Digitised Hamiltonian SU(2) Lattice Gauge Theories at Weak Couplings

Timo Jakobs ¹

Collaborators: Marco Garofalo 1 Tobias Hartung 2 3 Karl Jansen 4 Paul Ludwig 1 Simone Romiti 5 Johann Ostmeyer 1 Carsten Urbach 1 September 1, 2025

¹Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn

²Northeastern University London, UK

³Khoury College of Computer Sciences, Northeastern University, USA

⁴NIC, DESY Zeuthen

⁵University Bern

Motivation ○●

Hamiltonian Lattice Gauge Theories

0

Hamiltonian Lattice Gauge Theories

Why?

 access to new and exciting observables (no sign problems, real time dynamics)

0

Hamiltonian Lattice Gauge Theories

Why?

- access to new and exciting observables (no sign problems, real time dynamics)
- historically not very useful for simulations

0

Hamiltonian Lattice Gauge Theories

Why?

- access to new and exciting observables (no sign problems, real time dynamics)
- historically not very useful for simulations
- hopefully mitigated by tensor networks and quantum computers

Hamiltonian Lattice Gauge Theories

Why?

- access to new and exciting observables (no sign problems, real time dynamics)
- historically not very useful for simulations
- hopefully mitigated by tensor networks and quantum computers

Goals

• efficient simulations of non-abelian gauge theories

Hamiltonian Lattice Gauge Theories

Why?

- access to new and exciting observables (no sign problems, real time dynamics)
- historically not very useful for simulations
- hopefully mitigated by tensor networks and quantum computers

Goals

- efficient simulations of non-abelian gauge theories
- efficient simulations of large systems

Hamiltonian Lattice Gauge Theories

Why?

- access to new and exciting observables (no sign problems, real time dynamics)
- historically not very useful for simulations
- hopefully mitigated by tensor networks and quantum computers

Goals

- efficient simulations of non-abelian gauge theories
- efficient simulations of large systems
- efficient simulations near the continuum limit

The Hamiltonian

Positions of links labelled by x, directions by k

Positions of links labelled by x, directions by k

Hamiltonian acts on wave functions:

$$\psi(\ldots, U_{\mathbf{x},k},\ldots) : \mathrm{SU}(2)^{N_{\mathrm{links}}} \to \mathbb{C},$$

Positions of links labelled by x, directions by k

Hamiltonian acts on wave functions:

$$\psi(\ldots, U_{\mathbf{x},k},\ldots) : \mathrm{SU}(2)^{N_{\mathrm{links}}} \to \mathbb{C},$$

Construction from single link basis functions

$$\hat{\phi}_n(U) : \mathrm{SU}(2) \to \mathbb{C}$$

Positions of links labelled by x, directions by k

Hamiltonian acts on wave functions:

$$\psi(\ldots, U_{\mathbf{x},k},\ldots) : \mathrm{SU}(2)^{N_{\mathrm{links}}} \to \mathbb{C},$$

Construction from single link basis functions

$$\hat{\phi}_n(U) : \mathrm{SU}(2) \to \mathbb{C}$$

Basis for entire space:

$$|\dots, n_{\mathbf{x}, \mathbf{k}}, \dots\rangle = \prod_{\mathbf{x}, k} \hat{\phi}_{n_{\mathbf{x}, \mathbf{k}}}(U_{\mathbf{x}, k})$$

$$\hat{H}_{\mathrm{KS}} = \frac{g^2}{2} \sum_{\mathbf{x},k,c} (\hat{L}_{\mathbf{x},k}^c)^2 + \frac{2}{g^2} \sum_{\mathbf{x},j < k} \mathrm{Tr} \left[\mathbb{1} - \mathrm{Re} \left(\hat{P}_{\mathbf{x},jk} \right) \right]$$

¹John Kogut and Leonard Susskind. "Hamiltonian formulation of Wilson's lattice gauge theories". In: *Phys. Rev. D* 11 (2 Jan. 1975), pp. 395–408. DOI: 10.1103/PhysRevD.11.395.

