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⟨X(T) |U(T, − T) |pp(−T)⟩
2
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⟨qf, tf |qi, ti⟩ = ∫ 𝒟q eiS[q]

Quantum mechanics

Lattice Gauge Theory relies on Feynman’s path integral formulation, which sums 
over all possible “paths” or configurations weighted by the action
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⟨qf, tf |qi, ti⟩ = ∫ 𝒟q eiS[q]

Quantum mechanics

Lattice Gauge Theory relies on Feynman’s path integral formulation, which sums 
over all possible “paths” or configurations weighted by the action

⟨ϕf, tf |ϕi, ti⟩ = ∫𝒟ϕ eiS[ϕ]

Quantum Field Theory
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which 
integrates over all configurations

⟨ϕf, tf |qi, ti⟩ =
1
V ∑ ϕj(xi) Δϕj(xj) eiS[ϕj(xi))]

Number of terms in integral:

n = nV
j

8
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Well known technique to integrate high dimensional functions with resources that 
are independent of n (Monte-Carlo integration)

∫
1

0
dx1…dxn f(x1, …xn) = V

N∙

Ntot
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Well known technique to integrate high dimensional functions with resources that 
are independent of n (Monte-Carlo integration)

Requires function to be positive 
definite
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which 
integrates over all configurations

eiS[ϕj(xi))] → e−S[ϕj(xi))]
For imaginary time

⟨ϕf, tf |qi, ti⟩ =
1
V ∑ ϕj(xi) Δϕj(xj) eiS[ϕj(xi))]
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Lattice Gauge Theory relies on Feynman’s path integral formulation, which 
integrates over all configurations

eiS[ϕj(xi))] → e−S[ϕj(xi))]
For imaginary time

Can answer many static questions, but calculating 
dynamics requires real time, not imaginary time
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Instead of doing Monte-Carlo simulation of path integral, can try to do time 
evolution using Schrödinger equation

⟨X(T) |U(T, − T) |pp(−T)⟩
2

All elements in this expression in terms of fields 
Both position x and field  are continuous

ϕ(x)
ϕ(x)

Discretizing position x and digitizing field value  turn continuous (QFT) 
problem into discrete (QM) problem 

ϕ(x)

Go back to the S matrix elements mentioned before

]

12
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Basic idea is to map the infinite Hilbert space of QFT on a finite dimensional HS 
making this a QM problem

⟨X(T) |U(T, − T) |pp(−T)⟩
2

1. Create an initial state vector at time (-T) of two proton wave packets
2. Evolve this state forward in time from to time T using the Hamiltonian 

of the full interacting field theory
3. Perform a measurement of the state 

3 basic steps:

13
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Quantum Algorithms for Quantum
Field Theories
Stephen P. Jordan,1* Keith S. M. Lee,2 John Preskill3

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (f4 theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Thequestion whether quantum field theories
can be efficiently simulated by quantum
computers was first posed by Feynman

three decades ago when he introduced the notion
of quantum computers (1). Since then, efficient
quantum algorithms for simulating the dynamics
of quantum many-body systems have been
developed theoretically (2–4) and demonstrated
experimentally (5–7). Quantum field theory, which
applies quantum mechanics to functions of space
and time, presents additional technical challenges,
because the number of degrees of freedom per
unit volume is formally infinite.

We show that quantum computers can ef-
ficiently calculate scattering probabilities in
continuum f4 theory to an arbitrary degree of pre-
cision. We have chosen f4 theory, a scalar theory
with quartic self-interactions, because it is among
the simplest interacting quantum field theories
and thus illustrates essential issues without un-
necessary complications. Our work introduces
several new techniques, including creation of the
initial state by a generalization of adiabatic state
preparation and the use of effective field theory
to analyze spatial discretization errors.

In complexity theory, the efficiency of an al-
gorithm is judged by how its computational de-
mands scale with the problem size or some other
quantity associated with the problem’s intrinsic
difficulty. An algorithm with polynomial-time
asymptotic scaling is considered to be feasible,
whereas one with superpolynomial (typically, ex-
ponential) scaling is considered infeasible. This
classification has proved to be a useful guide in
practice.

Traditional calculations of quantum field
theory scattering amplitudes rely on perturba-

tion theory—namely, a series expansion in
powers of the coupling (the coefficient of the
interaction term), which is taken to be small.
A powerful and intuitive way of organizing
this perturbative expansion is through Feyn-
man diagrams, in which the number of loops
is associated with the power of the coupling.
A reasonable measure of the computational com-
plexity of perturbative calculations is therefore
the number of Feynman diagrams, which is de-
termined by combinatorics and grows factorial-
ly with the number of loops and the number of
external particles.

If the coupling constant is insufficiently
small, the perturbation series does not yield cor-
rect results. In f4 theory, for D = 2, 3 spacetime
dimensions, by increasing the coupling l0, one
eventually reaches a quantum phase transition at
some critical coupling lc (8–10). In the parameter
space near this phase transition, perturbative
methods become unreliable; this region is re-
ferred to as the strong-coupling regime. There
are then no known feasible classical methods
for calculating scattering amplitudes, although
lattice field theory can be used to obtain static
quantities such as mass ratios. Even at weak
coupling, the perturbation series is not conver-
gent, although it is asymptotic (11–13). Includ-
ing higher-order contributions beyond a certain
point makes the approximation worse. There is
thus a maximum possible precision achievable
perturbatively.

We simulate a process in which initially well-
separated massive particles with well-defined
momenta scatter off each other. The input to our
algorithm is a list of the momenta of the in-
coming particles, and the output is a list of the
momenta of the outgoing particles produced
by the physical scattering process. At relativistic
energies, the number of outgoing particles may
differ from the number of incoming particles.
In accordance with quantum mechanics, the in-
coming momenta do not uniquely determine
the outgoing momenta, but rather a probability
distribution over possible outcomes. Upon re-
peated runs, our quantum algorithm samples

from this distribution. The asymptotic scaling
of the algorithm is given in Eq. 9 and Table 1. The
simulated scattering processes closely match ex-
periments in particle accelerators, which are the
standard tools to probe quantum field-theoretical
effects.

The issue of gauge symmetries in quantum
simulation of lattice field theories has been
addressed in (14). There is an extensive literature
on analog simulation of interacting quantum field
theories using ultracold atoms (15–26), trapped
ions (27, 28), and Josephson-junction arrays (29).
Much work has also been done on analog sim-
ulation of special-relativistic quantum mechani-
cal effects such as zitterbewegung and the Klein
paradox, as well as general-relativistic quantum
effects such as Hawking radiation [for recent
reviews, see (30, 31)]. Our work, in contrast to
these studies, addresses digital quantum sim-
ulation, with explicit consideration of convergence
to the continuum limit and efficient preparation of
wave packet states for the computation of dy-
namical quantities such as scattering probabil-
ities. Our analysis includes error estimates of all
parts of our algorithm.

Representing fields with qubits. Although
quantum field theory is typically expressed in
terms of Lagrangians and within the interaction
picture, our algorithm is more naturally described
in the formalism of Hamiltonians and within
the Schrödinger picture. We start by defining a
lattice f4 theory and subsequently address con-
vergence to the continuum theory. (In D = 4,
the continuum limit is believed to be the free the-
ory. Nonetheless, because the coupling shrinks
only logarithmically, scattering processes for
particles with small momenta in lattice units
are interesting to compute.) Let W ¼ aZd

%L, that
is, an %L" :::" %L lattice in d = D − 1 spatial
dimensions with periodic boundary conditions
and lattice spacing a. The number of lattice
sites is V ¼ %Ld . For each x ∈ Ω, let f(x) be a
continuous, real degree of freedom—interpreted
as the field at x—and let p(x) be the correspond-
ing canonically conjugate variable. In canonical
quantization, these degrees of freedom are pro-
moted to Hermitian operators with the commu-
tation relation

½f(x), p(y)$ ¼ ia−ddx,y1 ð1Þ

We use units with ħ = c = 1. f4 theory on the
lattice Ω is defined by the Hamiltonian

H ¼ ∑
x∈W

ad
1
2
p(x)2 þ 1

2
(∇af)2(x) þ

!

