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Experiment Simulation
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Experiment Simulation
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which sums
over all possible “paths” or configurations weighted by the action
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which sums
over all possible “paths” or configurations weighted by the action
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which
integrates over all configurations

1 |
dptel g;n t; ) = 3 Z B,(x) Agb(x) €SI
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Well known technique to integrate high dimensional functions with resources that

are independent of n (Monte-Carlo integration)
1

N,
dx;...dx, f(x;,...x) =V —
0 Ntot
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Well known technique to integrate high dimensional functions with resources that
are independent of n (Monte-Carlo integration)

1 N
del...dxn fx,..x,) =V —

0 Ntot
To get integral with uncertainty €
need
Niot ~ )
€
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Well known technique to integrate high dimensional functions with resources that
are independent of n (Monte-Carlo integration)

1 N
J dx;...dx, f(x;,...x) =V —
0 Ntot

To get integral with uncertainty €
need

Requires function to be positive
definite
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which
Integrates over all configurations

1

<¢fa l}‘l q; tl'> — V Z ¢j(xi) A¢j(xj) eiS[qu(xl-))]

For Iimaginary time

e A [¢j(xi))] £ o0 ) [¢j(xi))]
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which
Integrates over all configurations

For imaginary time

e A [¢](Xl))] S e —J [¢](xz))]

Can answer many static questions, but calculating
dynamics requires real time, not imaginary time
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Instead of doing Monte-Carlo simulation of path integral, can try to do time
evolution using Schrodinger equation

Go back to the S matrix elements mentioned before

>
(X(T)|\U(T, = T)|pp(-=T))

All elements in this expressibn in terms of fields @(x)
Both position x and field ¢(x) are continuous

Discretizing position x and digitizing field value ¢(x) turn continuous (QFT)
problem into discrete (QM) problem
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Quantum Computing and Applications to Lattice Gauge Theory 12




Basic idea is to map the infinite Hilbert space of QFT on a finite dimensional HS
making this a QM problem

2
(X(T)| | pp(=T))

3 basic steps:

1. Create an initial state vector at time (-T) of two proton wave packets

2. Evolve this state forward in time from to time T using the Hamiltonian
of the full interacting field theory

3. Perform a measurement of the state

Christian Bauer
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Quantum Algorithms for Quantum
Field Theories

Stephen P. Jordan,'* Keith S. M. Lee,” John Preskill®

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (¢* theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm. Science 336 (2012) 1130
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Since quantum computers can only work in a finite dimensional Hilbert space, need
to formulate problem in terms of truncated Hamiltonian lattice gauge theory

1. Formulate a lattice theory that reproduces SU(3) in the limit of vanishing
lattice spacing

2. Choose basis for the Hilbert space

3. Truncate the theory (how to choose a discrete set of field values)

Goal is Hamiltonian Lattice theory that reproduces QCD in continuum limit and
can be simulated efficiently on a quantum computer

Christian Bauer
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We have to remember that truncated lattice formulations are always an
approximation to the real world

Truncated Hamiltonian Lattice Gauge Theories ...

1. ...remove physics below some length scale (lattice spacing)
2. ...remove physics above some length scale (lattice volume)

3. ...only approximately represent bosonic degrees of freedom

How do we estimate the uncertainties made by the above approximations?

Christian Bauer
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Truncated Hamiltonian Lattice Gauge Theories ...
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What observables should
we calculate on a
guantum computer?

How do we take the
continuum limit in of
guantum lattice simulations?

How do we determine what
HHHHHHHEHHEE |evel of truncation I1s needed

for the physics we are after?
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What observables should
we calculate on a
guantum computer?
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There are many energy scales that are present in LHC events, and all need to be

accounted for in an adeqgquate description
CWB, 2503.16602

Energy of colliding protons

Scale of electroweak gauge bosons

Mass of the proton

Mass of the pion, the lightest hadron

Christian Bauer
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There are many energy scales that are present in LHC events, and all need to be

accounted for in an adeqgquate description
CWB, 2503.16602

Field configurations
corresonding to given
energy have wavelength

[~ 1/E
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largest and smallest energy scales set the maximum and minimum wavelength