$$\hat{H}_{KS} = \frac{g^2}{2} \sum_{\mathbf{x}, k, c} (\hat{L}_{\mathbf{x}, k}^c)^2 + \frac{2}{g^2} \sum_{\mathbf{x}, j < k} \text{Tr} \left[\mathbb{1} - \text{Re} \left(\hat{P}_{\mathbf{x}, jk} \right) \right]$$

Canonical Momentum Operators:

$$\hat{L}_{\mathbf{x},k}^{c} \psi = -i \frac{\mathrm{d}}{\mathrm{d}\beta} \psi \left(\dots, e^{-i \beta \tau_{c}} U_{\mathbf{x},k}, \dots \right) |_{\beta=0}$$

and

$$\hat{R}_{\mathbf{x},k}^{c} \, \psi \; = - \mathrm{i} \, \frac{\mathrm{d}}{\mathrm{d}\beta} \, \psi \left(\dots, U_{\mathbf{x},k} \, e^{\mathrm{i} \, \beta \tau_{c}}, \dots \right) |_{\beta=0} \, ,$$

 $^{^1\}mbox{Kogut}$ and Susskind, "Hamiltonian formulation of Wilson's lattice gauge theories" .

$$\hat{H}_{KS} = \frac{g^2}{2} \sum_{\mathbf{x}, k, c} (\hat{L}_{\mathbf{x}, k}^c)^2 + \frac{2}{g^2} \sum_{\mathbf{x}, j < k} \text{Tr} \left[\mathbb{1} - \text{Re} \left(\hat{P}_{\mathbf{x}, jk} \right) \right]$$

Plaquette Operator:

$$\hat{P}_{\mathbf{x},ij} = \hat{U}_{\mathbf{x},i} \, \hat{U}_{\mathbf{x}+a\hat{\mathbf{i}},j} \, \hat{U}^{\dagger}_{\mathbf{x}+a\hat{\mathbf{i}},i} \, \hat{U}^{\dagger}_{\mathbf{x},j}$$

in terms of link operators

$$\hat{U}_{\mathbf{x},k}\,\psi = U_{\mathbf{x},k}\psi\left(\dots,U_{\mathbf{x},k},\dots\right)$$

and

$$\hat{U}_{\mathbf{x},k}^{\dagger} \psi = U_{\mathbf{x},k}^{\dagger} \psi \left(\dots, U_{\mathbf{x},k}, \dots \right) .$$

¹Kogut and Susskind, "Hamiltonian formulation of Wilson's lattice gauge theories".

$$\hat{H}_{KS} = \frac{g^2}{2} \sum_{\mathbf{x},k,c} (\hat{L}_{\mathbf{x},k}^c)^2 + \frac{2}{g^2} \sum_{\mathbf{x},j < k} \text{Tr} \left[\mathbb{1} - \text{Re} \left(\hat{P}_{\mathbf{x},jk} \right) \right]$$

Gauss Law for physical states:

Magnetic Hamiltonians

$$\hat{G}_{\mathbf{x}}^{c} | \psi \rangle = \sum_{\mathbf{r}} \left(\hat{L}_{\mathbf{x},k}^{c} + \hat{R}_{\mathbf{x}-a\hat{\mathbf{k}},k}^{c} \right) | \psi \rangle = 0$$

 $^{^1\}mathrm{Kogut}$ and Susskind, "Hamiltonian formulation of Wilson's lattice gauge theories" .

Character / Clebsch-Gordon expansion:

 \bullet Eigenstates $|J,m_L,m_R\rangle$ of $\sum_c(\hat{L}_c)^2$, \hat{L}_3 and \hat{R}_3 known

Character / Clebsch-Gordon expansion:

- \bullet Eigenstates $|J,m_L,m_R\rangle$ of $\sum_c(\hat{L}_c)^2$, \hat{L}_3 and \hat{R}_3 known
- ullet \hat{U} obtained by Fourier-like expansion, truncate at some $J_{
 m max}$

Character / Clebsch-Gordon expansion:

- \bullet Eigenstates $|J,m_L,m_R\rangle$ of $\sum_c (\hat{L}_c)^2$, \hat{L}_3 and \hat{R}_3 known
- ullet \hat{U} obtained by Fourier-like expansion, truncate at some $J_{
 m max}$

Mass gap M for a single plaquette as a function of g^2 using Clebsch-Gordon Operators

Character / Clebsch-Gordon expansion:

- ullet Eigenstates $|J,m_L,m_R
 angle$ of $\sum_c (\hat{L}_c)^2$, \hat{L}_3 and \hat{R}_3 known
- ullet \hat{U} obtained by Fourier-like expansion, truncate at some $J_{
 m max}$

For $g^2 \to 0$ (Continuum limit):

$$\psi \to \prod_{\mathbf{x},jk} \delta \left(\mathbb{1} - P_{\mathbf{x},jk} \right)$$
$$\Rightarrow J_{\text{max}} \to \infty$$

Mass gap M for a single plaquette as a function of g^2 using Clebsch-Gordon Operators

Character / Clebsch-Gordon expansion:

- ullet Eigenstates $|J,m_L,m_R
 angle$ of $\sum_c (\hat{L}_c)^2$, \hat{L}_3 and \hat{R}_3 known
- ullet \hat{U} obtained by Fourier-like expansion, truncate at some $J_{
 m max}$

For $g^2 \to 0$ (Continuum limit):

$$\psi \to \prod_{\mathbf{x},jk} \delta \left(\mathbb{1} - P_{\mathbf{x},jk} \right)$$
$$\Rightarrow J_{\text{max}} \to \infty$$

How to solve this:

- Reformulate the KS-Hamiltonian s.t. the magnetic contributions become local
- 2. Choose a set of appropriate basis functions

Mass gap M for a single plaquette as a function of g^2 using Clebsch-Gordon Operators

Magnetic Hamiltonians

 $\mathrm{U}(1) \longrightarrow \mathsf{solved}$ problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160)

 ${
m U}(1)
ightarrow {
m solved}$ problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) ${
m SU}(N)
ightarrow {
m no}$ practical solutions for efficient simulations of large systemes at weak couplings

```
\mathrm{U}(1) \to \mathrm{solved} problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) \mathrm{SU}(N) \to \mathrm{no} practical solutions for efficient simulations of large systemes at weak couplings
```

Some Candidates:

 typically involves reparamatrising gauge configurations in terms of loops and strings

 $\mathrm{U}(1) \to \mathrm{solved}$ problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) $\mathrm{SU}(N) \to \mathrm{no}$ practical solutions for efficient simulations of large systemes at weak couplings

Some Candidates:

- typically involves reparamatrising gauge configurations in terms of loops and strings
- make use of Gauss law along the way

 $\mathrm{U}(1) \to \mathrm{solved}$ problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) $\mathrm{SU}(N) \to \mathrm{no}$ practical solutions for efficient simulations of large systemes at weak couplings

Some Candidates:

- typically involves reparamatrising gauge configurations in terms of loops and strings
- make use of Gauss law along the way
- E.g. Maximum Tree (Bauer et al. arxiv:2307.11829)

 $\mathrm{U}(1) \to \mathrm{solved}$ problem, i.e. the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) $\mathrm{SU}(N) \to \mathrm{no}$ practical solutions for efficient simulations of large systemes at weak couplings

Some Candidates:

- typically involves reparamatrising gauge configurations in terms of loops and strings
- make use of Gauss law along the way
- E.g. Maximum Tree (Bauer et al. arxiv:2307.11829)

Their problems

- ullet $H_{
 m magnetic}$ not actually local
 - ightarrow basis size grows with lattices size

 $U(1) \to \text{solved problem, i.e.}$ the magnetic Hamiltonian (Haase et. al. arxiv:2006.14160) $SU(N) \to \text{no practical solutions for efficient simulations of large systemes at weak couplings}$

Some Candidates:

- typically involves reparamatrising gauge configurations in terms of loops and strings
- make use of Gauss law along the way
- E.g. Maximum Tree (Bauer et al. arxiv:2307.11829)

Their problems

- $H_{\rm magnetic}$ not actually local \rightarrow basis size grows with lattices size
- non-local electric terms
 → dealbreaker for TN, much more
 demanding on QC (Swap Gates
 etc.)