1
2
m2

0f(x)
2 þ l0

4!
f(x)4

"
ð2Þ

where ∇af denotes a discretized derivative (that
is, a finite-difference operator) and m0 is the
particle mass of the corresponding noninteract-
ing (l0 = 0) theory.
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Since quantum computers can only work in a finite dimensional Hilbert space, need 
to formulate problem in terms of truncated Hamiltonian lattice gauge theory

1. Formulate a lattice theory that reproduces SU(3) in the limit of vanishing 
lattice spacing

2. Choose basis for the Hilbert space

3. Truncate the theory (how to choose a discrete set of field values)

Goal is Hamiltonian Lattice theory that reproduces QCD in continuum limit and 
can be simulated efficiently on a quantum computer

15
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We have to remember that truncated lattice formulations are always an 
approximation to the real world

1. …remove physics below some length scale (lattice spacing)

2. …remove physics above some length scale (lattice volume)

3. …only approximately represent bosonic degrees of freedom

How do we estimate the uncertainties made by the above approximations?

16

Truncated Hamiltonian Lattice Gauge Theories …
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Truncated Hamiltonian Lattice Gauge Theories …
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What observables should 
we calculate on a 
quantum computer?

How do we take the 
continuum limit in of 
quantum lattice simulations? 

How do we determine what 
level of truncation is needed 
for the physics we are after?
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What observables should 
we calculate on a 
quantum computer?
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There are many energy scales that are present in LHC events, and all need to be 
accounted for in an adequate description

Energy of colliding protons

Scale of electroweak gauge bosons

Mass of the proton

Mass of the pion, the lightest hadron

ELHC

mW

mp

mπ108

109

1010

1011

1012

1013
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There are many energy scales that are present in LHC events, and all need to be 
accounted for in an adequate description

Field configurations 
corresonding to given 

energy have wavelength

 l ∼ 1/E

ELHC

mW

mp

mπ108

109

1010

1011

1012

1013
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The largest and smallest energy scales set the maximum and minimum wavelength 
of field configurations that need to be considered
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The largest and smallest energy scales set the maximum and minimum wavelength 
of field configurations that need to be considered
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The largest and smallest energy scales set the maximum and minimum wavelength 
of field configurations that need to be considered
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The largest and smallest energy scales set the maximum and minimum wavelength 
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Nature Reviews, Sherpa Collaboration
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Simulating only low energy 
physics requires much fewer 

computing resources
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Perturbation 
Theory

Quantum 
Simulaton

Can write almost all observables at colliders in the formELHC

mW

mp

mπ108

109

1010

1011

1012

1013

29

dσ
do

= ∫ dω
dσ
dω

δ(o − o(ω))

dσ
dω

= [ ](ω)F(ωs)P(ωp)

Differential energy distribution can often be written in 
terms of perturbatively calculable pieces and non-

perturbative pieces

Usual approach is to try to extract the non-perturbative 
pieces from data, which means that they need to be 

unversal 



Quantum Computing and Applications to Lattice Gauge Theory
Christian Bauer

Perturbation 
Theory

Quantum 
Simulaton

Quantum computer allows to directly compute these non-
perturbative functions from first principlesELHC

mW

mp

mπ108

109

1010

1011

1012

1013
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dσ
dω

= [ ](ω)F(ωs)P(ωp)

F(ωs) = ⟨X(ωs) T (Y†
n1

Yn2) Ω⟩
2

One of those function can be related to square of expectation 
value of relatively simple unitary operator

As discussed, this function can be computed with much fewer 
resources than the whole process
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•Simulating full scattering process from first principles too costly to be 
practical 

•Using effective field theories, can isolate the perturbatively calculable 
short distance physics from non-perturbative physics

•Quantum computers will allow for the first time to calculate the relevant 
non-perturbative ingredients from first principles

•Such calculations likely the best way to use quantum computers for 
collider physics predictions

31

Summary of first part
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How do we take the 
continuum limit in of 
quantum lattice simulations? 
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The Kogut Susskind Hamiltonian many of us use as the starting point for quantum 
simulations depends on parameters that depend on lattice spacing

33

L

Several important questions:

•When we do a calculation, where does the lattice 
spacing enter the calculation?

•How do we perform calculations at different lattice 
spacings?

•How do we take the limit 

•How do we estimate the uncertainty from working at 
finite a?

a → 0?
a
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The Kogut Susskind Hamiltonian many of us use as the starting point for quantum 
simulations depends on parameters that depend on lattice spacing

34
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Appendix A: Scale setting and the Kogut-Susskind Hamiltonian

In this Appendix, we provide a pedagogical discussion regarding the need for scale setting in lattice gauge theory
simulations. After expressing the Kogut-Susskind Hamiltonian in terms of dimensionless variables, we comment on
the bare parameters of the theory, and show that one needs to include an additional parameter in the fermionic kinetic
term.

To show that one must determine the lattice spacing by a scale setting procedure, we will use the following two
observations:

1. Computers (classical and quantum) can only work with dimensionless variables, i.e. all inputs into any numerical
simulation are dimensionless.

2. The value of the lattice spacing a is not independent of the bare parameters in the Hamiltonian, but is related
through renormalization group equations.

To isolate the logic of these two steps, we first consider the simple case of the harmonic oscillator and show that
no such scale setting procedure is necessary. While this example may appear trivial, it highlights the key di!erence
between standard quantum mechanical Hamiltonians and lattice field theory Hamiltonians where the lattice is used
as a UV regulator. We then consider a U(1) LGT and show that the lattice spacing must be determined through a
scale setting procedure.

The dimensionful harmonic oscillator Hamiltonian (with ⊋ = 1) is given by

H = ω(b†b+
1

2
) , (A1)

where b and b† are lowering and raising operators that satisfy [b, b†] = 1. Aside from the Hamiltonian, the only
dimensionful parameter is the frequency ω. If we define ω = ω̂/a where a is a dimensionful parameter with constant
magnitude (with the symbol a being suggestively chosen for the LGT case), and ω̂ is a dimensionless parameter with
magnitude aω, then the dimensionless Hamiltonian that we actually simulate is

Ĥ → aH = ω̂(a†a+
1

2
) . (A2)

Note that the parameter a acts as a physical scale of the system. The above equations shows that one actually
calculates the energies Ên → aEn of the rescaled Hamiltonian Ĥ |n↑ = Ên |n↑. Converting to the physical energies of
H in this case can be done trivially by dividing by the known parameter a

En = Ên/a . (A3)

Indeed, this step is so obvious and intuitive that it is usually done implicitly by simply setting the magnitude of a = 1,
which implies one can directly interpret the dimensionless energies Ên as the physical energies En.

Consider now the more complicated scenario where the parameter a = a(ω̂) is an unknown function of ω̂ (or,
equivalently, a function of ω). In order to convert Ẽn to the physical energies En, one must somehow determine the
scale a(ω̂). One possibility is to perform a scale setting procedure, where one determines a(ω̂) by demanding the
calculated dimensionless energy Ên→ = a(ω̂)En→ is equal to the experimentally known value Ephys

n→ ,

a(ω̂) →
[a(ω̂)En→ ]

Ephys

n→

. (A4)

As we will now discuss, this is analogous the case for LGTs, with the dimesionless bare parameters playing the role
of ω̂ and the lattice spacing playing the role of the dimensionful scale a(ω̂).

