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1.Introduction



• Low-lying states are given by composite particles (Hadrons) because 
of quark confinement 
 
 
 
 
 
 

• The masses of hadrons are much heavier than the sum of quarks

One of nontrivial phenomena of QCD
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u u d

u,d quark mass ~ 2-5MeV 
proton mass ~ 938MeV

composed of 3 quarks

composed of quark and 
anti-quark
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Numerical results by Lattice MC QCD
• Input parameters are in QCD action 

lattice bare coupling  ( ) 
bare quark masses 
(Left panel: ) 

• Only 3 inputs give more than 10 
hadron masses, which are consistent 
with experimental data within a few % 
errors 

• This is quantitative evidence that 
hadron micro-theory is QCD

g0 ↔ a

m0
u,d, m0

sHAL QCD coll. 
PRD(2024)

Agreement between QCD  
predictions and experiments



• New calculation methods to obtain mass spectra of hadrons,  
which works for the gauge theories in Hamiltonian formalism 

• Demonstrate the calculation for the Schwinger model using DMRG  
Find ground state (Matrix Product State, MPS)  
using variational algorithm: cost fn. is  

• Introduce the topological  term 
sign problem emerges in the conventional method 

• We investigate near CFT (level-1, SU(2) WZW theory) 
the DMRG works well

try⟨Ψ |H |Ψ⟩try

θ

Today's talk
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Outline
1. Introduction  

2. 2-flavor Schwinger model 

3. Our proposal for calculating "Hadron" spectra ( ) 
Correlation-function scheme 
One-point function scheme 
Dispersion-relation scheme 

4. "Hadron" spectra ( ) 
 dependence of hadron spectra 

5. Summary

θ = 0

θ ≠ 0

θ
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2. 2-flavor Schwinger model



Schwinger model +  term (Nf=1)θ
• Lagrangian w/ non-zero : Sign problem in conventional method 

 

• Hamiltonian written by spin variables fits to  
Quantum Computation (QC) and Tensor Network(TN) 

• Hamiltonian by spin variables (X, Y, Z: Pauli matrix) 

 

•  is constant shift of electric field 

• Gaped system (even in massless fermion for Nf=1)

θ0

ℒ = −
1
4

FμνFμν +
gθ
4π

ϵμνFμν + iψ̄γμ(∂μ + igAμ)ψ − mψ̄ψ

H = J
N−2

∑
n=0 [

n

∑
i=0

Zi + (−1)i

2
+

θ
2π ]

2

+
w
2

N−2

∑
n=0

[XnXn+1 + YnYn+1] +
mlat.

2

N−1

∑
n=0

(−1)nZn

θ
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kinetic term of electric field kinetic/mass terms of electron

Kogut and Susskind (1975) 
Shaw et al. Quantum 4, 306 (2020)

photon propagation Kinetic/mass terms of electron Legendre transformation 
  Gauge fixing 
    Gauss' law 
       Open BC 
         Jourdan-Winger trans.

To minimize the Hilbert space…



Property of Nf=2 Schwinger model
• Confinement of fermions occurs 

Low-lying states are given by composite particle (=boson) 
= meson (like a pion) in QCD 

• At , it is expected the model becomes (nearly) conformal field theory 
Can we do DMRG? 
 
 
 
 
 

θ = π
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bond dim.

fitting fn.:  
 
Entanglement entropy (theoretical) 

  w/ c=1

c1N1/3 + c2

SEE ∼ (c/3)log N



• Dirac fermion -> lattice fermion (staggered fermion)
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Multi-flavor Schwinger model: ordering

k
0 1 2 3

M.C. Banuls et al, PRL 118, 071601 (2017) 
R.Dempsey et al., arXiv:2305.00437 
E.I., Matsumoto, Tanizaki, JHEP 11 (2023) 231 
M.Rigobello et al., arXiv:2308.04488

2nd flavor Dirac
1st flavor Dirac

• lattice fermion -> spin variable (Jordan-Wigner trans.)



