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Motivation
● Hamiltonian lattice gauge theory: Framework for quantum 

simulation and tensor network calculations
● Gauge symmetry  redundancy in description  multiple possible → →

formulations possible/being considered for calculations
● For lattice QCD, a formulation must be adapted to SU(3) gauge fields 

and 3+1 D
● Gauge-invariant formulations offer some advantages (but are not 

the only possibility) Davoudi, Raychowdhury, & Shaw, PRD (2021)
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Path to quantum simulation
● Choose a formulation
● Choose an orthonormal basis
● Associate qudits with field d.o.f.

● (truncation)
● Evaluate matrix elements of fields/Hamiltonian w.r.t. basis
● Map Hamiltonian evolution to hardware operations

This talk: Loop-string-hadron formulation
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● Defining features
● Construct local lattice fields from

multiplets of gauge-covariant harmonic oscillators
● Gauge fields and electric fields:

specially crafted bilinears of harmonic oscillators
● Simple, discrete basis: Occupation numbers
● Clebsch-Gordon coefficients follow from SHO factors
● Non-Abelian Gauss’s law
● More d.o.f. than usual  extra “Abelian Gauss’s law” constraints→

Schwinger-boson parent formulation

SU(2) gauge  link
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SU(3) irreducible Schwinger bosons

● SU(2): Arbitrary irrep j constructible by tensor-
producting enough spin-1/2’s  One doublet→
to construct all |j,m> states 

● In SU(3): Arbitrary irrep (P,Q) constructible by tensor
 

products of one 3 and one 3*
● Ex: 3
● Ex: 3*

Anishetty, Mathur, & Raychowdhury (2009)
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Loop-string-hadron formulation: SU(2)
● Defining features 

● Derived from Schwinger bosons, but resulting
framework stands independently

● Elementary fields are SU(2)-neutral and local
● Non-Abelian constraints are removed
● Remnant constraints are Abelian
● Developed for D=1+1, 2+1, 3+1, with or without staggered 

fermions

Raychowdhury, & JRS
 Phys. Rev. D (2020)🔗

https://arxiv.org/abs/1912.06133
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Defining “success” for simulation candidate
● Complete specification of discretized basis for lattice Hilbert 

space
● Constraints are known, including implementation
● Matrix elements for field operators in Hamiltonian are known
● Clear path to circuitizing the Hamiltonian operators
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Loop-string-hadron formulation: SU(2)
● Complete specification of SU(2) 

LSH Hamiltonian was converted 
into time evolution circuits for 
1+1D  (Davoudi, Shaw, & JRS 
2022)

● Modest gate reductions 
observed compared to gauge-
covariant formulation

● Also have “physicality” circuits 
(Raychowdhury & JRS 2020)
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LSH SU(3) in 1+1
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● Using ISBs, a direct generalization 
of 1+1 D follows

● Analytic understanding is on par 
with SU(2) theory

● Circuit-ready!

Kadam, Raychowdhury, & JRS
 Phys. Rev. D (2023)🔗

https://arxiv.org/abs/2212.04490


Jesse Stryker Generalizing LSH formulation to SU(3) Yang-Mills ECT* 2025.09.01 10

The trivalent vertex

● Elementary building block of multidimensional 
space is trivalent vertex
● Four- and six-leg vertices deconstructed via 

“point splitting”
● Trivalent vertex and point-splitting completely 

understood for LSH SU(2) (orthonormal basis, 
and operator matrix elements)

Effective 4-point 
vertex with quark 

field
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Naive LSH basis for SU(3) vertex

● Creation operators are constructed analogously
● SU(3) admits bilinear & trilinear excitations

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Naive LSH basis for SU(3) vertex

● Problem: { l12, l23, l31, l21, l32, l13, t } not always “good” quantum numbers
● Interesting things happen in sector

● Irreps (six labels) are orthogonal, but insufficient
● LSH quantum numbers capture all d.o.f., but not always orthogonally 

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Littlewood-Richardson coefficients

For SU(2), Littlewood-Richardson coefficients (LRCs) are either 0 or 1
For SU(3), LRCs can be any positive integer  Extra, seventh d.o.f.→

