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Hamiltonian Lattice Gauge Theories

Why? Goals

e access to new and exciting e efficient simulations of non-abelian gauge theories
observables (no sign problems, e efficient simulations of large systems
real time dynamics) . . . . o
e efficient simulations near the continuum limit

e historically not very useful for

simulations
e hopefully mitigated by tensor
networks and quantum computers
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The Hilbert Space

Positions of links labelled by x, directions by k

Hamiltonian acts on wave functions:

Yo Ughgyern) SU(Q)Nlinks > C,

Construction from single link basis functions

on(U) : SU@2) = C
Basis for entire space:

| P o) = [ ] Broee (Usesk)
x,k
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Kogut Susskind Hamiltonian

!John Kogut and Leonard Susskind. “Hamiltonian formulation of Wilson’s lattice gauge theories” .
In: Phys. Rev. D 11 (2 Jan. 1975), pp. 395-408. poI: 10.1103/PhysRevD.11.395.


https://doi.org/10.1103/PhysRevD.11.395
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!Kogut and Susskind, “Hamiltonian formulation of Wilson's lattice gauge theories”
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Kogut Susskind Hamiltonian

Firs =% S+ 5 3 Te[i- Re (R

x,j<k
o
Plaquette Operator:
— Prij = Us.i Ux+ai,j Ui+aj,i Ui]

in terms of link operators
Ux,k’w = Ux,k’w ( . -7Ux,k',-~~)
and

Ul v =Ul (.., Usp,...) .

!Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories” . .
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Kogut Susskind Hamiltonian

fis =% S50+ 5 T T [1- Re(Po)]

Gauss Law for physical states:

Gl =3 (s + RS s 19) =0

k

!Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories” .
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The Hamiltonian
oooe

Electric Basis Functions

Character / Clebsch-Gordon expansion:
e Eigenstates |J,mp, mg) of Zc(ﬁc)2, L5 and R3 known

o U obtained by Fourier-like expansion, truncate at some Jmax
For g> — 0 (Continuum limit):

’(ﬁ — H (S(l—Px?jk)

x,jk

= Jmesz = €9
How to solve this:

1. Reformulate the KS-Hamiltonian s.t. the magnetic
contributions become local

2. Choose a set of appropriate basis functions

3.0 4 analytic
agd C CG Jmax =1

9 CG Jmax = 5/2
2.0 1

T
10! 100

Mass gap M for a single plaquette
as a function of g2 using
Clebsch-Gordon Operators
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What the heck is the dual Hamiltonian anyway?

U(1) — solved problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160)
SU(N) — no practical solutions for efficient simulations of large systemes at weak couplings

Some Candidates: Their problems

. . .. ® Hiagnetic Not actually local
e typically involves reparamatrising gauge magnetic y

. . . . — basis size grows with lattices size
configurations in terms of loops and strings
e make use of Gauss law along the way O mem-pee] ElEiie B
— dealbreaker for TN, much more
demanding on QC (Swap Gates

etc.)

e E.g. Maximum Tree (Bauer et al.
arxiv:2307.11829)
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Magnetic Hamiltonian via Plaquette Separation?

L)
L)
OO

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by
introducing more degrees of freedom and more constraints
Problems:

e original constraint probably wrong or at least not
implementable

e testing seems to suggest, that the physical states are
contained in the spectrum

e what the correct constraint is, and how this all works
quantum mechanically is still under investigation

We need a solution to this, in order to simulate physics!


arxiv:2109.0099
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3 X 3 System, Open Boundaries

Electric Term:
I:Ielectric - 292 <|E1|2 + |E2|2 + |E3|2 + |E4|2> ] ]
N — S0 U

+92 (I_:l'E2+ES'E4+RI'E3+E2'R4>

Magnetic Term: S

2 2 N
Hmagnetic - E Z Tr [1 — UL} J,
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3 X 3 System, Open Boundaries

Electric Term:
I:Ielectric - 292 <|E1|2 + |E2|2 + |E3|2 + |E4|2> ] ]
+92 (I_:l 'E2+ES'E4+RI 'ﬁ3+é2'é4>

Magnetic Term: — 0 U

A Inagnetlc - 2 Z Tr |: i| \l,

Gauss Law:
e (Z (i + Rf)) [¥) =0 8 8
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Plaquette State Basis

Single Plaquette System

A oo, 2 [ A] e se,(p; q) - sine elliptic functions, solution to
L5 = 2 L™ gQTr L= the Mathieu differential equation

Parametrisation of SU(2): ® Y, - spherical harmonics

e for a finite basis we truncate by demanding
1 < Mmax and I < lnax

U, 0,¢) = cos(v)1 — isin(v) 11(0, ¢) - &

e Operator Matrices of operator O obtained

. s&_n@c?sqb by (numerically) evaluating
where (0, ¢) = | sinfsin ¢
cos? /dv ¢n’.l/,m/o¢n,l,m

Eigenstates(-ish)

sean+2(1/2; q)
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Results
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Single Plaquette System
B = 2% I + g%m [1-0]

Parametrisation of SU(2):

U4, 0, ) = cos(¢)1 — isin(y) 7i(6, ¢) - &
sin 6 cos ¢
where (0, ¢) = | sinfsin ¢
cos 6

Eigenstates(-ish)

sean+2(1/2; q)

() Ym®:@), a=16/¢"

an}l,m, ~

sen (¢; q) - sine elliptic functions, solution to
the Mathieu differential equation

Y1,m - spherical harmonics

for a finite basis we truncate by demanding
1 < Mmax and I < lnax

Operator Matrices of operator O obtained
by (numerically) evaluating

/ dv ¢n’.l/,m/o¢n,l,m

Square operators [?and L-R integrated
out separately



Plaquette Link Radial Basis Functions
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Plaquette Link Radial Basis Functions

Nmax = D

] Lt
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3 X 3 System, Open Boundaries

e Good matching with Greens function

= «  GFMC .
0.5 1 Monte-Carlo results, even at small couplings
PS Nmax =1, lmax = 1
049 .. 5 9 _ o .
) oo S oy =1 e Mass gap still shows convergence behaviour,
034 — PS Nmax =5, lnax = 2 . _ .
0ad = CC Juax=2 i.e. larger basis required

100 — efficient operators are a solveable problem
10
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Conclusion
e the digitisation problem has working solutions

Homework

e figure a suitable dual formulation of the Kogut-Susskind The End
Hamiltonian (non-abelian, (3+1) dimensions)

e figure out another efficiently to simulate Hamiltonian, that lhernls o7 lsienliin
reproduces QCD in the continuum limit

= This is essential to actually study QCD in quantum simulations!
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