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Motivation

Hamiltonian Lattice Gauge Theories

Why?

• access to new and exciting

observables (no sign problems,

real time dynamics)

• historically not very useful for

simulations

• hopefully mitigated by tensor

networks and quantum computers

Goals

• efficient simulations of non-abelian gauge theories

• efficient simulations of large systems

• efficient simulations near the continuum limit
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The Hilbert Space

Positions of links labelled by x, directions by k

Hamiltonian acts on wave functions:

ψ (. . . , Ux,k, . . . ) : SU(2)Nlinks → C ,

Construction from single link basis functions

ϕ̂n(U) : SU(2) → C

Basis for entire space:

|. . . , nx,k, . . .⟩ =
∏
x,k

ϕ̂nx,k(Ux,k)
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Kogut Susskind Hamiltonian1

ĤKS =
g2

2

∑
x,k,c

(L̂c
x,k)

2 +
2

g2

∑
x,j<k

Tr
[
1 − Re

(
P̂x,jk

)]

1John Kogut and Leonard Susskind. “Hamiltonian formulation of Wilson’s lattice gauge theories”.
In: Phys. Rev. D 11 (2 Jan. 1975), pp. 395–408. doi: 10.1103/PhysRevD.11.395. 3

https://doi.org/10.1103/PhysRevD.11.395
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Kogut Susskind Hamiltonian1

ĤKS =
g2

2

∑
x,k,c

(L̂c
x,k)

2 +
2

g2

∑
x,j<k

Tr
[
1 − Re

(
P̂x,jk

)]

Canonical Momentum Operators:

L̂c
x,k ψ = − i

d

dβ
ψ
(
. . . , e− i βτc Ux,k, . . .

)
|β=0

and

R̂c
x,k ψ = − i

d

dβ
ψ
(
. . . , Ux,k e

i βτc , . . .
)
|β=0 ,

1Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories”.
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Plaquette Operator:

P̂x,ij = Ûx,i Ûx+âi,j Û
†
x+aĵ,i

Û†
x,j

in terms of link operators

Ûx,k ψ = Ux,kψ (. . . , Ux,k, . . . )

and

Û†
x,k ψ = U†

x,kψ (. . . , Ux,k, . . . ) .
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3



Motivation The Hamiltonian Magnetic Hamiltonians Results Outlook

Kogut Susskind Hamiltonian1

ĤKS =
g2

2

∑
x,k,c

(L̂c
x,k)

2 +
2

g2

∑
x,j<k

Tr
[
1 − Re

(
P̂x,jk

)]

Gauss Law for physical states:

Ĝc
x |ψ⟩ =

∑
k

(
L̂c

x,k + R̂c
x−ak̂,k

)
|ψ⟩ = 0

1Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories”.
3
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Electric Basis Functions

Character / Clebsch-Gordon expansion:

• Eigenstates |J,mL,mR⟩ of
∑

c(L̂c)
2, L̂3 and R̂3 known

• Û obtained by Fourier-like expansion, truncate at some Jmax

For g2 → 0 (Continuum limit):

ψ →
∏
x,jk

δ (1 − Px,jk)

⇒ Jmax → ∞

How to solve this:

1. Reformulate the KS-Hamiltonian s.t. the magnetic

contributions become local

2. Choose a set of appropriate basis functions

10−1 100

g2

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M

analytic

CG Jmax = 1

CG Jmax = 5/2

Mass gap M for a single plaquette

as a function of g2 using

Clebsch-Gordon Operators
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What the heck is the dual Hamiltonian anyway?

U(1) → solved problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160)

SU(N) → no practical solutions for efficient simulations of large systemes at weak couplings

Some Candidates:

• typically involves reparamatrising gauge

configurations in terms of loops and strings

• make use of Gauss law along the way

• E.g. Maximum Tree (Bauer et al.

arxiv:2307.11829)

Their problems

• Hmagnetic not actually local

→ basis size grows with lattices size

• non-local electric terms

→ dealbreaker for TN, much more

demanding on QC (Swap Gates

etc.)
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Magnetic Hamiltonian via Plaquette Separation?

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by

introducing more degrees of freedom and more constraints

Problems:

• original constraint probably wrong or at least not

implementable

• testing seems to suggest, that the physical states are

contained in the spectrum

• what the correct constraint is, and how this all works

quantum mechanically is still under investigation

We need a solution to this, in order to simulate physics!

6

arxiv:2109.0099
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3× 3 System, Open Boundaries

Electric Term:

Ĥelectric = 2g2
(
| ˆ⃗L1|2 + | ˆ⃗L2|2 + | ˆ⃗L3|2 + | ˆ⃗L4|2

)
+ g2

(
ˆ⃗
L1 · ˆ⃗L2 +

ˆ⃗
L3 · ˆ⃗L4 +

ˆ⃗
R1 · ˆ⃗R3 +

ˆ⃗
R2 · ˆ⃗R4

)
Magnetic Term:

Ĥmagnetic =
2

g2

4∑
i=1

Tr
[
1 − Ûi

]

Gauss Law:

Ĝc |ψ⟩ =

(
4∑

i=1

(
L̂c

i + R̂c
i

))
|ψ⟩ = 0

↓

7
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Ĥelectric = 2g2
(
| ˆ⃗L1|2 + | ˆ⃗L2|2 + | ˆ⃗L3|2 + | ˆ⃗L4|2

)
+ g2

(
ˆ⃗
L1 · ˆ⃗L2 +

ˆ⃗
L3 · ˆ⃗L4 +

ˆ⃗
R1 · ˆ⃗R3 +

ˆ⃗
R2 · ˆ⃗R4

)
Magnetic Term:
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]

Gauss Law:
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Ĝc |ψ⟩ =

(
4∑

i=1

(
L̂c

i + R̂c
i

))
|ψ⟩ = 0

↓

7



Motivation The Hamiltonian Magnetic Hamiltonians Results Outlook

Plaquette State Basis

Single Plaquette System

Ĥ = 2g2| ˆ⃗L|2 + 2

g2
Tr
[
1 − Û

]

Parametrisation of SU(2):

U(ψ, θ, ϕ) = cos(ψ)1 − i sin(ψ) n⃗(θ, ϕ) · σ⃗

where n⃗(θ, ϕ) =

sin θ cosϕ

sin θ sinϕ

cos θ


Eigenstates(-ish)

ϕn,l,m ∼ se2n+2(ψ/2; q)

sin(ψ)
Yl,m(θ, ϕ) , q = 16/g4
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Ĥ = 2g2| ˆ⃗L|2 + 2

g2
Tr
[
1 − Û
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3× 3 System, Open Boundaries
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• Good matching with Greens function

Monte-Carlo results, even at small couplings

• Mass gap still shows convergence behaviour,

i.e. larger basis required

→ efficient operators are a solveable problem
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Outlook

Conclusion

• the digitisation problem has working solutions

Homework

• figure a suitable dual formulation of the Kogut-Susskind

Hamiltonian (non-abelian, (3+1) dimensions)

• figure out another efficiently to simulate Hamiltonian, that

reproduces QCD in the continuum limit

⇒ This is essential to actually study QCD in quantum simulations!

The End

Thanks for listening
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