To demonstrate that one does not actually choose the lattice spacing in a LGT simulation, it is su”cient to consider
a U(1) LGT with a single quark flavor; this analysis generalizes to SU(N) LGTs with additional quark flavors. Here
we only give the level of detail required to demonstrate the need to scale set, further details can be found in, e.g.,
Ref. [4]. In d ↓ 2 dimensions, the Hamiltonian is a sum of 4 terms

H = HE +HB +HM +HK , (A5)

where HE and HB are the electric and magnetic Hamiltonians governing the dynamics of the gauge fields, HM is
the fermionic mass Hamiltonian, and HK is the fermionic kinetic (hopping) Hamiltonian. Because no symmetry
demands it, the coe”cients multiplying each of these 4 terms are in general di!erent, which implies we will have 4

HE =
g2

2 ∑⃗
x

d

∑
j=1

E( ⃗x, j)2

HB = −
1

2g2 ∑
p

(Pp + P†
p)

HM = m∑⃗
x

(−1) ⃗xψ†( ⃗x)ψ( ⃗x)

HK = ∑⃗
x

d

∑
j=1

η( ⃗x)(ψ†( ⃗x)U( ⃗x, j)ψ( ⃗x + ̂ej) + h . c . )
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As we will now discuss, this is analogous the case for LGTs, with the dimesionless bare parameters playing the role
of ω̂ and the lattice spacing playing the role of the dimensionful scale a(ω̂).
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lattice spacing a0 and a. While the additional depen-
dence on ωt can change the value of the bare parameters
that have to be chosen, the authors of Ref. [136] went
on to show that one can determine the values of these
parameters from classical calculations on Euclidean lat-
tices through analytic continuation. This however intro-
duces additional systematic uncertainties that need to
be quantified. We discuss this approach in more detail
in Sec. III C, and also introduce several variants to the
approach proposed in Ref. [136].

It is important to realize, however, that approxima-
tions to the time evolution operator beyond product for-
mulas exist. A notable example are methods that use the
general idea of Quantum Signal Processing (QSP), which
allows one to construct a wide class of polynomials of op-
erators. These techniques give rise to an approximation
to the time-evolution operator, with the computational
complexity scaling only as log 1

ω [141, 142, 147, 152].
A worry of the community has been1 whether or not

deviations of QSP techniques from the exact time evolu-
tion operator can be captured by an e!ective Hamilto-
nian picture, as is the case when using PFs. One possible
issue is that a polynomial approximation to the time-
evolution operator is generally not unitary (this issue is
handled in QSP approaches through ancilla qubits and
post-selection protocols), and it is therefore not obvious
how to construct a Hermitian e!ective Hamiltonian de-
scribing this non-unitary evolution. In the absence of an
e!ective theory description, it might be di”cult to un-
derstand the dependence of the bare parameters of the
lattice theory on the approximation used. One might
therefore worry that a lattice calculation obtained using
QSP techniques can not easily be related to the contin-
uum physics one aims to extract.

However, as we argue in this work, if the error from
the approximation to time evolution is significantly below
all other systematic and statistical uncertainties in the
problem, it can not a!ect the results of the simulation in
a meaningful way. To the accuracy of the calculation, the
bare parameters will therefore only have a dependence on
the spatial lattice spacing a. This implies that there is no
in-principle impediment to using QSP techniques, or any
other time evolution algorithms, for approximating the
time evolution of a quantum field theory. Whether such
an approach is favorable compared to the more standard
techniques based on product formulas depends on details
of the approaches chosen, and need to be investigated
carefully.

In the following sections we will explain the two ba-
sic topics raised in this section. In Sec. III we discuss
the renormalization of the parameters of the theory and
how their numerical values depend on the lattice spacing
and the approximation to the time-evolution operator.
In Sec. IVA we study the scaling of the computational

1 We thank Henry Lamm for many useful discussions on this point.

cost with the deviation from the exact time-evolution
operator for both product formula and QSP based ap-
proaches.

III. RENORMALIZATION IN HAMILTONIAN
LATTICE GAUGE THEORIES

In this section, we start with a high-level overview of
renormalization in quantum field theories aimed at non-
experts. We then more formally discuss how to renor-
malize LGT calculations and take the continuum limit
where time evolution is performed exactly. From there,
we discuss how the process changes when time evolution
is performed approximately.
The Kogut-Susskind (KS) Hamiltonian of a pure gauge

theory is given by

HKS =
1

a

[
g2t
2

∑

ε

(
Êε

)2

→
1

g2s

∑

p

ReTr P̂p

]

↑ HE +HB , (7)

were hatted operators denote dimensionless operators,
rescaled by appropriate powers of the only length-scale
in the problem, namely the lattice spacing a. Due to the
breaking of Lorentz invariance the dimensionless coupling
constants of the electric (gt) and magnetic (gs) term are
di!erent, and the bare speed of light is defined as2

c ↑
gt
gs

. (8)

One can therefore write

HKS =
c

a

[
g2

2
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(
Êε

)2

→
1

g2

∑

p

ReTr P̂p

]

↑
c

a

[
ĤE + ĤB

]

↑
c

a
ĤKS , (9)

where we have defined

g =
↓
gsgt . (10)

Using this parameterization introduces a second dimen-
sionful parameter into the theory, namely the time-scale

at ↑
a

c
. (11)

Interactions with fermions give rise to additional terms
that involve the masses mi of the fermions as well as a so-
called hopping term describing the interactions between
gauge bosons and fermions with coe”cient ε.3

2 Note that, while the incorrect definition of the speed of light
gs/gt was used in Ref. [136], the methods presented are still
valid.

3 To the best of our knowledge, the need for the additional bare
parameter ω multiplying the fermionic kinetic term in the Hamil-
tonian formulation has not been discussed in the literature. The
need for this parameter is discussed in Appendix A.
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These parameters need to be determined by demanding that Hamiltonian 
reproduces some known physics (measured observable)
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4 dimensionless parameters  need dimensionless observables to fix them⇒

Find that there are many combinations of parameters that all reproduce the same 4 observable values

By using a one more observable (this time dimensionful) we can obtain the value of the lattice spacing.
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including fermions, rescaled masses are present as well.
We denote these parameters collectively as

pi → {g, m̂i, ω̂} . (14)

where ω̂ = ω/c as shown in Appendix A. The second set
of parameters are those that set the scales in the problem,
one scale for time at and one for length a, or equivalently
a and the speed of light c. A common choice is the lattice
spacing a and the speed of light c.

As already mentioned, the presence of a lattice spacing
introduces a cuto! ”a ↑ 1/a, since wavelength shorter
than the lattice spacing a, and time scales shorter than
a/c can not be resolved. From the previous discussion it
therefore follows that renormalization demands that the
bare parameters in the Hamiltonian depend on the lattice
spacing. This gives a lattice gauge theory Hamiltonian
H(a) with all parameters being functions of the lattice
spacing

pi ↓ pi(a) . (15)

As we will discuss, the speed of light will also depend on
the lattice spacing a.

At first sight, one might be worried that this makes it
impossible to use a lattice field theory to predict physi-
cal observables. After all, it was just discussed that the
value of the lattice spacing a can only be extracted at
the end of a lattice simulation, and that the functional
dependence pi(a) is non-perturbative and therefore not
known analytically. Given this, how does one know what
values to choose for the bare parameters pi(a) used in the
calculation? The answer is that one needs to tune these
parameters to reproduce experimentally accessible quan-
tities, such as masses in the spectrum of the full theory.
One typically views this as a two step process, as we will
now discuss.

