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• A variety of quantum 
simulators devices 
available 

• Lattice Hamiltonian 
approach, various 
encodings 

• What kind of physics can 
we look at?



Topology of vacuum in gauge theories

• How does the physical vacuum of QCD look like? 

• What topological properties does it have? 

• What properties does matter have in the physical 
vacuum? (chiral symmetry breaking, confinement, 
etc.)
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Source: Visual QCD Archive



Instantons in Yang-Mills

• Yang-Mills action: 
 

, where . 

 

• Rewrite as ,  

 
where .

SYM =
1

2g2 ∫ d4xTr(GμνGμν) Gμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

SYM =
1

4g2 ∫ d4xTr(Gμν ∓ G̃μν)2 ± 2Tr(GμνG̃μν) ≥
1

2g2 ∫ d4xTr(GμνG̃μν)

G̃μν ≡ ϵμνρσGρσ
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Instantons in Yang-Mills

• Inequality saturated in case  thus instanton solutions 
of the YM equations. 

• Minimal value of , where  

 
 

 is the Pontryagin (or topological) charge. 

Gμν = ± G̃μν → DμGμν = DμG̃μν = 0,

SYM =
1

2g2 ∫ d4xTr(GμνG̃μν) =
8π2

g2
|Q |

Q =
1

16π2 ∫ d4xTr(GμνG̃μν)
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Instantons and topological vacua

• Distinct vacua with different topological number exist due to  (index theorem) 
 
 
 
 

• Instantons connect different topological vacua  and . 

• Therefore, physical vacuum is a superposition of topological vacua .

π3(SU(N)) = ℤ

|ν⟩ |ν ± Q⟩

|θ⟩ = ∑
ν

eiθν |ν⟩

S3

SU(N)
Aμ
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Fractional instantons (fractons)

• Instantons provide microscopic explanation of chiral symmetry breaking; however, no 
confinement :( 

• On different geometries, index theorem doesn’t restrict topological charge —> fractional 
charges possible 

• Fractons can carry center flux, thus might be important for confinement
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Let us look at a simple model



Multi-flavour Schwinger model as a prototype model for topological 
gauge theory phenomena
Shifman, Smilga, PRD 50, 7659 (1994)

In SUSY Yang-Mills theories, gluino condensate  
(   Majorana field, superpartner of gluon) λ ∼ ⟨λ̄λ⟩ ≠ 0

However, from path integral (at small mass)    with , where  .⟨λ̄λ⟩ = − ∂m ln Z
m=0

Z = ∑
ν

Zν Zν = zνmνNc

Topological sectors; 
       usually  integerν

which implies ⟨λ̄λ⟩ = 0

How to reconcile?  Admit presence of fractional topological sectors→

⟨λ̄λ⟩ = − lim
m→0

z1/Nc

z0

Can we probe fractons in a simpler theory (and on a quantum simulator)?
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Fractons in continuum Schwinger Model

Because of ,  defined up to different windingseie ∫ dxA1 = const A1

# of windings of  define topological invariant (Pontryagin charge) A1 ν =
e

4π ∫V
dxdτϵμν(∂μAν − ∂νAμ)

Fractional windings are usually confined 

fracton anti-fracton

ν =
1
Nf

ν = −
1
Nf

2π/(eLNf )

Topological charge: ν =
eL
2π ∫

∞

−∞

·A(τ)dτ = A(∞) − A(−∞) = 0.

How to reveal them?
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Shifman, Smilga, PRD 50, 7659 (1994)



Fractons and chiral condensate

Path integral solution for chiral condensate  with , where  .⟨ψ̄ψ⟩ = − ∂m ln Z
m=0

Z = ∑
ν

Zν Zν = zνmνNf

If  integer (no deconfined fractons):ν ⟨ψ̄ψ⟩ = lim
m→0

z1m
z0

= 0.

deconfined fracton

ν =
1
Nf

Conversely  implies the existence of ⟨ψ̄ψ⟩ ≠ 0 ν =
1
Nf (⟨ψ̄ψ⟩ = lim

m→0

z1/Nf

z0
≠ 0.)

Topological charge: ν =
eL
2π ∫

∞

−∞

·A(τ)dτ = A(∞) − A(−∞) =
1
Nf

.

Do these fractons become relevant?
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Multi-flavour Schwinger Model on a lattice

Lattice Hamiltonian:   

 

Discretized Gauss’s law: .

