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Hamiltonian lattice gauge theories

* Hamiltonian lattice gauge theories are free of the sign
problem.

* They will be an important application of quantum
computers in the future.

* Even today, Hamiltonian lattice gauge theories can
yield new physical results, by applying tensor network
techniques.



Continuum Schwinger model

* The Schwinger model (QED in 1+1D) is a tractable toy
model of QCD in 3+1D.

* The massive Schwinger model with a topological term
Is defined by the action
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* |t Is a useful testbed for numerical techniques.

 Solvable for the vanishing fermion mass m = 0 by
bosonization.



Quantum phase transitions

 The model exhibits 1st- and 2nd-order phase transitions as
the parameters (6, m/g) are varied.
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» The most precise estimate was (m/g),. ~ 0.3335(2) by

Byrnes et al. in ’02. Our work (and another concurrent one)
update this value.



Lattice Hamiltonian formulation

e The Hamiltonian on a 1D lattice IS [Banks-Susskind-Kogut]
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» We relate the continuum mass m to my,, by an O(a)
improvement: m = m,, + g°al8. pempseyeta] At m = 0,

H,and H,_ _are unitarily related by a discrete chiral
symmetry transformation.



Gauss law constraint

* On physical states, we impose the Gauss law
constraint G(n) | phys) = 0, where
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* The constraint may be used to eliminate L(n).

* |nstead, we will use a tensor network ansatz that
automatically solves the constraint.



Uniform matrix product state

- The Hilbert space Hy,,, @ Hyy,0. is Spanned by

1{s,,P,}) = ®, 7 |5,,Dp,) labeled by
s, = 20(n) ' p(n) — 1 € {+1, — 1} and the quantized
electric fields p, = L(n) € Z.

 We use a 2-site translation invariant uniform matrix product
state (UMPS) ansatz
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Gauge-invariant MPS ansatz

* The Gauss law constraint is solved by the gauge-
Invariant ansatz [Buyens et al. ’14]

(A" )(qa p) (@, )a ﬁr g+ (s+(— 1)”)/25
« Each bond (qaq) carries the U(1) gauge charge g.

 Any MPS that satisfies the constraint can be
transformed into this form.

» For each g, a, = = 1,2,. D The total bond
dimension is D Z D

q



VUMPS algorithm

 We apply the VUMPS (variational uniform matrix
product state) algorithm [Zauner-Stauber et al. *17] O the
gauge-invariant MPS ansatz. The first such attempt.

 VUMPS seeks the ground state of a translationally
invariant Hamiltonian recursively. As in DMRG, the
extremum condition can be recast into eigenvalue
problems that involve the effective environment
Hamiltonian determined from a previous recursive
step.

* MPS tensors are updated by singular value
decomposition (SVD) and a linear eigensolver.
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MPS transfer matrix

e Define the MPS transfer matrix 1. [zauneretal.’14]

Al Az ] [

Al A2 ] Bl

* et us view the spatial direction as a Euclidean time. In the

limit ga — 0 and D — o0, the transfer matrix 1" should
describe an imaginary time evolution of a relativistic continuum

QFTonR2, T ~ e~

e For finite D, the eigenvalues of T are discrete:
/10 — 1, /11 — €_€1+l¢1, /12 — €_€2+l¢2, ... with
0<e¢ L6 < .... Thebond dimension D is interpreted as

an IR cut-off.
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Transfer matrix eigenvalues

T = iz [i)(i | with (i]j) = 8, =

(01(0)02(2n + 1)) eonn ~ Z Z] (=¢+i9)" tor come constants

j>0
(form factors) Z{ .

» 1/€, is the (leading) correlation length.

. In practice, gbj =0,0<¢ <6, < ...
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o(D) as an IR cut-off

e The effect of the finite bond dimension D can be
quantified more clearly by o(D) = €, — ¢, than by D
itself. [Rams et al. ’18, Vanhecke et al. "19]

« 1/0(D) is interpreted as the effective size (IR cut-off)
of a fictitious “space”. = Finite size scaling.

- €;’s form a continuum as D — 0,0 —0.

€1 ) 10%€;
N > 10}
e O O 6 6 o o o o i

° 61(D) — 61,00 ~+ Clé(D)

1/(correlation length)
for D = o0
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Estimation of the critical mass

* The ga-dependent critical 5|
mass (m/g)« is where the o
intercept €, , = € (M/g)
vanishes.

/9

« As ga — 0, (m/g)
approaches the critical mass

(m/g).. in the continuum limit.
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Result for the critical mass

» We obtained the value (m/g). = 0.333556(5).

* An independent DMRG work by Arguello Cruz et al.
published around the same time (last December):

(m/g). = 0.333561(4), a consistent result.

* We have an improvement by two orders of magnitude

from the previous best estimate (m/g). = 0.3335(2)
by Byrnes et al. ’02.

15



Scaling behaviors

If the critical behavior is described by the Ising universality
classinthe IRand ac = 1 CFT in the UV, the combinations

. . 8. & 1/2 1
E=E/(AL), p=L"°¢p,S=3S . logL—glogA
L L 1 1 1
withgb=< () + (Z+ )+ . & =—, § = bipartite
€

1
entanglement entropy, should exhibit a double data
collapse as functions of

ga 1 m m
L=_9A=_9t= T _ T
0 ga g g /.

where (m/g). = (m/g),.+ b;A~' + byA™> + [, /L.
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Double collapse of data
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Conclusion

» Exhibited the precise critical behavior of the lattice
Schwinger model.

* The ground state was obtained by the VUMPS
algorithm applied to the special uMPS ansatz where
all the variational degrees of freedom are restricted to
the gauge-invariant subspace.

* Obtained the precise critical mass in the continuum

limit (m/g). = 0.333556(5).

 Demonstrated the double collapse of the randomly

generated numerical values for several physical
quantities.
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