In a first step, one determines the dimensionless pa-
rameters of the Hamiltonian. This is accomplished by
finding parameters for which the numerical calculation
reproduce experimentally known dimensionless quanti-
ties. A common choice for such dimensionless ratios are
ratios of masses

a
cM1(pi)
a
cM2(pi)

=
M (phys)

1

M (phys)

2

. (16)

Note that for a pure gauge Hamiltonian, this step is not
necessary as all choices of the gauge coupling are valid,
with di!erent choices corresponding to di!erent lattice
spacings as determined in the next step. When fermions
are included, however, the bare fermion masses have to
be tuned by the above procedure. The parameter val-
ues are typically determined by iterating over a range of
parameter values in the numerical calculation and using
some fitting procedure for the final tuning.

Having reproduced dimensionless ratios, one deter-
mines the scales at and a by comparing the results ob-
tained in the previous step to observed dimensionfull

quantities. For example, the scale at is can be obtained
by taking the ratio of a dimensionless mass computed
numerically to its observed value

at =
M̂(pi)

M (phys)
. (17)

The scale a, or equivalently the speed of light, is obtained
by demanding that observables depending on spatial dis-
tances are reproduced correctly. For example, one can
demand that the energy of a massive particle with given
lattice momentum reproduces the energy predicted from
the relativistic dispersion relation.
Thus, for each parameter set pi one finds corresponding

values of a and at, or equivalently a and c. One can then
interpret these parameter sets as labeled by the lattice
spacing found and write

{pi, c, a} ↓ {pi(a), c(a)} . (18)

One therefore obtains a line in parameter space, where
each point corresponds to a set of parameter values and
lattice spacing. This line is often called the renormaliza-
tion trajectory. Given that this trajectory corresponds
to exact time evolution, we denote it by

traj0 : {pi(a), c(a)} . (19)

Due to the divergences in the underlying continuum the-
ory, the parameter values corresponding to vanishing lat-
tice spacing are typically either infinite or vanishing; be-
cause Lorentz invariance is restored in the continuum
limit, the bare speed of light and the parameter ω(a)
obeys lima→0 c(a) = lima→0 ω(a) = 1. Note that di!er-
ent renormalization trajectories associated with di!erent
observables used in scale setting are possible, with each
giving the same result in the a ↓ 0 limit. The depen-
dence of the dimensionless coupling g on the lattice spac-
ing is logarithmic.
Given this renormalization trajectory, one can now

compute new observables of interest. After renormaliza-
tion, a lattice calculation of low energy quantities di!ers
from the continuum result by powers of the lattice spac-
ing; in modern calculations the leading errors are typi-
cally O(a2). One can not perform a calculation directly
at a = 0, since as discussed above the parameter values
at that point are either infinite or vanishing, and would
also require an infinite number of lattice sites to main-
tain a constant physical volume. One therefore calculates
the desired physical observables for various parameter
choices along the renormalization trajectory, resulting in
a value that depends on the corresponding lattice spac-
ing. To obtain the continuum result, one performs a final
extrapolation to a = 0.
Given that a major advantage of Hamiltonian lattice

gauge theory simulated on quantum computers over tra-
ditional lattice gauge theory is the ability to calculate
time-dependent observables, we now consider the cal-
culation of expectation values of a time-dependent op-
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Different parameters sets give different values of lattice spacing
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These parameters need to be determined by demanding that Hamiltonian 
reproduces some known physics (measured observable)
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We can only implement that on quantum computers, and there are two different 
techniques to deal with this issue, which work for different approximations
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Product formulas

H → H(δt) = H1 + H2 + i
δt

2 [H1, H2] + …

Various approaches to deal with parameter δt

One approach: treat  as additional parameter, determined from data δt

C extract parameter dependence using classical simulations on Euclidean 
lattices

Carena, Lamm, Li, Liu, 2107.01166
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We can only implement that on quantum computers, and there are two different 
techniques to deal with this issue
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Statistically bounded time evolution protocol

10

action is currently known that allows to extend this ap-
proach to include fermions, as is required to simulate the
strong interaction.

In the next section we discuss an alternative approach,
which does not su!er from the shortcomings of the renor-
malization approach, and works generically for any lat-
tice Hamiltonian. This approach takes the ordered limit
lima→0 limωt→0 in a way that incurs negligible systematic
uncertainties from approximate time evolution. The key
insight is that, as all numerical computations performed,
whether for tuning of parameters or to compute the fi-
nal observables, have associated statistical uncertainties,
and as long as the systematic uncertainties from the ap-
proximate time evolution can be guaranteed to be below
these statistical uncertainties, they can be neglected.

IV. STATISTICALLY-BOUNDED TIME
EVOLUTION PROTOCOL

In the previous section we have outlined a general pro-
cedure to numerically compute observables in Hamilto-
nian lattice gauge theories, including the requirements to
renormalize the bare parameters of the Hamiltonian. In
particular, we discussed how to perform the two neces-
sary steps when an approximation to the time evolution
operator is being used, as is typically always required.
In this section we will discuss how to deal with the sys-
tematic uncertainties that arise from this approximation
to the time evolution operator, in particular how to en-
sure that these systematic uncertainties have no e!ect on
the continuum limit. We refer to this general protocol as
the Statistically-Bounded Time Evolution (SBTE) pro-
tocol. An important aspect of our discussion will be the
computational cost of the SBTE protocol.

From the previous discussion on renormalization when
approximating time evolution using product formulas,
it should be clear that all required numerical calcula-
tions are performed with a fixed set of parameters in
the Hamiltonian. In the first step, these calculations are
used to determine the renormalization trajectory, while
in the second step calculations are performed for param-
eters that lie on this trajectory. It is important to realize
that any numerical calculation will come with an associ-
ated calculational uncertainty, unrelated to any system-
atic uncertainty due to underlying theoretical assump-
tions. Such calculational uncertainty can arise from noisy
gates on quantum hardware, but even in the absence
of such noise, calculations have statistical uncertainties,
either from using Monte-Carlo integrations on classical
computers or from measuring expectation values of oper-
ators from repeated circuits on quantum computers. This
implies that calculating the expectation value of any ob-
servable is only possible to a given uncertainty

→Ô↑calc = →Ô↑± ωÔ . (42)

Now consider calculating this expectation value us-
ing some approximation to the time evolution operator,

where the approximation is controlled by some param-
eter ε, with exact time evolution recovered in the limit
ε ↓ 0. For approximations using product formulas the
parameter ε = εt is the bare Trotter step size used, but
other approximations are possible as well. We will later
discuss the case of quantum signal processing (QSP), for
which the analogous parameter characterizes the accu-
racy of the Jacobi-Anger expansion of the time evolution
operator in terms of Chebyshev polynomials up to some
finite order. For both of these approaches, bounds exist
that guarantee that the accuracy of the approximation

∣∣∣→Ô(ε)↑ ↔ →Ô↑

∣∣∣ = ϑω . (43)

is below a certain value. For product formulas this is
achieved by keeping the number of Trotter steps NPF to
be above a certain value, while for QSP it requires the
number of Chebyshev polynomials k used in the polyno-
mial approximation to exceed a certain value.
As already mentioned in Sec. II no divergences appear

in the limit ε ↓ 0, even though bare parameters can
depend on the value of ε. This implies that choosing
a su”ciently large value of ε guarantees that ϑω ↗ ωÔ,
ensuring that the resulting systematic uncertainties are
negligible compared to ωÔ. Therefore all steps of the
previous procedure go through as if one had used exact
time evolution.
As will be discussed in Sec. IVA1, ensuring a small

enough error with product formulas can lead to pro-
hibitively expensive gate costs for two reasons. The first
is that, while rigorous error bounds exist when using PFs,
they are generally loose, see, e.g., Ref. [157]. The second

is the polynomial scalingO(ϑ↑1/p
ω ) of the gate cost. These

facts explain the desire to deal with this uncertainty us-
ing the renormalization procedure discussed, which could
result in smaller gate costs at the expense of a more com-
plicated renormalization procedure.
For QSP, the scaling of computational resources with

their accuracy is however much more favorable in com-
parison to product formulas, being proportional to
log(1/ϑω), and is in fact provably optimal in both total
simulation time and error.