The

of field configurations that need to be considered

CWB, 2503.16602
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The largest and smallest energy scales set the maximum and minimum wavelength

of field configurations that need to be considered CWB. 250316602
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Simulating only low energy
physics requires much fewer
computing resources
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Can write almost all observables at colliders in the form

do do
Jda)—é(a — o0(w))

do dw
Perturbation
Theory Differential energy distribution can often be written in

terms of perturbatively calculable pieces and non-
perturbative pieces

do
P (60 ) F (w,) (W)
da)
Quantum | |
Simulaton Usual approach is to try to extract the non-perturbative
+ pieces from data, which means that they need to be

unversal
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Quantum computer allows to directly compute these non-
perturbative functions from first principles

L [ (@),) F(a)s)](a))

Perturbation da)
Theory

One of those function can be related to square of expectation
value of relatively simple unitary operator

Flw,) = <X(a)s) T (Y,};1 Ynz) Q>
Quantum
Simulaton
* As discussed, this function can be computed with much fewer

resources than the whole process
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Summary of first part

Simulating full scattering process from first principles too costly to be
practical

‘Using effective field theories, can isolate the perturbatively calculable
short distance physics from non-perturbative physics

*Quantum computers will allow for the first time to calculate the relevant
non-perturbative ingredients from first principles

*Such calculations likely the best way to use quantum computers for
collider physics predictions

Christian Bauer
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How do we take the
continuum limit in of
guantum lattice simulations?
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The Kogut Susskind Hamiltonian many of us use as the starting point for guantum
simulations depends on parameters that depend on lattice spacing

............ Several important questions:

L fHENIImMFEL. -

............ * When we do a calculation, where does the lattice
............ spacing enter the calculation?

Pt e e T T | | |
............ * How _do we perform calculations at different lattice
AL L[ [ [ [P Rla  SPaghess

............ - How do we take the limita — 07

« JEINEFEEEN

T ENMEFE R YRR - How do we estimate the uncertainty from working at
AFTNIEEEE EEE finite a?

. SAEFEERIET
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The Kogut Susskind Hamiltonian many of us use as the starting point for guantum
simulations depends on parameters that depend on lattice spacing

H=Hp+ Hp + Hy + Hg

g2 d
Hp == Z 2} E®X, j)?
]:

X

1
E f
Hp = % z (P, + P))
P

Hy =m Y, (=)%Y @y

d
He= 2 Y 1@ (W UG jwE+2) +h.c. )

=1
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The Kogut Susskind Hamiltonian many of us use as the starting point for guantum
simulations depends on parameters that depend on lattice spacing

H=Hp+ Hp+ Hy + Hg

d ~ 2 d
g~ /& 2.(a) iy 2 Ji
» _Z 2 (xaj)z HE ¥ : Z ZE(X,])Z C &
2 ,= 2at )_c) j=1 gS
a
H, = 1 Z(P + P H, = Z(P + P)) ' B
F 282 p y . e 2atgs

Hy=m ), (=D GyE) Hy =223 iy @w
X a

X

W bt B s SOR R g
He= 3 2@ (W OUE WG+ +hee. ) He===3 3 n@ (W OUGwE+8)+h.c. )

i = =1
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These parameters need to be determined by demanding that Hamiltonian
reproduces some known physics (measured observable)

4 dimensionless parameters = need dimensionless observables to fix them

SMi(pi) Ml(phys)

Mo(pi)  pp{Pte

Find that there are many combinations of parameters that all reproduce the same 4 observable values

By using a one more observable (this time dimensionful) we can obtain the value of the lattice spacing.

A

- M (Pi)
)\ (phys)

¢

Different parameters sets give different values of lattice spacing
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These parameters need to be determined by demanding that Hamiltonian
reproduces some known physics (measured observable)

Renormalization Trajectory Taking a — 0 limit
2 s P {P3 }
o e
% a P31} % 923
g 5
“ 123 2%

28

O

parameter 1 aq ) % d
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We can only implement that on quantum computers, and there are two different
techniques to deal with this issue, which work for different approximations

Product formulas

5
H — H(5,) = H, +H2+i5t H, H,| + ...

Various approaches to deal with parameter o,

One approach: treat 0, as additional parameter, determined from data

C extract parameter dependence using classical simulations on Euclidean

lattices
Carena, Lamm, Li, Liu, 2107.01166

Christian Bauer
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We can only implement that on quantum computers, and there are two different
techniques to deal with this issue

