\operatorname{Err}_{2}(a_{i}, b_{i}) = \sqrt{|\alpha|^{2} + |\beta|^{2}}$$
 $\operatorname{Err}_{4}(a_{i}, b_{i}) = \sqrt{\sum_{k=1}^{6} |\gamma_{k}|^{2}}$

Framework details

- The error function defines a high-dimensional manifold in parameters a_i and b_i
- Dimension: $n_p = q + 1$, $n_c \in (2, 4, 10, ...)$
- Goal: minimize this manifold to identify global and local minima
- Example: q=2, 1 free parameter

$$\alpha(q=2) = \frac{a^2}{8} - \frac{a}{4} + \frac{1}{12}, \quad \beta(q=2) = -\frac{a}{8} + \frac{1}{24}$$

$$\operatorname{Err}_2(a_i, b_i) = \sqrt{|\alpha|^2 + |\beta|^2}$$

$$\operatorname{Err}_4(a_i, b_i) = \sqrt{\sum_{k=1}^6 |\gamma_k|^2}$$

Framework details

- Optimization method: The Levenberg-Marquard algorithm
- Combination of the Gradient descent and the Gauss-Newton method
- Gradient descent: quickly accelerates toward the minimum region
- Gauss-Newton: Assumes the minimum region and accurately pinpoints the minimum
- Fast convergence, but susceptible to local minima Many random initial parameters

Local minima

- Global minimum is usually close to the average parameter value $\frac{2}{q+1}$
- Efficiency drops drastically far from this mean
- It is good to study less efficient schemes, which are closer to the mean

Local minima

- Global minimum is usually close to the average parameter value $\frac{2}{q+1}$
- Efficiency drops drastically far from this mean
- It is good to study less efficient schemes, which are closer to the mean

Numerical experiments

Numerical experiments