A. Algorithmic Complexity

In this section we compute the algorithmic cost re-
quired to control the approximation accuracy ϑω with re-
spect to the statistical uncertainty ωÔ in order to ensure
the renormalization steps outlined in Sec. III A can be
carried out as if one were performing exact time evolu-
tion. In particular, for a specific choice of time evolution
algorithm, we ask how to choose the algorithmic parame-
ter ε that controls the approximation error ϑω incurred by
the algorithm to ensure that ϑω ↘ ωÔ/ϖ where ϖ ≃ R+

such that ϖ ⇐ 1. In this work, we do so for two com-
mon (and conceptually simple) time evolution algorithm

Difference of observable calculated in 
exact and approximate evolution by ϵδ
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EVOLUTION PROTOCOL

In the previous section we have outlined a general pro-
cedure to numerically compute observables in Hamilto-
nian lattice gauge theories, including the requirements to
renormalize the bare parameters of the Hamiltonian. In
particular, we discussed how to perform the two neces-
sary steps when an approximation to the time evolution
operator is being used, as is typically always required.
In this section we will discuss how to deal with the sys-
tematic uncertainties that arise from this approximation
to the time evolution operator, in particular how to en-
sure that these systematic uncertainties have no e!ect on
the continuum limit. We refer to this general protocol as
the Statistically-Bounded Time Evolution (SBTE) pro-
tocol. An important aspect of our discussion will be the
computational cost of the SBTE protocol.

From the previous discussion on renormalization when
approximating time evolution using product formulas,
it should be clear that all required numerical calcula-
tions are performed with a fixed set of parameters in
the Hamiltonian. In the first step, these calculations are
used to determine the renormalization trajectory, while
in the second step calculations are performed for param-
eters that lie on this trajectory. It is important to realize
that any numerical calculation will come with an associ-
ated calculational uncertainty, unrelated to any system-
atic uncertainty due to underlying theoretical assump-
tions. Such calculational uncertainty can arise from noisy
gates on quantum hardware, but even in the absence
of such noise, calculations have statistical uncertainties,
either from using Monte-Carlo integrations on classical
computers or from measuring expectation values of oper-
ators from repeated circuits on quantum computers. This
implies that calculating the expectation value of any ob-
servable is only possible to a given uncertainty

→Ô↑calc = →Ô↑± ωÔ . (42)

Now consider calculating this expectation value us-
ing some approximation to the time evolution operator,

where the approximation is controlled by some param-
eter ε, with exact time evolution recovered in the limit
ε ↓ 0. For approximations using product formulas the
parameter ε = εt is the bare Trotter step size used, but
other approximations are possible as well. We will later
discuss the case of quantum signal processing (QSP), for
which the analogous parameter characterizes the accu-
racy of the Jacobi-Anger expansion of the time evolution
operator in terms of Chebyshev polynomials up to some
finite order. For both of these approaches, bounds exist
that guarantee that the accuracy of the approximation

∣∣∣→Ô(ε)↑ ↔ →Ô↑

∣∣∣ = ϑω . (43)

is below a certain value. For product formulas this is
achieved by keeping the number of Trotter steps NPF to
be above a certain value, while for QSP it requires the
number of Chebyshev polynomials k used in the polyno-
mial approximation to exceed a certain value.
As already mentioned in Sec. II no divergences appear

in the limit ε ↓ 0, even though bare parameters can
depend on the value of ε. This implies that choosing
a su”ciently large value of ε guarantees that ϑω ↗ ωÔ,
ensuring that the resulting systematic uncertainties are
negligible compared to ωÔ. Therefore all steps of the
previous procedure go through as if one had used exact
time evolution.
As will be discussed in Sec. IVA1, ensuring a small

enough error with product formulas can lead to pro-
hibitively expensive gate costs for two reasons. The first
is that, while rigorous error bounds exist when using PFs,
they are generally loose, see, e.g., Ref. [157]. The second

is the polynomial scalingO(ϑ↑1/p
ω ) of the gate cost. These

facts explain the desire to deal with this uncertainty us-
ing the renormalization procedure discussed, which could
result in smaller gate costs at the expense of a more com-
plicated renormalization procedure.
For QSP, the scaling of computational resources with

their accuracy is however much more favorable in com-
parison to product formulas, being proportional to
log(1/ϑω), and is in fact provably optimal in both total
simulation time and error.

A. Algorithmic Complexity

In this section we compute the algorithmic cost re-
quired to control the approximation accuracy ϑω with re-
spect to the statistical uncertainty ωÔ in order to ensure
the renormalization steps outlined in Sec. III A can be
carried out as if one were performing exact time evolu-
tion. In particular, for a specific choice of time evolution
algorithm, we ask how to choose the algorithmic parame-
ter ε that controls the approximation error ϑω incurred by
the algorithm to ensure that ϑω ↘ ωÔ/ϖ where ϖ ≃ R+

such that ϖ ⇐ 1. In this work, we do so for two com-
mon (and conceptually simple) time evolution algorithm

Observables can only be calculated to 
given precision (noise, statistics, …)

Choose approximate time evolution such that   and proceed as for 
exactc time evolution possible for QSP, since resources logarithmic in 

ϵδ ≪ σÔ
ϵδ

Approximations using Quantum Signal Processing

Kane, Hariprakash, Bauer, 2506.16559
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•Very important to remember that contrary to other fields, lattice gauge 
theories are only an approximation to the real world

•Lattice theory is related to continuum theory through renormalization 
procedure, and a sequence of lattice theories is required to calculate 
physical observables

•In presence of necessary approximation to time-evolution operator, 
different approaches suitable for product formulas and QSP-based 
techniques

•More work required to see which approach ultimately most efficient
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for the physics we are after?
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Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a 
truncation is necessary to allow their simulation on quantum computers
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…

Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a 
truncation is necessary to allow their simulation on quantum computers

1 2 3 … Λ

•What value of Lambda should we choose in a given simulation?

•How does the truncation affect the accuracy of a given simulation?

•For the rest of the talk, will work with electric basis states

•Will also work for simplicity with U(1) gauge theory
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Bosonic degrees of freedom have an infinite dimensional Hilbert space, and a 
truncation is necessary to allow their simulation on quantum computers

Previous time independent bounds

2.2.2 Comparison to Previous Work
Previous work has derived resource estimates for bosonic theories through a combination of rigorous
upper bounds on the Dyson series expansion in an interaction picture and constraints from energy
conservation [128]. To understand how the current work compares to these results, we will study the
analytic bounds of this previous work for the evolution of the electric vacuum state on a single plaquette
with a U(1) gauge field. Note that these techniques apply to larger system sizes, but for comparison,
we will restrict to a single plaquette. The previous bounds on truncation errors were derived by placing
upper bounds on the expectation of !̂n = |n→ ↑n| as a function of time. These leakage bounds were
then turned into a bound on error in the time evolution operator due to truncation.