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Problems:

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Problems:

original constraint probably wrong or at least not implementable

Magnetic Hamiltonian via Plaquette Separation?

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Problems:

- original constraint probably wrong or at least not implementable
- testing seems to suggest, that the physical states are contained in the spectrum

Magnetic Hamiltonian via Plaquette Separation?

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Problems:

- original constraint probably wrong or at least not implementable
- testing seems to suggest, that the physical states are contained in the spectrum
- what the correct constraint is, and how this all works quantum mechanically is still under investigation

Magnetic Hamiltonian via Plaquette Separation?

Manu Mathur, Atul Rathor (2023) arxiv:2109.0099

The idea: obtain a nearest neighbour electric term, by introducing more degrees of freedom and more constraints

Problems:

- original constraint probably wrong or at least not implementable
- testing seems to suggest, that the physical states are contained in the spectrum
- what the correct constraint is, and how this all works quantum mechanically is still under investigation

We need a solution to this, in order to simulate physics!

Results

Electric Term:

$$\begin{split} \hat{H}_{\rm electric} &= 2g^2 \left(|\hat{\vec{L}}_1|^2 + |\hat{\vec{L}}_2|^2 + |\hat{\vec{L}}_3|^2 + |\hat{\vec{L}}_4|^2 \right) \\ &+ g^2 \left(\hat{\vec{L}}_1 \cdot \hat{\vec{L}}_2 + \hat{\vec{L}}_3 \cdot \hat{\vec{L}}_4 + \hat{\vec{R}}_1 \cdot \hat{\vec{R}}_3 + \hat{\vec{R}}_2 \cdot \hat{\vec{R}}_4 \right) \end{split}$$

Electric Term:

$$\begin{split} \hat{H}_{\text{electric}} &= 2g^2 \left(|\hat{\vec{L}}_1|^2 + |\hat{\vec{L}}_2|^2 + |\hat{\vec{L}}_3|^2 + |\hat{\vec{L}}_4|^2 \right) \\ &+ g^2 \left(\hat{\vec{L}}_1 \cdot \hat{\vec{L}}_2 + \hat{\vec{L}}_3 \cdot \hat{\vec{L}}_4 + \hat{\vec{R}}_1 \cdot \hat{\vec{R}}_3 + \hat{\vec{R}}_2 \cdot \hat{\vec{R}}_4 \right) \end{split}$$

Magnetic Term:

$$\hat{H}_{\text{magnetic}} = \frac{2}{g^2} \sum_{i=1}^{4} \text{Tr} \left[\mathbb{1} - \hat{U}_i \right]$$

Electric Term:

$$\begin{split} \hat{H}_{\text{electric}} &= 2g^2 \left(|\hat{\vec{L}}_1|^2 + |\hat{\vec{L}}_2|^2 + |\hat{\vec{L}}_3|^2 + |\hat{\vec{L}}_4|^2 \right) \\ &+ g^2 \left(\hat{\vec{L}}_1 \cdot \hat{\vec{L}}_2 + \hat{\vec{L}}_3 \cdot \hat{\vec{L}}_4 + \hat{\vec{R}}_1 \cdot \hat{\vec{R}}_3 + \hat{\vec{R}}_2 \cdot \hat{\vec{R}}_4 \right) \end{split}$$

Magnetic Term:

$$\hat{H}_{\text{magnetic}} = \frac{2}{g^2} \sum_{i=1}^4 \text{Tr} \left[\mathbb{1} - \hat{U}_i \right]$$

Gauss Law:

$$\hat{G}^{c} |\psi\rangle = \left(\sum_{i=1}^{4} \left(\hat{L}_{i}^{c} + \hat{R}_{i}^{c}\right)\right) |\psi\rangle = 0$$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \text{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix}$$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\,\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
 where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Eigenstates(-ish)

$$\phi_{n,l,m} \sim \frac{\text{se}_{2n+2}(\psi/2;q)}{\sin(\psi)} Y_{l,m}(\theta,\phi) , \quad q = 16/g^4$$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Eigenstates(-ish)

$$\phi_{n,l,m} \sim \frac{\text{se}_{2n+2}(\psi/2;q)}{\sin(\psi)} Y_{l,m}(\theta,\phi) , \quad q = 16/g^4$$