H =
Nf

∑
σ=1

J∑
x

(ψ̂†
σ,xÛx,x+1ψ̂σ,x+1+h.c.) + mσ ∑

x

ψ̂†
σ,xψ̂σ,x+

1
2 ∑

x
( ̂Ex,x+1)2

Ex,x+1 − Ex−1,x−e
Nf

∑
σ=1

ψ̂†
σ,xψ̂σ,x+1 = 0

How much of the physics does the lattice model retain? 
(cutoff S, lattice spacing a,…)
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Quantum link vs truncated Schwinger model

E-field:  
Link operator:  

 
Algebra: 

 
 

 

E
U

[E, U(†)] = ± U(†)

[U, U†] = 0

E-field:  
Link operator:  

 
Algebra: 

 
 

 

E = eSz

U = S+/ S(S + 1)

[E, U(†)] = ± U(†)

[U, U†] = ± 2
S(S + 1)

E

E-field:  
Link operator:  

 
Algebra: 

 
 

 

E = eSz

U = S̃+

[E, U(†)] = ± U(†)

[U, U†] = ( |S⟩⟨S | − | − S⟩⟨−S | )

Quantum link model Truncated Schwinger modelOriginal EM field
⟨m′￼| S̃+ |m⟩ ≡ δm′￼,m+1⟨m′￼|S+

n |m⟩ = δm′￼,m+1 1 − m(m + 1)/[S(S + 1)]
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Boundary conditions with a twist

Normally, allowed large gauge transformation is  

   and  .A1(x) ⟶ 𝒮[A1(x)] = A1(x) +
2π
eL

ψp(x) ⟶ 𝒮[ψp(x)] = e−i
2πx
L ψp(x)

Flavour-twisted boundary conditions  
 
“torons” 
 
break chiral symmetry

ψp(x = L) = e2πip/Nfψp(x = 0)
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Boundary conditions with a twist
Flavour-twisted boundary conditions  
 
“torons” 
 
break chiral symmetry

ψp(x = L) = e2πip/Nfψp(x = 0)

Under torons, however, one can additionally transform  

 and where 

.

A1(x) ⟶ 𝒮̃[A1(x)] = A1(x) +
2π

NfeL
ψp(x) ⟶ 𝒮̃[ψp(x)] = e−i 2πx

Nf L ψp̃(x),

p̃ = p + 1 mod Nf
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Testing the chiral condensate for Nf = 2

Shifman, Smilga, PRD, 1994 

  ,    ⟨ψ̄ψ⟩ ∝
1

Nf L
exp( −

π
Nf μL ) μ2 = Nfe2/π

(at small )L

Note: In QED, finite volume effect  
Formulated positively: finite volume reveals fractons!

Drastically different behaviour for  
one-flavour and two-flavour models!
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Can we probe it on a quantum device?

Visible in very coarse-grained and highly  
truncated systems.

 Perfect playground for quantum simulators!→
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ea ∈ [0.1,0.5]; m/e = 0
S = ± 3

numerics 
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ea ∈ [0.05,0.5]; m/e = − 1/4
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Shifman, Smilga, PRD, 1994 

  ,    ⟨ψ̄ψ⟩ ∝
1

Nf L
exp( −

π
Nf μL ) μ2 = Nfe2/π

(at small )L



In the non-perturbative regime m/e ∼ 1
E2
E1

E0

 

Periodic under  

Z = ∑
ν

eiνθZν

θ → θ + 2π/ν

Fidelity suscepitibily

Periodic bc  
ν = 1

Twisted bc  
ν = 1/2

Lattice result 
 

-cutoff  
L = (4 sites + 4 links)

S = ± 2
ea = 1; m/e = 0.4

Consistent with small  continuum predictions (perturbative) 

.

m
Ek(θ) = − 2m exp( −

π
NμeL )cos( θ + 2πk

N )
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Quantum simulation with qudits

• Integrate-out fermions and encode gauge fields into qudits (local qudit Hamiltonian) 
 
 
 

• Formulate variational qudit circuit and use favourite minimisation procedure  
(VQE, VarQITE, SC-ADAPT-VQE, etc. ) 
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Ringbauer  et al., Nat. Phys.  18, 1053-1057 (2021)



Quantum simulation with qudits
• Energy oscillations for periodic vs flavour-twisted bc (after a shifting in )π− θ

VarQITE (numerics) 
 

-cutoff  
L = (2 sites + 2 links)

S = ± 1
ea = 1; m/e = 1

TN result 
 

-cutoff  
L = (4 sites + 4 links)

S = ± 2
ea = 1; m/e = 0.4
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Conclusion and outlook 

• Detection of non-trivial topology in gauge theories 

• Fascinating target within reach: fracton excitations 

• Challenging non-perturbative regimes and 
continuum physics in quantum simulators

ν =
1
Nf

ν = −
1
Nf

2π/(eLNf )

 Next steps: Implementation on a real quantum 
device…
→
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Thank you!