One starts from the expectation value of the full Hamiltonian in the electric vacuum |0→, which by
energy conservation has to be time invariant. Working again with a U(1) pure gauge theory, the total
energy is always greater than the electric energy; one therefore obtains

↑0| Ĥ |0→ = ↑0| eiĤtĤe→iĤt
|0→ = 1

2g2 . (23)

Since both the electric and magnetic term in the Hamiltonian are positive definite, we can bound the
total energy from above by the electric energy

↑0| eiĤtĤe→iĤt
|0→ ↓ ↑0| eiĤtĤEe→iĤt

|0→ = 2g2
↑0| eiĤtÊ2e→iĤt

|0→ , (24)

Using the expression of the electric operator in Eq. (13), we can bound the electric energy from above
by the contributions of a single bosonic state |”→ such giving

↑0| eiĤtÊ2e→iĤt
|0→ ↓ ”2

↑0| eiĤt!̂!e→iĤt
|0→ . (25)

Combining everything together, we obtain the bound

1
2g2 ↓ 2g2”2

↑0| eiĤt!̂!e→iĤt
|0→ , (26)

or

↑0| eiĤt!̂!e→iĤt
|0→ ↔

1
g4”2 , (27)

for all times t. Note that for a larger lattice, similar volume-independent bounds can be derived for
translationally invariant states.

For short times, a time-dependent bound can be derived by upper-bounding the error in a Dyson
series expansion. Explicitly, one works in the interaction picture where the free part of the Hamiltonian
is given by 2g2Ê2. The Hamiltonian in the interaction picture is then given by

ĤI(t) = ↗
1

2g2

∑

n

ei2g
2
t(2n+1)

|n + 1→ ↑n| + h.c. . (28)

Denoting the electric vacuum evolved in the interaction picture by |ωI(t)→, the expectation of the
projector !̂! is given by

↑0| eiĤt!̂!e→iĤt
|0→ =

∣∣∣↑”| e→iĤt
|0→

∣∣∣
2

= |↑”|ωI(t)→|2 . (29)

The Dyson series expansion is generated by inserting |ωI(t)→ recursively into the equation

|ωI(T )→ = |ωI(0)→ ↗ i

∫
T

0
dt ĤI(t) |ωI(t)→ . (30)
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↑0| Ĥ |0→ = ↑0| eiĤtĤe→iĤt
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↑0| eiĤt!̂!e→iĤt
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ĤI(t) = ↗
1

2g2

∑

n

ei2g
2
t(2n+1)

|n + 1→ ↑n| + h.c. . (28)

Denoting the electric vacuum evolved in the interaction picture by |ωI(t)→, the expectation of the
projector !̂! is given by
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We can improve on this bound using the presence of Hilbert space fragmentation in 
Kogut-Susskind style gauge lattice theories

Why is there Hilbert fragmentation in Kogut-Susskind theories?

H = HE + HB = 2g2n2 |n⟩⟨n | +
1

2g2 ( |n⟩⟨n + 1 | + |n + 1⟩⟨n |)
Perform Schrieffer-Woff transformation, (find a matrix  that diagonalizes Hamiltonian to first order in )S HB

Heff = eS(HE + HB)e−S = HE + HB + [S, HE] + …

Can work to obtain expression of  and find condition under which this can be viewed as expansionS

Now find  such that . Working out next order one findsS HB + [S, HE] = 0

Heff = HE +
1
2 [S, HB] + …

Ciavarella, CWB, Halimeh, 2502.03533
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We can improve on this bound using the presence of Hilbert space fragmentation in 
Kogut-Susskind style gauge lattice theories

Heff = HE +
1
2 [S, HB] + …

⟨nf | [S, HB] |ni⟩ =
1

2g2
[⟨nf |S |ni ± 1⟩ − ⟨nf ± 1 |S |ni⟩]

Using the known form of  we can writeHB

Now using  can writeHB + [S, HE] = 0

⟨n |S |m⟩ =
1

2g2n2
⟨n |HE S |m⟩ =

1
2g2n2

⟨n |S HE + HB |m⟩ =
m2

n2
⟨n |S |m⟩ +

1
2g2n2

⟨n |HB |m⟩

and obtain

⟨n |S |m⟩ =
1

2g2(n2 − m2)
⟨n |HB |m⟩

Ciavarella, CWB, Halimeh, 2502.03533
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We can improve on this bound using the presence of Hilbert space fragmentation in 
Kogut-Susskind style gauge lattice theories

Heff = HE +
1
2 [S, HB] + …

⟨nf | [S, HB] |ni⟩ =
1

2g2
[⟨nf |S |ni ± 1⟩ − ⟨nf ± 1 |S |ni⟩]

Combining these results

⟨n |S |m⟩ =
1

2g2(n2 − m2)
⟨n |HB |m⟩

one finds that  or  and  nf = ni nf = ni ± 2

⟨nf | [S, HB] |ni⟩ ∼
1

2g6

1
n

This implies that for large enough  the off-
diagonal interactions are suppressed, and 

Hilbert spaces with large  freeze out

n

n

5

FIG. 3. Evolution of the electric energy as a function of time
on a 6 site lattice with open boundary conditions. The dark
lines show the evolution of states with di!erent number of
quark pairs placed on top of the electric vacuum and the light
lines show the evolution of the corresponding microcanonical
ensemble states.

Discussion.— Hilbert space fragmentation in LGTs
prevents the dynamics of the gauge theory from changing
the states of links that are in electric basis states with
large Casimirs. Importantly, if one initializes a system
with all links in low-lying representations, the system at
later times will not populate links with representations
above some cuto! value. This is relevant for performing
quantum simulations of LGTs, as most approaches work
with a truncation of the Hilbert space in an electric ba-
sis. HSF implies that for a simulation performed at fixed
g, one only needs to raise the truncation of electric basis
states to the point where HSF occurs to have agreement
with the untruncated Hamiltonian. As g sets the lattice
spacing, this can be understood as the lattice spacing
setting a cuto! on the electric energy density. An inter-
esting question is the behavior at extremely long times;
it is possible for there to be tunneling between the frag-
mentation sectors as the fragmentation is exact only in
an e!ective Hamiltonian. At the timescales accessed in
our simulations, this was not observed.

The presence of HSF also impacts the di”culty of clas-
sically simulating LGT dynamics. Naively as the energy
density of a system is increased, one would expect the
computational costs of simulations to increase. However,
due to HSF the dynamics of LGTs will freeze above some
cuto! in energy density and become easy to simulate.
The computational costs of performing a simulation only
grow as g is lowered, i.e., as the continuum limit is ap-
proached. This could be used to perform a quantum
simulation with verifiable advantage by performing the
verification with the dynamics of a state with large elec-
tric fields, similar to the proposal in [128].

One might be worried about the implications of HSF
for predictions in the continuum theory. States with large

electric flux flowing around a plaquette would correspond
to a glueball, whose stability would be guaranteed by the
freezing of the electric flux. Additionally, due to HSF
freezing the position of the electric flux, these glueballs
would be unable to move. However, the arguments for
HSF are based on the validity of the strong coupling ex-
pansion for states with links with large electric energy.
The strong coupling expansion fails as the continuum
limit is approached which suggests that the HSF found
in this work is a lattice artifact. The fact that the lattice
theory is only reproducing the continuum theory below
a UV cuto! is another indication that the freezing out
of high energy states is a lattice artifact. The results of
this paper show that one needs to be careful when using
LGTs to make predictions about thermalization proper-
ties of QCD.
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Split U(1) Hamiltonian 
into two pices

HΛ VΛ

VΛ( (
Λ

Λ

State with support only on small n

are consistent with the previous section. Explicitly, to study the evolution of a state |ω(t)→, define the
interaction picture state |ωI(t)→ by

|ω(t)→ = e→iĤ!t
|ωI(t)→ . (6)

The state |ωI(t)→ satisfies

|ωI(t)→ = |ω(0)→ ↑ i

∫
t

0
ds eiĤ!sV̂!e→iĤ!s

|ωI(s)→ . (7)

By repeatedly substituting |ωI(t)→ into this equation, one can generate a series for |ωI(t)→ in powers of
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∫
t

0
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|ωI(s)→ . (7)