- $\operatorname{se}_n(\varphi;q)$ sine elliptic functions, solution to the Mathieu differential equation
- $Y_{l,m}$ spherical harmonics

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Eigenstates(-ish)

$$\phi_{n,l,m} \sim \frac{\text{se}_{2n+2}(\psi/2;q)}{\sin(\psi)} Y_{l,m}(\theta,\phi) , \quad q = 16/g^4$$

• $\operatorname{se}_n(\varphi;q)$ - sine elliptic functions, solution to the Mathieu differential equation

Results

- $Y_{l,m}$ spherical harmonics
- ullet for a finite basis we truncate by demanding $n \leq n_{
 m max}$ and $l \leq l_{
 m max}$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Eigenstates(-ish)

$$\phi_{n,l,m} \sim \frac{\text{se}_{2n+2}(\psi/2;q)}{\sin(\psi)} Y_{l,m}(\theta,\phi) , \quad q = 16/g^4$$

- $\operatorname{se}_n(\varphi;q)$ sine elliptic functions, solution to the Mathieu differential equation
- $Y_{l,m}$ spherical harmonics
- • for a finite basis we truncate by demanding $n \leq n_{\rm max} \ {\rm and} \ l \leq l_{\rm max}$
- Operator Matrices of operator O obtained by (numerically) evaluating

$$\int dV \, \phi_{n',l',m'} \mathcal{O}\phi_{n,l,m}$$

Single Plaquette System

$$\hat{H} = 2g^2 |\hat{\vec{L}}|^2 + \frac{2}{g^2} \operatorname{Tr} \left[\mathbb{1} - \hat{U} \right]$$

Parametrisation of SU(2):

$$U(\psi, \theta, \phi) = \cos(\psi)\mathbb{1} - i\sin(\psi)\vec{n}(\theta, \phi) \cdot \vec{\sigma}$$
where
$$\vec{n}(\theta, \phi) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}$$

Eigenstates(-ish)

$$\phi_{n,l,m} \sim \frac{\text{se}_{2n+2}(\psi/2;q)}{\sin(\psi)} Y_{l,m}(\theta,\phi) , \quad q = 16/g^4$$

- $\operatorname{se}_n(\varphi;q)$ sine elliptic functions, solution to the Mathieu differential equation
- $Y_{l,m}$ spherical harmonics
- for a finite basis we truncate by demanding $n < n_{\text{max}}$ and $l < l_{\text{max}}$
- ullet Operator Matrices of operator ${\cal O}$ obtained by (numerically) evaluating

$$\int dV \, \phi_{n',l',m'} \mathcal{O}\phi_{n,l,m}$$

ullet Square operators $\hat{ec{L}}^2$ and $\hat{ec{L}}\cdot\hat{ec{R}}$ integrated out separately

Plaquette Link Radial Basis Functions

Plaquette Link Radial Basis Functions

- Good matching with Greens function
 Monte-Carlo results, even at small couplings
- Mass gap still shows convergence behaviour, i.e. larger basis required

- Good matching with Greens function
 Monte-Carlo results, even at small couplings
- Mass gap still shows convergence behaviour,
 i.e. larger basis required
- \rightarrow efficient operators are a solveable problem

Outlook

Conclusion

• the digitisation problem has working solutions

⇒ This is essential to actually study QCD in quantum simulations!

Outlook

Conclusion

• the digitisation problem has working solutions

Homework

- figure a suitable dual formulation of the Kogut-Susskind Hamiltonian (non-abelian, (3+1) dimensions)
- figure out another efficiently to simulate Hamiltonian, that reproduces QCD in the continuum limit
- ⇒ This is essential to actually study QCD in quantum simulations!

The End

Thanks for listening