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• Hamiltonian lattice gauge theories are free of the sign 
problem.


• They will be an important application of quantum 
computers in the future.


• Even today, Hamiltonian lattice gauge theories can 
yield new physical results, by applying tensor network 
techniques.

Hamiltonian lattice gauge theories
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• The Schwinger model (QED in 1+1D) is a tractable toy 
model of QCD in 3+1D.  


• The massive Schwinger model with a topological term 
is defined by the action


• It is a useful testbed for numerical techniques.


• Solvable for the vanishing fermion mass  by 
bosonization. 

m = 0

Continuum Schwinger model

S = ∫ d2x[ −
1
4

FμνFμν −
gθ
4π

ϵμνFμν + iψ̄(γμ∂μ + igAμ)ψ − mψ̄ ψ]



• The model exhibits 1st- and 2nd-order phase transitions as 
the parameters  are varied.


• The most precise estimate was   by 
Byrnes et al. in ’02.  Our work (and another concurrent one) 
update this value.

(θ, m/g)

(m/g)c ≃ 0.3335(2)

Quantum phase transitions
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• The Hamiltonian on a 1D lattice is [Banks-Susskind-Kogut]


• We relate the continuum mass  to  by an  
improvement: .  [Dempsey et al.]  At , 

 and  are unitarily related by a discrete chiral 
symmetry transformation.

m mlat 𝒪(a)
m ≡ mlat + g2a/8 m = 0

Hθ Hθ+π

Lattice Hamiltonian formulation
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Hθ =
g2a
2 ∑

n
(L(n) +

θ
2π )

2

−
i

2a ∑
n

(ϕ(n)†Unϕ(n + 1) − h . c . )
+mlat(−1)nϕ†(n)ϕ(n)

{ϕ(m), ϕ†(n)} = δmn, [L(m), U(n)] = δmnU(m) .



• On physical states, we impose the Gauss law 
constraint , where


.


• The constraint may be used to eliminate .


• Instead, we will use a tensor network ansatz that 
automatically solves the constraint.

G(n) |phys⟩ = 0

G(n) ≡ L(n) − L(n − 1) − ϕ(n)†ϕ(n) +
1 + (−1)n

2
L(n)

Gauss law constraint
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• The Hilbert space  is spanned by 
 labeled by 

 and the quantized 
electric fields .


• We use a 2-site translation invariant uniform matrix product 
state (uMPS) ansatz

Hferm ⊗ Hgauge
|{sn, pn}⟩ = ⊗n∈ℤ |sn, pn⟩
sn = 2ϕ(n)†ϕ(n) − 1 ∈ {+1, − 1}

pn = L(n) ∈ ℤ

Uniform matrix product state
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|Ψ⟩ = ∑
{sn,pn}

(∏
j∈ℤ

As2j−1,p2j−1
1 As2j,p2j

2 ) |{sn, pn}⟩

A1 A2 A1 A2



• The Gauss law constraint is solved by the gauge-
invariant ansatz [Buyens et al. ’14]


• Each bond  carries the U(1) gauge charge .


• Any MPS that satisfies the constraint can be 
transformed into this form.


• For each , .  The total bond 
dimension is .  

(qαq) q

q αq = 1,2,…, Dq
D = ∑

q

Dq

Gauge-invariant MPS ansatz
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(As,p
n )(qαq;rβr) = (as,q

n )αq,βr
δp,q+(s+(−1)n)/2δp,r



• We apply the VUMPS (variational uniform matrix 
product state) algorithm [Zauner-Stauber et al. ’17] to the 
gauge-invariant MPS ansatz.  The first such attempt.


• VUMPS seeks the ground state of a translationally 
invariant Hamiltonian recursively.  As in DMRG, the 
extremum condition can be recast into eigenvalue 
problems that involve the effective environment 
Hamiltonian determined from a previous recursive 
step.  


• MPS tensors are updated by singular value 
decomposition (SVD) and a linear eigensolver.

VUMPS algorithm 
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• Define the MPS transfer matrix .  [Zauner et al.’14]


• Let us view the spatial direction as a Euclidean time.  In the 
limit  and , the transfer matrix  should 
describe an imaginary time evolution of a relativistic continuum 
QFT on , .  


• For finite , the eigenvalues of  are discrete:
 with 

.  The bond dimension  is interpreted as 
an IR cut-off. 

T

ga → 0 D → ∞ T

ℝ2 T ∼ e−aH

D T
λ0 = 1, λ1 = e−ϵ1+iϕ1, λ2 = e−ϵ2+iϕ2, …
0 < ϵ1 ≤ ϵ2 ≤ … D

MPS transfer matrix

11

16

A1 A2

A1 A2

    
T=:



•  with   

 for come constants 

(form factors) .


•  is the (leading) correlation length. 


• In practice, , .

T =
∞

∑
i=0

λi | i)(i | (i | j) = δij ⇒

⟨O1(0)O2(2n + 1)⟩conn ∼ ∑
j>0

Zj
12e

(−ϵj+iϕj)n

Zj
12

1/ϵ1

ϕj = 0 0 < ϵ1 < ϵ2 < …

Transfer matrix eigenvalues
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• The effect of the finite bond dimension  can be 
quantified more clearly by  than by  
itself. [Rams et al. ’18, Vanhecke et al. ’19]  


•  is interpreted as the effective size (IR cut-off) 
of a fictitious “space”.   Finite size scaling.

D
δ(D) ≡ ϵ2 − ϵ1 D

1/δ(D)
⇒

 as an IR cut-offδ(D)

13 5 10 15
104δ

2

4

6

8

10
104ϵ1

• ’s form a continuum as , .


•

ϵj D → ∞ δ → 0

ϵ1(D) = ϵ1,∞ + c1δ(D)

ϵ1 δ

1/(correlation length) 
for D = ∞



• The -dependent critical 
mass  is where the 
intercept  
vanishes.


• As ,  
approaches the critical mass 

 in the continuum limit.

ga
(m/g)*

ϵ1,∞ = ϵ1,∞(m/g)

ga → 0 (m/g)*

(m/g)c

Estimation of the critical mass
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• We obtained the value .


• An independent DMRG work by Arguello Cruz et al. 
published around the same time (last December): 

, a consistent result.


• We have an improvement by two orders of magnitude 
from the previous best estimate  
by Byrnes et al. ’02.

(m/g)c = 0.333556(5)

(m/g)c = 0.333561(4)

(m/g)c = 0.3335(2)

Result for the critical mass
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If the critical behavior is described by the Ising universality 
class in the IR and a  CFT in the UV, the combinations 





with , bipartite 
entanglement entropy, should exhibit a double data 
collapse as functions of





where .

c = 1

ξ̃ = ξ/(ΛL) , ϕ̃ = L1/8ϕ , S̃ = S −
1/2
6

log L −
1
6

log Λ

ϕ = ⟨ L(n) + L(n + 1) + 1
2 ⟩ , ξ =

1
ϵ1

S =

L =
ga
δ

, Λ =
1

ga
, t = ( m

g ) − ( m
g )

*

(m/g)* = (m/g)c + b1Λ−1 + b2Λ−2 + l1/L

Scaling behaviors
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• Exhibited the precise critical behavior of the lattice 
Schwinger model.


• The ground state was obtained by the VUMPS 
algorithm applied to the special uMPS ansatz where 
all the variational degrees of freedom are restricted to 
the gauge-invariant subspace.


• Obtained the precise critical mass in the continuum 
limit . 


• Demonstrated the double collapse of the randomly 
generated numerical values for several physical 
quantities.

(m/g)c = 0.333556(5)

Conclusion
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