• Dirac fermion -> lattice fermion (staggered fermion)
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Multi-flavor Schwinger model: ordering

k
0 1 2 3

n
Flavor ordering (n=k+N(f-1)) Staggered ordering (n=2k+(f-1))

n

• lattice fermion -> spin variable (Jordan-Wigner trans.)

2nd flavor Dirac
1st flavor Dirac

M.C. Banuls et al, PRL 118, 071601 (2017) 
R.Dempsey et al., arXiv:2305.00437 
E.I., Matsumoto, Tanizaki, JHEP 11 (2023) 231 
M.Rigobello et al., arXiv:2308.04488



• Dirac fermion -> lattice fermion (staggered fermion)
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Multi-flavor Schwinger model: ordering

k
0 1 2 3

n
Flavor ordering (n=k+N(f-1)) Staggered ordering (n=2k+(f-1))

n

2nd flavor Dirac
1st flavor Dirac

M.C. Banuls et al, PRL 118, 071601 (2017) 
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M.Rigobello et al., arXiv:2308.04488



• Dirac fermion -> lattice fermion (staggered fermion)
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Multi-flavor Schwinger model: ordering

k
0 1 2 3

• lattice fermion -> spin variable (Jordan-Wigner trans.)

{χ†
f,n, χf̃,m} = δf, f̃δn,m

{χf,n, χf̃,m} = {χ†
f,n, χ†

f̃,m
} = 0

χ1,n =
σx

1,n − σy
1,n

2

n−1

∏
j=0

(−σz
2,jσ

z
1,j)

χ2,n =
σx

2,n − σy
2,n

2
(−iσz

1,n)
n−1

∏
j=0

(−σz
2,jσ

z
1,j)

local op. (isospin and so on) 
becomes only a few # of Pauli matrices

Conditions for Nf -fermion our choice

n
Flavor ordering (n=k+N(f-1)) Staggered ordering (n=2k+(f-1))

n

2nd flavor Dirac
1st flavor Dirac

M.C. Banuls et al, PRL 118, 071601 (2017) 
R.Dempsey et al., arXiv:2305.00437 
E.I., Matsumoto, Tanizaki, JHEP 11 (2023) 231 
M.Rigobello et al., arXiv:2308.04488



"Hadron" state in Nf=2 Schwinger model
• Prediction by analytical study (Coleman, 1976) at  

(1)pion (Iso-triplet pseudo-scalar meson) 
 

 ( ) 

 
(2)sigma(Iso-singlet scalar meson) 

,  
 
(3)eta(Iso-singlet pseudo-scalar meson) 

, 

θ = 0

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2)
JPG = 1−+ Jz = − 1,0,1

σ = ψ̄1ψ1 + ψ̄2ψ2 JPG = 0++

η = − i (ψ̄1γ5ψ1 + ψ̄2γ5ψ2) JPG = 0−−
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Quantum numbers: 
 Isospin 

associate with SU(2) flavor sym. 

 
P: Parity 
G-parity (generalized C.C.)

J2, Jz



How can we calculate the mass spectra of hadrons?
• Conventional lattice MC: two-point correlation function 

 
 
 
 
 
 
How we obtain them In Hamiltonian formalism 

• At , it is expected the model becomes (nearly) conformal field theory 
- Shape of correlation function?  
- How can we see the (almost) massless state?

θ = π
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C(τ) = ⟨O(τ)O(0)⟩
lim
τ→∞

C(τ) ∼ e−mτ

pion:   

rho meson: 

O = ψ̄γ5ψ

O = ψ̄γ1ψ



3. Mass spectra in the Hamiltonian formalism

E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 11 (2023) 231



(1) (Spatial) correlation-function scheme (conventional method) 

(2) One-point-function scheme      
     Calculate   
     one-point fn. = correlation fn. with edge state 
     By tuning the b.c. and value of  , we obtain the desired meson state 

(3) Dispersion-relation scheme 
     Construct excited states and measure energy, momentum and 
quantum numbers

⟨𝒪(x)⟩ = ⟨Vac. |𝒪(x) |Bdry⟩ ∼ e−Mx

θ

Three calculation methods (at )θ = 0

17

⟨𝒪(r)𝒪(0)⟩ ∝ K0(Mr) ∼
1

r
e−Mr

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2)ex.)