By repeatedly substituting |ωI(t)→ into this equation, one can generate a series for |ωI(t)→ in powers of
V̂!. Using this result, the di!erence between the time evolution generated by the exact and truncated
Hamiltonian is given to leading order by

(e→iĤt
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∫
t

0
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∣∣∣↓! + 1| V̂! |!→

∣∣∣ . (9)

The above calculation is valid provided that we truncate above the first electric field strength, !0,
where HSF occurs. However, in practice, we will likely truncate at some ! > !0. In this case, time-
dependent perturbation theory can be used to compute the leading contribution to ↓!| e→iĤ!s
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e→i↑!+1|Ĥ!|!+1↓t
↑ e→i↑k|H!|k↓t

) !+1∏

l=!0
l ↔=k

1
↓k|H!|k→ ↑ ↓l|H!|l→





↘




!∏

k=!0

↓k + 1|V̂!|k→



 . (11)

These bounds will be independent of what the initial state was, provided that the initial state only
has support on basis states with electric fields below !0. In practice, one needs to be able to estimate

4

are consistent with the previous section. Explicitly, to study the evolution of a state |ω(t)→, define the
interaction picture state |ωI(t)→ by

|ω(t)→ = e→iĤ!t
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∫
t0

0
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↓! + 1| V̂! |!→ ↓!| e→iĤ!s
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The above calculation is valid provided that we truncate above the first electric field strength, !0,
where HSF occurs. However, in practice, we will likely truncate at some ! > !0. In this case, time-
dependent perturbation theory can be used to compute the leading contribution to ↓!| e→iĤ!s
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Using this, the leading correction to the truncated time evolution is
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↘

∫
t1

0
dt2eiĤ!0 t2 V̂!0e→iĤ!0 t2 · · ·
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↓! + 1| V̂! |!→ ↓!| e→iĤ!s
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This expression consists of integrals of exponentials with phases set by the change in energy from
applying V̂! or V̂!0 . These integrals can be explicitly evaluated as a function of t, using the fact that
the operator V̂!0 only acts on bosonic states |n→ with n ≃ !0 and for those states the Hamiltonian
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For U(1) gauge theory, we can plug the explicit matrix elements to find

!0. A rough way of doing this is to pick !0 so that the leading order contribution to the leakage error
is smaller than 1.

To make this discussion concrete, we will apply these results to estimate errors in the truncated
simulation of a single plaquette in a U(1) lattice gauge theory. The electric basis states are given by
|n→ where n is an integer, and the Hamiltonian is given by

Ĥ = 2g2Ê2 + 1
2g2

(
2 ↑ ↭̂ ↑ ↭̂†

)
(12)

Ê =
→∑

n=↑→
n |n→ ↓n| (13)

↭̂ =
→∑

n=↑→
|n→ ↓n + 1| . (14)

We can split this up as

Ĥ = Ĥ! + V̂! , (15)

with

Ĥ! = 2g2Ê2 + 1
2g2

(
2 ↑ ↭̂! ↑ ↭̂†

!

)

↭̂! =
!∑

n=↑!
|n→ ↓n + 1|

V̂! = ↑
1

2g2

∑

|n|↓!
|n→ ↓n + 1| + h.c. . (16)

This implies that for k ↔ !0 we have

↓k + 1|V̂!0 |k→ = ↑
1

2g2

↓k|Ĥ!0 |k→ = 2g2k2 . (17)

We therefore find

(e↑iĤt
↑ e↑iĤ!t) |ω(0)→ =i(↑1)!+1↑!0

( 1
2g2

)2(!+1↑!0) !∑

k=!0




(

e↑i2g
2(!+1)2

t
↑ e↑i2g

2
k

2
t

) !+1∏

l=!0
l ↔=k

1
k2 ↑ l2





↗ (c!0 |! + 1→ + c↑!0 |↑! ↑ 1→) , (18)

where c±!0 are the slowly varying norms of ↓±!| e↑iĤ!t!0 |ω(0)→. Defining the leakage amplitude by

L(g, !, !0, T ) = maxt<T

∣∣∣∣∣∣∣∣

!∑

k=!0




(

e↑i2g
2(!+1)2

t
↑ e↑i2g

2
k

2
t

) !+1∏

l=!0
l ↔=k

1
k2 ↑ l2





∣∣∣∣∣∣∣∣
, (19)

the leading error in the truncated state is at most

∣∣∣(e↑iĤt
↑ e↑iĤ!t) |ω(0)→

∣∣∣ ↘ 2L(g, !, !0, T )
( 1

2g2

)!↑!0

. (20)
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Figure 1: Maximum error in the expectation of Ê2 as a function of time on a single plaquette with g = 0.5 and a
max evolution time of T = 30. The blue, green, and purple lines correspond to using di!erent electric basis states
as the initial state. The red curve is the error bound in Eq. (22), computed using !0 = 4.

To get an idea of how this scales, we can place an upper bound on L(g, !, !0, T ). The integral in the
definition of this function can be exactly evaluated to be a sum of exponentials multiplied by di!erent

prefactors. There are at most 2!→!0 such exponentials and the largest prefactor is
(

1
2g2

)!→!0 (2!0→1)!!
(2!→1)!!

where n!! = n → (n ↑ 2) → (n ↑ 4) → · · · → 1. This lets us upper bound L(g, !, !0, T ) by

L(g, !, !0, T ) ↓

( 1
g2

)!→!0 (2!0 ↑ 1)!!
(2! ↑ 1)!! . (21)

Note that this is a loose bound as it neglects destructive interference between many fast oscillating
phases in the actual value of the integral. Regardless, this predicts that the leading error due to
truncation converges as a factorial and is time-independent.

To understand the performance of these error estimates, we apply these techniques to estimate the
error in the expectation of the electric energy Ê2. Using the leading correction to the states, it can be
seen that the leading error in the expectation of the electric energy is

∣∣∣↔ω| eiĤtÊ2e→iĤt
|ω↗ ↑ ↔ω| eiĤ!tÊ2e→iĤ!t

|ω↗

∣∣∣ ↓ 2(! + 1)2
( 1

4g4

)!→!0

L(g, !, !0, T )2 (22)

We can now compare this bound against the numerical calculation of this expectation values. Ê2

was measured as a function of time for a single plaquette with g = 0.5 and maximum evolution time
of T = 30. The evolution with ! = 20 was treated as the exact evolution and was compared to
the evolution with lower truncations. The maximum error in the expectation of Ê2 achieved when
beginning in di!erent electric basis states, |n↗, is shown in Fig. 1. As this figure shows, the bound on
the error from Eq. (22) correctly upper bounds the actual error for all of these initial states. Note that
the bound becomes tighter for initial states with larger electric energies.

6
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L(g, !, !0, T ) = maxt<T

∣∣∣∣∣∣∣∣

!∑

k=!0




(

e↑i2g
2(!+1)2

t
↑ e↑i2g

2
k

2
t

) !+1∏

l=!0
l ↔=k

1
k2 ↑ l2





∣∣∣∣∣∣∣∣
, (19)

the leading error in the truncated state is at most

∣∣∣(e↑iĤt
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Figure 1: Maximum error in the expectation of Ê2 as a function of time on a single plaquette with g = 0.5 and a
max evolution time of T = 30. The blue, green, and purple lines correspond to using di!erent electric basis states
as the initial state. The red curve is the error bound in Eq. (22), computed using !0 = 4.
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prefactors. There are at most 2!→!0 such exponentials and the largest prefactor is
(

1
2g2

)!→!0 (2!0→1)!!
(2!→1)!!

where n!! = n → (n ↑ 2) → (n ↑ 4) → · · · → 1. This lets us upper bound L(g, !, !0, T ) by

L(g, !, !0, T ) ↓

( 1
g2

)!→!0 (2!0 ↑ 1)!!
(2! ↑ 1)!! . (21)

Note that this is a loose bound as it neglects destructive interference between many fast oscillating
phases in the actual value of the integral. Regardless, this predicts that the leading error due to
truncation converges as a factorial and is time-independent.

