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Symmetry group 𝐺: 

Θ𝑛 𝑔 𝐻Θ𝑛
† 𝑔 = 𝐻 ∀𝑛 ∈ ℤ𝑑 , ∀𝑔 ∈ 𝐺

𝐻hop = 𝐽 ෍

𝑛

𝜓𝑛
†𝑈𝑛,𝑛+1𝜓𝑛+1 + 𝐻. 𝑐.

𝐻𝑀 = 𝑚 ෍

𝑛

𝜓𝑛
†𝜓𝑛

𝐻𝐸 = 𝑔2 ෍

𝑙

𝐸𝑙
2

𝐻𝐵 =
1

𝑔2 ෍

𝑝

Re(Tr( 𝑈𝑝,1𝑈𝑝,2𝑈𝑝,3
† 𝑈𝑝,4

† ))
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Quantum simulations of lattice 
gauge theories

𝐻 = 𝐻hop + 𝐻𝑀 + 𝐻𝐸 + 𝐻𝐵

𝑈𝑝,1

෡𝐗

෡𝐘

Gauge fields
Matter fields
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Quantum simulations of lattice 
gauge theories

𝑛 = 1 𝑛 = 2 … Local symmetry:   Θ𝑔,𝑛 = 𝕀⨂𝕀 … Θ𝑔;𝑛−1,𝑛
𝑅 Θ𝑔,𝑛

𝑄
Θ𝑔;𝑛,𝑛+1

𝐿 … 𝕀⨂𝕀

   Θ𝑔
𝐿 = Θ𝑔

𝑅  for Abelian groups
𝐻, Θ𝑔,𝑛 = 0 ∀𝑔, 𝑛

 
   Θ𝑔,𝑛 𝜓 phys = 𝛼𝑔,𝑛 𝜓 phys

   The set of phases 𝛼𝑔,𝑛 defines the gauge sector 𝑍2 LGT in one dimension

Local gauge operator Θ𝑛 = −𝜏𝑛−1,𝑛
𝑥 𝜎𝑛

𝑧𝜏𝑛,𝑛+1
𝑥

Gauss’s Law for the electric field 𝛁 ⋅ 𝑬 = −𝜌 ⇒

𝑛
𝑛

𝑛

𝑒−𝑖𝐻Δ𝑡



Quantum simulations of lattice 
gauge theories: time evolution
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𝜓 Δ𝑡 = exp(−𝑖 ෩𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩
𝐻 = ∑𝐻𝑗

∼ ෑ

𝑗

exp(−𝑖𝐻𝑗Δ𝑡)

𝐻 =

Phys

non
Phys

0

0
+errors

෩𝐻  =

Phys

non
Phys

𝜓 Δ𝑡 = exp(−𝑖𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩



How do we detect and suppress errors?
Abelian LGT:

• Post-selection: check if the final state satisfies local symmetries;
• Effective Hamiltonian: energy penalty
• Engineered dissipation: stochastic driving;

Non-Abelian LGT:
• Local symmetry generators do not commute
• Post-selection?

Quantum simulations of lattice 
gauge theories: time evolution

6

𝜓 Δ𝑡 = exp(−𝑖 ෩𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩

𝓗𝑷

𝓗𝑸



Local gauge charge ෡Θ𝑛 = −𝜏𝑛−1,𝑛
𝑥 𝜎𝑛

𝑧𝜏𝑛,𝑛+1
𝑥 ෡𝐻0, ෡Θ𝑛 = 0pen 

− 𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ∑𝑛
෠𝐺𝑛𝜌 ෠𝐺𝑛

† −
1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

• Coupling with classical noisy fields* ⇒ engineered dissipation

• Continuous measurements of local charges ⇒ quantum 
trajectories

𝑍2 LGT in one dimension and coherent error

Gauge-symmetry breaking coherent error

෡𝐻err = 𝜆 ෍

𝑛

(𝜎𝑛
+𝜎𝑛+1

− + h. c. ) + 𝜆 ෍

𝑛

𝜏𝑛,𝑛+1
𝑧

෡𝐻err, ෡Θ𝑛 ≠ 0

Qubit number

Digital quantum simulation

Qubit number 7



Measurement-induced gauge protection in digital 
quantum simulations

Dynamical post-selection approach
𝑛𝑡

• At each Trotter step ෡Θ𝑛 is encoded 
in an auxiliary qubit

• Requires 𝑂(𝑁) auxiliary qubits
• No reset of |𝑎⟩

𝜓 𝑡 phys ⇒ 𝜓 𝑡 + Δ𝑡 = 𝛼 𝜓(𝑡 + Δ𝑡) phys + 𝛽 𝜓 np

Coupling with the auxiliary |𝑎⟩

𝜓, 𝑎 = 𝛼 0 𝑎 𝜓 phys + 𝛽 1 𝑏 𝜓 np

Measure 𝑎

෨𝜓 𝑡 + Δ𝑡 = ൝
𝜓(𝑡 + Δ𝑡) phys with probability |𝛼|2

𝜓 np with probability |𝛽|2
keep
discard
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Equation for the density matrix in the continuous time limit