E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 11 (2023) 231

excited state calc.: M.C. Banuls, K. Cichy, J.I. Cirac and K. Jansen (2013)
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(3) Dispersion-relation scheme

Measure the quantum number (Iso-spin, G-parity, Parity) of generated MPS  
to identify each meson

MPS for -th excited state is given by the modified cost fn.:  

Upto 23rd excited state

ℓ Heff = H + λ
ℓ−1

∑
k=0

|ψk⟩⟨ψk |



(3)Momentum op. and Quantum number op.
• Momentum op.(flavor-dependent, ) 

 
 

• Isospin operator (flavor SU(2) sym.), 

[ ̂kf, H] ≠ 0

J2, Jz

19

1st flavor

2nd flavor



(3)Quantum number op.
• Charge conjugation (broken due to OBC and finite lattice spacing) 

 

• Parity (broken due to OBC, N=even) 

• G-Parity (commute with iso-spin) 
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Free theory w/ PBC 
In cont. lim.,  ⟨C⟩ = ± 1

x <->L-x 
p <-> ap flip

1 site translation

the sign of Re  is  
a remnant of exact C

⟨C⟩
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(3)Results: iso-triplet channel

J=1 Jz = ± 1 G > 0

zero-mode 
P < 0

P < 0

pion : JPG = 1−+
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(3)Results: iso-singlet channel

zero-mode 
P > 0

zero-mode 
P < 0

J=0 Jz = 0 G > 0 P > 0

sigma meson : JPG = 0++

J=0 Jz = 0 G < 0 P < 0

eta meson : JPG = 0−−
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(3)Results of dispersion-relation scheme 
Plot  against  for each meson 

Fit the data using 

ΔEℓ ΔK2
ℓ

ΔE = M2 + b2ΔK2
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Three meson masses obtained by three methods
Theoretical predictions 

✔  : U(1) problem 

✔  ( ) 

✔  (within 5% deviation)

Mπ < Mσ < Mη

Mη = μ + O(m) μ = g Nf /π ∼ 0.8, m = 0.1

Mσ /Mπ = 3

pion

sigma

eta
Coleman(1976), Dashen et al. (1975)

Data obtained by directly measure the 2-pt. fn. or bulk 1-pt. of composite state. 
Data of dispersion-relation scheme, naturally obtain these composite states as a low-lying 
state. 



4. θ ≠ 0
E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 09 (2024) 155



At  (theoretical things)θ ≠ 0
• Sign problem appears in Lattice Monte Carlo 

• operator mixing between Scalar and Pseudo-Scalar ops. occurs, 
 

• loss of quantum numbers (G-parity is broken, -decay is no longer prohibited) 

• decay mode:  meson -> 2 pions  
 meson is not a stable particle 

• (almost) conformal theory at  (level-1, SU(2) WZW theory) 
DMRG is hard, shape of correlation fn. is changed

𝒪 = CSS + CPSPS

η

η

η

θ = π
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One-point fn. scheme at  (near CFT)θ = π
• Analytic form of one-point fn. with Dirichlet b.c.
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cf.) 2-flavor Schwinger model at  

a small mass gap  remains (Not exact CFT if ) 
R. Dempsey et al., 2023

θ = π

∼ e−Ag2/m2 m ≠ 0

⟨σ(x)⟩ ∼
1

sin(πx/L)
⟨π(x)⟩ ∼

sin[Δ(1 − 2x/L)]
sin(πx/L)

https://arxiv.org/abs/2305.04437


Dispersion-relation scheme in θ ≠ 0
• Can be applied to the  regions straightforwardlyθ ≠ 0

28

Iso-triplet must be pion 
We cannot distinguish between eta and sigma

E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 09 (2024) 155



Dispersion-relation scheme in θ ≠ 0

• Fit the data for each meson using ΔE = M2 + b2ΔK2
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 disappear  
sigma (singlet) and pion (triplet) are degenerating at 