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Nondegenerate states

● States corresponding to an LRC of one, have only LSH state
 no orthogonality problem→

● Can sort such states into two distinct classes

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Nondegenerate states

● Without overlap problem, we normalized the states in closed form.
Class I:

Classes IIa:

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Degenerate subspaces

● When LRC > 1, multiple LSH states exist in a sector, and fail to 
be orthogonal

● Counting LSH states provides a way to evaluate SU(3) LRCs
● Normalization becomes much harder (still maybe possible)
● Orthogonal basis is even less obvious 

 arXiv:2407.19181🔗

https://arxiv.org/abs/2407.19181
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Orthogonalization
● Gram-Schmidt for a sector always possible, but...

● no insight into seventh d.o.f.
● not analytically solvable

● Alternate solution: Define a “seventh Casimir” operator
● Should commute with (pi,qi)
● Hermitian with nondegenerate spectrum  Eigenbasis will be →

orthogonal
● One choice:

 arXiv:2407.19181🔗

Orthonormalizing using Schwinger bosons gets costly Mathematica notebook 
published on PRD & GitHub

https://arxiv.org/abs/2407.19181
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Working with the nonorthogonal basis

● Electric Hamiltonian: function of number operators
● Magnetic Hamiltonian: number operators and various corner 

operators (contractions involving two link ends):

● Other contractions exist, but understanding above is sufficient
● Normalizations involve 
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● Evaluating LSH operators on arbitrary LSH states is a LONG 
exercise

● 7-8 layers of proof-by-induction!
● Representative formulas

Symmetries give formulas for related operators.

Working with the nonorthogonal basis
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More annihilation operators 
 harder calculation→

Working with the nonorthogonal basis
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● All other operators have been evaluated explicitly, or can be 
derived from others. E.g.,

● With matrix elements of all site-local operators available, 
classical calculations using purely LSH d.o.f. are being scripted 
and run quickly
● Normalizations, orthogonalization, Hamiltonian matrix 

elements are all being tested
● Hope: Pure LSH coding will lead to orthogonal basis solution

Working with the nonorthogonal basis
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● Jupyter notebook implements the 
nonorthogonal LSH basis formulas.
● No Schwinger bosons, no Clebsch-

Gordons, and fast.
● To be made public on Github

Working with the nonorthogonal basis
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Status

● Much analytic control has been achieved for the naive basis
● Ideally: Find a seventh Casimir whose eigenstates can be 

constructed analytically
● Ex: Some “ladder” operator applied to a reference state, 

similar to SU(2) irreps |j,m>
● Point-splitting: We predict no significant departure from SU(2)
● Coupling to matter: Also believed to go like SU(2)
● Work in progress: lattice Hamiltonian in nonorthogonal basis
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Summary

● SU(3) gauge invariant basis can be constructed by direct 
analogy with SU(2)

● For certain choices of irreps, the states are on par with SU(2) 
theory 

● Subtleties arise for other choices of irreps
● Basis is linearly independent, but not orthogonal
● Analytic handle on these states is the main obstacle to 

putting SU(3) formulation completely on par with SU(2)
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Extra slides
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Irreducible SU(3) Schwinger bosons

● SU(2): Arbitrary irrep j constructible by tensor-
producting enough spin-1/2’s  One doublet→
to construct all |j,m> states 

● In SU(3): Arbitrary irrep (P,Q) constructible by tensor
 

products of one 3 and one 3* →
● Ex: 3
● Ex: 3*
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Irreducible SU(3) Schwinger bosons
● Ex: 8 No!…

To be irreducible, the rep should be traceless

● One can generalize solution to all states/irreps, but 
hopeless to work with directly

● Solution: “irreducible Schwinger bosons” Anishetty, Mathur, & Raychowdhury,
 J. Math. Phys. 50, 053503 (2009)

With ISBs:

All irrep states have this 
‘monomial’ form

http://dx.doi.org/10.1063/1.3122666
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Irreducible SU(3) Schwinger bosons
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