Approximations using Quantum Signal Processing

Difference of observable calculated in Observables can only be calculated to
exact and approximate evolution by €5 given precision (noise, statistics, ...)
(0(0)) —(0)] = €5 (O)cale = (0) £ 04

Choose approximate time evolution such that €5 << 6 and proceed as for
exactc time evolution possible for QSP, since resources logarithmic in €

Statistically bounded time evolution protocol
Kane, Hariprakash, Bauer, 2506.16559

Christian Bauer
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Summary of second part

*Very important to remember that contrary to other fields, lattice gauge
theories are only an approximation to the real world

-Lattice theory is related to continuum theory through renormalization
procedure, and a sequence of lattice theories is required to calculate

physical observables

*In presence of necessary approximation to time-evolution operator,
different approaches suitable for product formulas and QSP-based

techniques

‘More work required to see which approach ultimately most efficient

Christian Bauer
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How do we determine what
HHHHHHHEHHEE |evel of truncation I1s needed

for the physics we are after?
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Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a
truncation is necessary to allow their simulation on guantum computers

123...
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Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a
truncation is necessary to allow their simulation on guantum computers

- A

*What value of Lambda should we choose in a given simulation?
*How does the truncation affect the accuracy of a given simulation?
‘For the rest of the talk, will work with electric basis states

*Will also work for simplicity with U(1) gauge theory
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Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a
truncation is necessary to allow their simulation on guantum computers

Previous time independent bounds
Tong, Albert, McClean, Preskill, Su, 2110.06942

A N A 1
0| ciHt fro—iHt |y —
(0] He=10) = 55

(0| H |0)

<O| eiﬁtﬁe—iﬁt ‘0> > <O‘ eiﬁtﬁEe—iﬁt ‘O> - 292 <O‘ eiﬁtEQB—z’ﬁt ‘O>

<O| eiﬁtEQQ—zflt ‘O> > A2 <O‘ eiﬁtﬁAe—z’ﬁt |O>
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We can improve on this bound using the presence of Hilbert space fragmentation in
Kogut-Susskind style gauge lattice theories Ciavarella, CWB, Halimeh, 2502.03533

Why is there Hilbert fragmentation in Kogut-Susskind theories?

H:HE+HB=2g2n2\n)(n\+ |n)(n+1\+\n+1)(n\)

292 (
Perform Schrieffer-Woff transformation, (find a matrix S that diagonalizes Hamiltonian to first order in HB)
H.s = e’(Hg+ Hg)e™ = Hp + Hy + S, Hg| + ...

Now find $ such that Hy + [S, HE] = (0. Working out next order one finds

|
HefszE_I_E [S,HB] + ...

Can work to obtain expression of S and find condition under which this can be viewed as expansion
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We can improve on this bound using the presence of Hilbert space fragmentation in
Kogut-Susskind style gauge lattice theories Ciavarella, CWB, Halimeh, 2502.03533

1
Hoy = Hy + S, Hg| + ...

Using the known form of Hy we can write

1
<nf‘ [S, Hyg] | n;) = ng[(nf\S\ni t1) - <nfi 1]S|n;)]

Now using Hy + [S, HE] = 0 can write

| m?
(1S1m) = S (1| Hy S1m) = 51| S He o+ Hy | m) = (] S1m) + | Hy | m)
and obtain
1
niSim)= n|Hy,|m
(21S1m) = 5 | Hy | m)
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We can improve on this bound using the presence of Hilbert space fragmentation in
Kogut-Susskind style gauge lattice theories Ciavarella, CWB, Halimeh, 2502.03533

1
Hop = Hy + S, Hg| + ...

Combining these results

1 1
<nf‘ [S, Hgl | n;) = ng[@f\S\nii 1) - <nfi 1]S]n)] (n|Sm) = 22(n2 2 B2 (n|Hg|m)

one finds that n, = n; or n, = n; £ 2 and

1 — lp(1))
<n | [S’ HB] ‘n> i § A dmc(1))
! T W2gn 5 — 19(2)
N> Pmc(2))
= l\ i T\ e AAVA,»J\I\A\\‘/‘./J\I\I‘J\NWM — 1(3))
This implies that for large enough 7 the off- 3 2-"/\.' ‘N\' MI\" WUNT W RV duc(3))