η θ/2π > 0.2

θ = π

E.I., Akira Matsumoto, Yuya Tanizaki, JHEP 09 (2024) 155

θ/(2π) = 0.1 θ/(2π) = 0.2

θ/(2π) = 0.5θ/(2π) = 0.4θ/(2π) = 0.3

θ/(2π) = 0

eta meson 
sigma meson 
pion



• Straightforwardly apply to  regime (even near CFT)  
• Higher states are heuristically found 
• Consistent with several theoretical predictions

θ = π

Tensor network  
based on Hamiltonian  

pion 

sigma

eta meson

30

Comparison w/ previous work in Lattice MC

Fukaya and Onogi  
Phys.Rev. D68 (2003) 074503

• In large , the signal is very noisy because of 
the sign problem 

• Difficult to find a heavy -meson and -meson

θ

η σ

Monte Carlo based on Lagrangian   
(w/ improved techniques)

pion 

theoretical prediction 
Mπ, Mσ ∝ cos2/3(θ/2)

Itou, Matsumoto, Tanizaki,  
JHEP 09 (2024) 155



Summary and future directions



Summary and future prospect
• We reformulate the particle theory (L to H) and search for new 

calculation methods to fit tensor network and/or quantum 
computation 

• New strategy expands the range of theories that can be explored 
In particular, the theory with the sign problem in conventional MC 
** Our methods for mass spectra can apply to the finite-density QCD 
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Neutron star  
(high-density QCD)

Pions are not the lightest particles? 
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Lattice MC results for dense 2color QCD
• Lattice MC simulation of dense 

QCD is extremely difficult because 
of the sign problem 

• Ab initio calculations in gauge 
theory that avoid the sign problem 
for toy model of QCD 
(2color QCD) 

• It is shown that rho is lighter than 
pion in high-density regime K.Murakami, D.Suenaga, K.Iida, EI,  

 PoS LATTICE2022 (2023) 154
Analytical study: cf.) Hatsuda-Lee

Normal phase Superfluid phase

mπ > mρmπ < mρ



• Toward QCD             = 3+1 dim. SU(3) gauge theory 
cf.) Schwinger model = 1+1 dim. U(1) gauge theory 

• Implementation of QCD Hamiltonian still has some issues 
- How to deal with gauge dof. w/ infinite dimensional Hilbert space 
- Practical computation methods for TN and QC 
 
 

• Stay tuned for these progresses!

Future directions
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cond-mat model Schwinger model quantum chemistry≈<
# of T-gate ∼ 108 ∼ 1012 ∼ 1012

 QCD≪

∼ ??

K.Sakamoto, H.Morisaki, J.Haruna, EI, K.Fujii, K.Mitarai, Quantum 8 (2024) 1474
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 Short summary of scheme
• Three calculation methods for hadron spectra in Hamiltonian formalism 

(1)correlation-function scheme 
   👍 applicability to broad class of theories 
   😥 sensitive to the bond dimension (DMRG) ̶> 😊 quantum computation 
(2)one-point-function scheme 
   👍 need to increase neither the bond dimension nor the system size   
   😥 need theoretical knowledge 
       only the lowest state with the same quantum number of boundary state 
(3)dispersion-relation scheme 
   👍 obtain various states heuristically / directly see wave functions   
   😥 computational cost to generate excited states

L

36



Two calculation methods (at )θ ≠ 0
(1) 2-pt. correlation-function for mixed op. and find the mixing angle 

+ (1’) One-point-function scheme      
      one-point fn. = correlation fn. with source state 
     (SPT phase, at  iso-singlet state / at  iso-triplet state) 
      near , a shape of corr. fn. change to CFT-like 

(2) Dispersion-relation scheme 
     Construct excited states and measure energy, momentum and 
(approximate) quantum numbers 
     exact sym. is only isospin, e.g. iso-singlet and iso-triplet