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 +
1

2𝜏
෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Time between measurements



Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1]
• Random gauge transformations [2] 
• Continuous measurements
• Continuous limit for DPS

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1] 
• Random gauge transformations [2] 
• Continuous measurements
• Continuous limit for DPS

Dark 
states

Quantum Zeno regime

Quantum Zeno transition between 
protected and chaotic phases

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688

By JozumBjada - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=112625244
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Measurement-induced gauge protection in digital 
quantum simulations
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛
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• Continuous measurements
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[2] Lamm et al. arxiv:2005.12688

By JozumBjada - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=112625244
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1]
• Random gauge transformations [2]
• Continuous measurements
• Continuous limit for DPS

Quantum Zeno transition between 
protected and chaotic phases

Importance of unraveling: same ensemble 
average, different stochastic trajectories

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688
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Nonabelian LGT: benchmark on 𝐷3

𝑫𝟑 gauge symmetry group
Smallest discrete nonabelian group ⇒ “fits” Ca trapped ion qudit
platform*.

2+1 dimensional square lattice , pure gauge:

෡𝐻0 = −
1

𝑔2 ෍

𝑝

ℛ Tr ෡𝑈𝑝1

𝑗 ෡𝑈𝑝2

𝑗 ෡𝑈𝑝3

𝑗† ෡𝑈𝑝4

𝑗†
+ ෡𝐻𝐸

෡𝐻𝐵 , ෡𝐻𝐸 ≠ 0

Gauge transformation on vertex 𝒗

෡Θ𝒗,𝑔 = ෡Θ3,𝑔
𝐿 ෡Θ4,𝑔

𝐿 ෡Θ1,𝑔
𝑅 ෡Θ2,𝑔

𝑅 , ෡Θ𝒗,𝑔, ෡Θ𝒗,ℎ ≠ 0 but  Π𝑠
෡Θ𝒗,𝑔, ෡Θ𝒗,ℎ Π𝑠 = 0

෡Θ𝒗,𝑔 𝜓phys = 𝜓phys ∀𝑔 ∈ 𝐺, 𝒗

෡𝐻𝐵

෡𝐻𝐸

෡Θ𝒗,𝑔

*Ringbauer et al, Nat Phys 18 (2022)

෡𝐻𝐵
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Nonabelian LGT: benchmark on 𝐷3

𝑫𝟑 gauge symmetry group
Smallest discrete nonabelian group ⇒ “fits” Ca trapped ion qudit
platform*.

2+1 dimensional square lattice , pure gauge:

෡𝐻0 = −
1

𝑔2 ෍

𝑝

ℛ Tr ෡𝑈𝑝1

𝑗 ෡𝑈𝑝2

𝑗 ෡𝑈𝑝3

𝑗† ෡𝑈𝑝4

𝑗†
+ ෡𝐻𝐸

*Ringbauer et al, Nat Phys 18 (2022)

෡𝐻𝐵
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

gauge charge
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

Eigenbasis of ෡Θ𝒗,𝑔

Plaquette operator
Gauge transformations do not commute
Local gauge charge
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

Eigenbasis of ෡Θ𝒗,𝑔

Plaquette operator
Gauge transformations do not commute
Local gauge charge

Dynamical post-selection
Ancilla qudit 
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𝐷3 post-Processed Symmetry Verification (PSV)

Π𝑠 = projector on gauge-symmetry sector

𝜌 = density matrix after noisy evolution

𝜌𝑠 =
Π𝑠𝜌Π𝑠

Tr[Π𝑠𝜌]

Symmetry-projected expectation value of gauge-invariant observable 

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌Π𝑠

Tr Π𝑠𝜌
=

Tr 𝑂𝑠𝜌

Tr[Π𝑠𝜌]
, with 𝑂𝑠 = Π𝑠𝑂Π𝑠 = Π𝑠𝑂

Discrete groups 

Π𝑠 = ෑ

𝑣∈V

1

𝐺
෍

𝑔∈G

Θ𝑔,𝑣 =
1

𝐺 𝑛𝑣
෍

𝒈∈G×𝑛𝑣

ෑ

𝑣∈V

Θ𝑔𝑣,𝑣

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌

Tr Π𝑠𝜌
=

∑𝒈∈G×𝑛𝑣 Tr[𝜌𝑂Π𝑣∈VΘ𝑔𝑣,𝑣]

∑𝒈∈G×𝑛𝑣 Tr[𝜌Π𝑣∈VΘ𝑔𝑣,𝑣]