To understand the performance of these error estimates, we apply these techniques to estimate the
error in the expectation of the electric energy Ê2. Using the leading correction to the states, it can be
seen that the leading error in the expectation of the electric energy is

∣∣∣↔ω| eiĤtÊ2e→iĤt
|ω↗ ↑ ↔ω| eiĤ!tÊ2e→iĤ!t

|ω↗

∣∣∣ ↓ 2(! + 1)2
( 1

4g4

)!→!0

L(g, !, !0, T )2 (22)

We can now compare this bound against the numerical calculation of this expectation values. Ê2

was measured as a function of time for a single plaquette with g = 0.5 and maximum evolution time
of T = 30. The evolution with ! = 20 was treated as the exact evolution and was compared to
the evolution with lower truncations. The maximum error in the expectation of Ê2 achieved when
beginning in di!erent electric basis states, |n↗, is shown in Fig. 1. As this figure shows, the bound on
the error from Eq. (22) correctly upper bounds the actual error for all of these initial states. Note that
the bound becomes tighter for initial states with larger electric energies.

6

Figure 2: Evolution of the electric vacuum state on a single plaquette. Numerical simulations were performed with
a maximum electric field of 20 and g = 0.5. The left panel shows the expectation of !̂! for various values of ” as
a function of time t. The solid curves are the exact time evolution, and the dashed lines are the rigorous long-time
bounds. The right panel shows the maximum of the expectation of !̂! for the simulated time evolution. The blue
curve is the exact result, the green curve is the bound from energy conservation, and the red curve is the leading
contribution to the expectation obtained by calculating L(g, ”, ”0, T ) with ”0 = 4.

so these bounds directly translate to bounds on the expectation of operators. The electric vacuum was
evolved under a Hamiltonian with a truncation of ! = 20 and g = 0.5. The solid lines in the left panel
of Fig. 2 show the exact time evolution of the expectation of ”̂! and the dashed lines show the bounds
as derived above (the minimum of the three approaches discussed). As this figure shows, the long-time
bounds quickly saturate and overestimate the expectation of ”̂!. The figure on the right shows the
behavior of the maximum of the expectation value of the projection operator taken over large times,
as a function of the truncation !. In blue we show the result from the numerical simulation, which
shows that the maximum expectation for ! = 10 is below 10→13. The green curve is the result of [128]
derived in this section, which clearly overestimates the true value by many orders of magnitude. We
also show in red the new results of this work, which were derived in the previous section. One can see
that these results provide a much tighter bound.

As discussed in [128], the bounds derived in that work imply that to guarantee
∣∣∣→k + !| e→iĤt

|k↑

∣∣∣ <

0.01 for g =
↓

3 for a maximum evolution time of t = 8 would require a cuto! satisfying ! > 100. On
the other hand, using the upper bound derived in this work for L(g, !, !0, T ), given in Eq. (21), one
estimates that

∣∣∣→k + !| e→iĤt
|k↑

∣∣∣ < 6 ↔ 10→308 for these parameters. This shows in a pretty dramatic
fashion how much tighter the bounds derived in this work are. To verify this claim numerically, the
evolution of the electric vacuum on a single plaquette was simulated for g =

↓
3 and a maximum

evolution time of t = 8. Fig. 3 shows the maximum value reached by the expectation of ”̂! during this
time evolution and the predicted maximum for the perturbative calculation done in this work. As this
figure shows, the predicted maximum is in good agreement with the numerical simulation, indicating
the tightness of the bounds derived in this work.

The bounds obtained in Ref [128] are extremely loose due to the bounds being computed by
applying the triangle inequality to upper-bound the Dyson series expansion. The Dyson series consists
of a sum over many oscillating phases, and the actual physics of the system comes from how these
phases constructively or destructively interfere. As the triangle inequality removes these phases, it
should not be surprising that these bounds fail to come remotely close to the qualitative behavior
of the system. The estimate for the maximum of ”̂! obtained using the strong coupling expansion
appears to fall o! at the same rate as the actual system, but is still a loose overestimate. This is

9
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Hilbert fragmentation can be used to obtain a much tighter bound on truncation 
uncertainties

Our results are dramatically tighter than the previous time independent bounds

Using time-independent bound 
results in statement that to simulate 

with  and to guarantee 
 with 

 requires 

g = 3
⟨k + Λ |e−iHt |k⟩ < 0.01

t = 8 Λ > 100

Figure 3: Evolution of the electric vacuum state on a single plaquette. Numerical simulations were performed with
a maximum electric field of 20, g =

→
3, and a maximum evolution time of t = 8. The blue curve is the maximum

of the expectation of !̂! during this evolution. The green points are the leading contribution to the expectation
obtained by calculating L(g, ”, ”0, T ) with ”0 = 0.

because the strong coupling expansion cannot be applied to states with small electric fields, and the
amplitude for leakage into the fragmented sector of the theory was upper-bounded by 1.

2.3 Extension to Larger Systems

To extract new predictions from simulations of lattice gauge theories on quantum computers, it is
necessary to simulate lattices with more than one plaquette and have estimates of the errors due to
truncations of the gauge fields. This can be done using similar techniques to the single plaquette case.
We will write the Hamiltonian for the untruncated theory, Ĥ, as a sum of the truncated Hamiltonian,
Ĥ!, plus a sum over V̂ ωx

! which contains all o!-diagonal couplings for electric fields above the truncation
! for the plaquette at position ωx, explicitly

Ĥ = Ĥ! +
∑

x

V̂ ωx

! . (39)

Following the same approach as Section 2.2.1, the leading correction to the truncated evolution is given
by

(e→iĤt
→ e→iĤ!t) |ε(0)↑ =

∑

ωx

→ie→iĤ!t

∫
t

0
ds eiĤ!sV̂ ωx

! e→iĤ!s
|ε(0)↑ . (40)

The quantity V̂ ωx

! e→iĤ!s
|ε(0)↑ can be estimated to leading order by applying time dependent pertur-

bation theory in the fragmented subspace as before to give at leading order

(e→iĤt
→ e→iĤ!t) |ε(0)↑ = →ie→iĤ!t

∑

ωx

∫
t

0
dt0 eiĤ!t0 V̂ ωx

! e→iĤ!t0(→i)!→!0

∫
t0

0
dt1eiĤ!0 t1 V̂ ωx

!0e→iĤ!0 t1

↓

∫
t1

0
dt2eiĤ!0 t2 V̂ ωx

!0e→iĤ!0 t2 · · ·

∫
t!→!0+1

0
dt!→!0eiĤ!0 t!→!0 V̂ ωx

!0e→iĤ!0 t!→!0 |ε(0)↑ . (41)
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Results of HSF bounds give 
 ⟨k + 100 |e−iHt |k⟩ < 6 × 10−308

Actual simulation likely even much smaller
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•Truncation the bosonic Hilbert space is a necessary ingredient in any 
quantum simulation

•It is important to understand what level of truncation is needed and how 
to bound the uncertainty

•Hilbert space fragmentation allows to derive much tighter bounds on 
truncation effects

•Will hopefully lead to full understanding of these effects in the future
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Summary of third part
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Quantum computers open the door to perform currenty 
unattainable simulations

Using Effective Field Theories takes best advantage of 
quantum hardware

Need to take care of taking into account renormaliation and 
continuum limit

Obtained a new understanding of truncation effects that will 
hopefully lead to a much cleaner theoretical understanding
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