θ θ + 2π

θ = π

37

, for C(τ) = ⟨O(τ)O(0)⟩ O = CSS + CPSPS



(1) Improvement for 1pt fn. scheme
• Introduce a wings regime and putting flavor-dependent masses to 

extract desired state

38

ex.) Lattice setup to extract the pions (triplet states)
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(1) correlation fn. scheme
Operator mixing between Scalar and Psuedo-Scalar ops. occurs,  

Diagonalise 2pt. correlation matrix:     

------->   for iso-singlet mesons 

------->    for iso-triplet mesons

𝒪 = CSS + CPSPS

C±(x, y) = ( ⟨S±(x)S±(y)⟩c ⟨S±(x)PS±(y)⟩c

⟨PS±(x)S±(y)⟩c ⟨PS±(x)PS±(y)⟩c)
C+(x, y) = RT

+ (⟨σ(x)σ(y)⟩c 0
0 ⟨η(x)η(y)⟩c) R+

C−(x, y) = RT
− ( * * 0

0 ⟨π(x)π(y)⟩c) R−

The slope is slower in the larger .θ

pion sigma meson eta meson

Preliminary Preliminary Preliminary



(1) correlation fn. scheme
• Effective mass as a function of 1/r at large  

(large mixing angle, near conformal)
θ

40

The mass becomes smaller (pion and sigma) 
Eta meson decays into a lighter mode over long distances.

pion sigma meson eta meson

Preliminary Preliminary Preliminary



(1’) one-point fn. scheme in θ < π
• Need to increase neither the bond dimension nor the system size   

• To find the mixing of ops., , we use the rotation 

matrices by the 2-pt. fn. scheme :  for  
 

L

𝒪 = CSS + CPSPS

⟨𝒪(x)⟩ ∝ e−Mx θ < π

41

( *
π(x)) = R− ( S−(x)

PS−(x))

(σ(x)
η(x)) = R+ ( S+(x)

PS+(x))



(1’) one-point fn. scheme in θ < π
• Need to increase neither the bond dimension nor the system size   

• No longer an independent scheme 
To find the mixing of ops., we use the mixing matrix by the 2-pt. fn. 
scheme : 　for  
 

L

⟨𝒪(x)⟩ ∝ e−Mx θ < π

42 is difficultθ = π In middle x regime, there is a cusp

pion sigma meson eta meson

Preliminary Preliminary Preliminary
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(1)  (Spatial) correlation-function scheme
log plot of Cπ(r) = ⟨π(r)π(0)⟩ ∼ e−Meffr

Effective mass 
M̃π,eff(r) = −

1
2a

log
Cπ(r + 2a)

Cπ(r)

Plateau of effective mass = pion mass ?? 
High precision calculation shows a slope.... 

What's happen??
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(1) 2-pt. correlation function scheme

Effective mass has power correction: 

 

In  limit, obtained M is almost consistent  
with the exact result

Meff(r) = −
d
dr

log K0(Mr) ∼
1
2r

+ M

r → ∞

(1+1)d. point-point correlation fn. has Yukawa-shape

exact result, M = g/ π

⟨π(x, t)π(y, t)⟩ ∝ K0(Mr) ∼
1

Mr
e−Mr here  for Nf=1π = − iψ̄γ5ψ

Why the convergence is slow?  
=> DMRG can calculate exponential correlations and difficult to reproduce 1/r
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(1)Effective mass with a 1/r correction

pion mass

sigma mass
eta mass
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(2)One-point-function scheme

∑
τ

⟨𝒪(x, τ)𝒪wall(x = 0)⟩ ≡ ⟨Vac. |𝒪(x) |Bdry⟩ ∼ e−Mx

Wall-point correlation function

τ τ

x=0 x=L 

𝒪(x)

θ = 0

Calculate ⟨𝒪(x)⟩

eta meson

sigma meson

precision-dependence is not observed
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(2)One-point-function scheme：pion

Haldane phase -> edge mode in OBC

τ τ

x=0 x=L 

𝒪(x)J=1/2 J=1/2

isospin =1/2 at both edges = source of iso-triplet

⟨𝒪(x)⟩ ∝ e−Mx

 everywhere, since the ground state is iso-singlet at  ⟨π(x)⟩ = 0 θ = 0

θ = 2π


