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Accurate long-time quantum simulations 
are challenging in complex systems 

Limits on access to observables and 
ground state properties 

Accumulation of errors in time both on 
classical and quantum hardware

Motivation
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Quantum computers also face 
hardware problems, e.g. 
Decoherence and gate depth 

Improving theoretical methods could 
reduce simulation error 

Time evolution operator:

Motivation
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Quantum computers also face 
hardware problems, e.g. 
Decoherence and gate depth 

Improving theoretical methods could 
reduce simulation error 

Time evolution operator:

Motivation

Accuracy



Schrödinger equation: 

Solved by the time evolution operator                       : 

Imaginary time evolution                  :

Trotter-Suzuki decompositions
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Time evolution



Schrödinger equation: 

Solved by the time evolution operator                       : 

Imaginary time evolution                  : 

Analytical solutions possible for simple, small and symmetric systems 

Exact diagonalization possible for small systems (e.g. spin chains with              )

Trotter-Suzuki decompositions
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Time evolution

Exchange scalability for a discretization 

error using Trotterizations



Hamiltonian with two terms: 

BCH formula:

Trotter-Suzuki decompositions
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Baker-Campbell-Hausdorf formula



Hamiltonian with two terms: 

BCH formula: 

Non-commuting case:                                                - Order 

Leapfrog (Verlet) scheme:                                                     - Order 

Symmetric schemes lead to even orders without much cost

Trotter-Suzuki decompositions
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Baker-Campbell-Hausdorf formula



Construction of higher order decompositions 

Suzuki and Yoshida methods - Construction using lower order schemes 

Both methods fail to find maximally efficient schemes

Trotter-Suzuki decompositions
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Scheme construction



Construction of higher order decompositions 

Omelyan’s method - Construction from scratch 

Assume symmetric (not necessarily real) parameters

Trotter-Suzuki decompositions
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Scheme construction

Notation: - Stage,  

                - Ramp (up, down) 

                - No. cycles



Assume symmetric (not necessarily real) parameters

Trotter-Suzuki decompositions
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Omelyan’s method

Valid if,                    , which 

is guaranteed by:



Assume symmetric (not necessarily real) parameters

Trotter-Suzuki decompositions
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Omelyan’s method

Order              satisfied by:

Order              satisfied by:



“A decomposition is efficient if its leading order errors are small 

compared to the no. cycles     it requires” 

Error definition:                                            ,                                             , 

where we assume orthogonality of the basis 

Trotter-Suzuki decompositions
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Omelyan’s method

Efficiency definition:                          ,     ,
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Polynomial manifold for 2 cycles

Trotter-Suzuki decompositions
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Omelyan’s method

With increased order and no. cycles the error manifold complexity rises 



Trotter-Suzuki decompositions
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Omelyan’s method

°1.5 °1.0 °0.5 0.0 0.5 1.0 1.5

Free parameter

10°2

100

102

104

E
rr

or
fu

nc
ti

on
,
E

rr
4

Polynomial manifold for 4 cycles

Branch 1

Branch 2

Branch 3

Complex branch

With increased order and no. cycles the error manifold complexity rises 



Verlet or Leapfrog scheme 

   - Simple, yet performs very well 

   - Valid, if high precision is not desired 

Omelyan’s scheme 

   - One free parameter to optimize 

   - Comparable to Leapfrog 

Efficiency results
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Forest-Ruth scheme 

   - Poor performance 

Omelyan’s Forest-Ruth scheme 

   - One free parameter 

Suzuki’s scheme 

   - Favourable error accumulation 

Blanes-Moan 

   - Highly efficient order 4 scheme

Efficiency results
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Order 4
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Forest-Ruth scheme 

   - Poor performance 

Omelyan’s Forest-Ruth scheme 

   - One free parameter 

Suzuki’s scheme 

   - Favourable error accumulation 

Blanes-Moan 

   - Highly efficient order 4 scheme

Efficiency results
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Order 4
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Yoshida 

   - Unusual scheme 

   - Extremely poor efficiency 

Blanes-Moan 

   - One of the best order 6 schemes 

New found schemes 

   - Improvement over the known schemes

Efficiency results
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Order 6
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Yoshida 

   - Unusual scheme 

   - Extremely poor efficiency 

Blanes-Moan 

   - One of the best order 6 schemes 

New found schemes 

   - Improvement over the known schemes 

   - Also explored the local minima

Efficiency results
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Order 6
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Numerical experiments
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The Heisenberg XXZ model:                                                                    , 

Correspondence with quantum computers (local gates) 

Periodic spin chain of length 

Estimate error using the Frobenius norm: 

                                     

Evolve until time               , using some time step 
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Numerical experiments
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Numerical experiments
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Numerical experiments
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Numerical experiments
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Numerical experiments

Correspondence between the experimental and theoretical error is not exact 

Investigate the properties of the parameters 

Optimally: All parameters are exactly the same: 

Add a term to the theoretical error function:  
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Numerical experiments
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Numerical experiments
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Outlook and future work

We extended Omelyan’s method to a general framework for optimizing 

Trotter-Suzuki decompositions and found novel schemes 

In progress: - Theoretical-Experimental error correspondence 

                    - Order 8 scheme optimization 

                    - Research of non-unitary schemes with complex parameters 

Future work: - Order 10 recursive formulae 

                     - Test optimized schemes on quantum hardware 



Thank you for you attention



Every scheme with 2 stages is 

applicable to an arbitrary no. stages 

Transition from stage-based to a 

ramp based approach:

Arbitrary no. stages adaptation
Additional slides



Every scheme with 2 stages is 

applicable to an arbitrary no. stages 

Transition from stage-based to a 

ramp based approach:

Arbitrary no. stages adaptation
Additional slides



Coefficients     ,     and       are polynomials of parameters      ,

Denote a scheme               at iteration

General form: 

where:

Additional slides
Framework details



Use the BCH formula to derive the 

recursive formulae for the coefficients 

Order 2 coefficients recursive formulae:

Higher order derivations become much more involved

Additional slides
Framework details



The error function defines a high-dimensional 

manifold in parameters      and 

Dimension:                   , 

Goal: minimize this manifold to identify 

global and local minima

Additional slides
Framework details



The error function defines a high-dimensional 

manifold in parameters      and 

Dimension:                   , 

Goal: minimize this manifold to identify 

global and local minima 

Example: q=2, 1 free parameter
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Optimization method: The Levenberg-Marquard algorithm 

Combination of the Gradient descent and the Gauss-Newton method
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Gradient descent: quickly accelerates toward 

the minimum region 

Gauss-Newton: Assumes the minimum 

region and accurately pinpoints the minimum 

Fast convergence, but susceptible to local 

minima        Many random initial parameters

Additional slides
Framework details



Global minimum is usually close to the 

average parameter value 

Efficiency drops drastically far from 

this mean 

It is good to study less efficient 

schemes, which are closer to the mean
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