(\u‘fw\w‘v\,\/m W WO ARV

diagonal interactions are suppressed, and 4

Hilbert spaces with large n freeze out

O I I 1 I | I |
0 50 100 150 200 250 300 350
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation

uncertainties Ciavarella, Hariprakash, CWB, Halimeh, 2508.00061
Split. U(1) Hamiltonian State with support only on small n
INto twO pices
A —iHt —GH At
(€7 —eT A7) 9(0))
HA sl . —i[:[At t iI:IAS 3 —iﬁAS
V = —1ie ds ' 2%V e ?(0))

A A 0

A t ] A A LA
VA \\ = —jetHat A 4 1) / ds e!AFTHHAATL S (A 1 11V, |A) (A] e 2% |p(0))
0

A t A e
_ i —iHnt ‘A " 1>/ ds o {AFTLHA|A+T)s <A B 1| ‘A/ ‘A> C €—i<A|HA|A>s
. 1€ S e A
A is chosen large 0

enought that Hilbert

space fragmentation < . - - ‘
occurs at that (A+1[Hp [A+1) — (Al Hp |A)

value

(A+1[Va|A)
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation
uncertainties Ciavarella, Hariprakash, CWB, Halimeh, 2508.00061

Going to higher A, above where HSF first occurs can apply

Split U(1) Hamiltonian _ _
same procedure multiple times

into two pices

’ (€71 — =A%) 9(0))
o |y, P | o~ 1
A oy ! —i(A+1|BA|A+1)E —i(Kk|Ha k)t
V \\ 3 Z}{;{) (6 . ) ll_./\[() <k‘HA‘k> o <Z‘HA‘Z>
A } I#k 1
- _
X H (k 4+ 1|Valk)

A is chosen large | k=Ao _

enought that Hilbert
space fragmentation
occurs at that
value
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation

uncertainties Ciavarella, Hariprakash, CWB, Halimeh, 2508.00061
Split U(1) Hamiltonian For U(1) gauge theory, we can plug the explicit matrix elements to find
Into two pices ] ’
A T - 7 s % 2 oy 272 i’ 1 1 il
7, (O S \¢(0)>| < 2 maxicr Z <6_7’29 St D t) H b1 (2_92>
k=Ag =N
A VA ] £k g
A
Vi \\ o (LY T @A 1 -
— Yk (2A — DI \ 2¢2

/\ is chosen large
enought that Hilbert
space fragmentation

occurs at that
value
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation
uncertainties Ciavarella, Hariprakash, CWB, Halimeh, 2508.00061

Can check our bound against explicit calcuations, which also checks tightness of bound

. —
10 10—1
—
(N -1
< LLI 10 103
e~
< 1073 10-5
. =
O 10_5 < E 10—7
t ~
LL] 107 - 109
(>é — ]0)
_ -11 A
= 1072 1 —— 1) 10 —— Max of My
—_— |2) 10-13 —— Energy Bound
107** 1 —— strong Coupling Estimate —— Max of Perturbative Ev
2 4 6 8 10 2 4 6 8 10
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation
uncertainties Ciavarella, Hariprakash, CWB, Halimeh, 2508.00061

Our results are dramatically tighter than the previous time independent bounds

Using time-independent bound

results in statement that to simulate 1073 - — Maxoffi,
with g = \/5 and to guarantee Lg-10 ® Max of Perturbative Ev
(k+ A exl | k)| < 0.01 with 10717 -
t = 8 requires A > 100 — 107
<E 10732
Results of HSF bounds give 10738 -
(k+ 100 2 k)| < 6 X 10798 10745 -
1052
Actual simulation likely even much smaller ‘ 4 A 6 8 10
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Summary of third part

* Truncation the bosonic Hilbert space is a necessary ingredient in any
gquantum simulation

It iIs important to understand what level of truncation is needed and how
to bound the uncertainty

*Hilbert space fragmentation allows to derive much tighter bounds on
truncation effects

*Will hopefully lead to full understanding of these effects in the future

Christian Bauer
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Quantum computers open the door to perform currenty
unattainable simulations

Using Effective Field Theories takes best advantage of
gquantum hardware

Need to take care of taking into account renormaliation and
continuum limit

Obtained a new understanding of truncation effects that will
hopefully lead to a much cleaner theoretical understanding
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