Effective group symmetrization
by averaging over multiple 
observables

19



𝑈1

𝑈2 𝑈3

𝑈0
𝑣1 𝑣2

Two plaquettes with PBC

dimℋtot = 64 = 1296, dimℋphys = 49

Two vertices
෡Θ𝑣1,𝑔 = ෡Θ𝐿

0,𝑔
෡Θ𝐿

2,𝑔
෡Θ𝑅

0,𝑔
෡Θ𝑅

1,𝑔

෡Θ𝑣2,𝑔 = ෡Θ𝐿
1,𝑔

෡Θ𝐿
3,𝑔

෡Θ𝑅
0,𝑔

෡Θ𝑅
3,𝑔

Quench protocol:
• DPS: Each trotter 

step, measure one 
local charge

• PSV: 16 independent 
observables to 
sample

Numerical Results

෡𝐻0 = −
1

𝑔2 ෍

𝑝

ℛ Tr ෡𝑈𝑝1

𝑗 ෡𝑈𝑝2

𝑗 ෡𝑈𝑝3

𝑗† ෡𝑈𝑝4

𝑗†
+ ෡𝐻𝐸

Noise model: random unitaries close to the identity

𝜓 𝑡 = exp(−𝑖𝐻𝑡) |𝜓 0 ⟩

≅ 𝒰𝜀(𝛾) exp −
𝑖𝐻𝐸𝑡

𝑁
exp −

𝑖𝐻𝐵𝑡

𝑁

𝑁

|𝜓 0 ⟩
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𝑈1

𝑈2 𝑈3

𝑈0
𝑣1 𝑣2

Two plaquettes with PBC

dimℋtot = 64 = 1296
dimℋphys = 49

Two vertices
෡Θ𝑣1,𝑔 = ෡Θ𝐿

0,𝑔
෡Θ𝐿

2,𝑔
෡Θ𝑅

0,𝑔
෡Θ𝑅

1,𝑔

෡Θ𝑣2,𝑔 = ෡Θ𝐿
1,𝑔

෡Θ𝐿
3,𝑔

෡Θ𝑅
0,𝑔

෡Θ𝑅
3,𝑔

Quench protocol:
• DPS: Each trotter 

step, measure one 
local charge

• PSV: 16 independent 
observables to 
sample

Numerical Results

=
Tr 𝑂Π𝑠𝜌

Tr 𝑂𝜌𝑠
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Conclusions & outlook

Two post-selection approaches general symmetries, tested for 
non-Abelian systems

• Dynamical post selection
• Mid-circuit measurements
• Entangling gates
• Measurements and reset are slow

• Post-processed symmetry verification
• “Cheap” extra circuitry
• Exponential number of observables

• Optimize measurement strategies
• Local observable may not require full 

gauge invariance

• Identify commensurate observables

22
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෡Θ𝑛𝜌෡Θ𝑛
† −

1

2
෡Θ𝑛

† ෡Θ𝑛, 𝜌 + 1 − ℱ 𝛾 ෍

𝑘=1

2𝑁−1

𝐿𝑘𝜌𝐿𝑘
† −

1

2
𝐿𝑘

† 𝐿𝑘 , 𝜌 = ℒ𝜌

24

When we measure ෡Θ𝑛 = −𝜏𝑛−1,𝑛
𝑧 𝜎𝑛

𝑧𝜏𝑛,𝑛+1
𝑧 , 

we apply small random rotations around the x and z 
axes.



Numerical Results
Tr 𝑂𝜌𝑠 =

Tr 𝑂Π𝑠𝜌

Tr Π𝑠𝜌
=

∑𝒈∈G×𝑛𝑣 Tr[𝜌𝑂Π𝑣∈VΘ𝑔𝑣,𝑣]

∑𝒈∈G×𝑛𝑣 Tr[𝜌Π𝑣∈VΘ𝑔𝑣,𝑣]
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Continuous measurements
• Continuous limit for DPS

Digital vs Analog: same ensemble 
average, different stochastic trajectories

violations of gauge 
symmetries

gauge violation 
suppressed
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Continuous measurements
• Continuous limit for DPS

Average gauge drift common 
for all trajectories

Digital vs Analog: same ensemble 
average, different stochastic trajectories
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Continuous measurements
• Continuous limit for DPS

Digital vs Analog: same ensemble 
average, different stochastic trajectories

28



Non-Abelian LGT: post-Processed Symmetry Verification (PSV)

The projection of a noisy outcome 𝜌 of a simulation onto the 
symmetry-preserving subspace  (defined by Π𝑠) is

𝜌𝑠 =
Π𝑠𝜌Π𝑠

Tr[Π𝑠𝜌]
The expectation value of an observable w.r.t. the symmetry-projected 
state reads

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌Π𝑠

Tr Π𝑠𝜌
=

Tr 𝑂𝑠𝜌

Tr[Π𝑠𝜌]
, with 𝑂𝑠 = Π𝑠𝑂Π𝑠

Since for discrete groups 

Π𝑠 = ෑ

𝑣∈V

1

𝐺
෍

𝑔∈G

Θ𝑔,𝑣 =
1

𝐺 𝑛𝑣
෍

𝒈∈G×𝑛𝑣

ෑ

𝑣∈V

Θ𝑔𝑣,𝑣 

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌

Tr Π𝑠𝜌
=

∑𝒈∈G×𝑛𝑣 Tr[𝜌𝑂Π𝑣∈VΘ𝑔𝑣,𝑣]

∑𝒈∈G×𝑛𝑣 Tr[𝜌Π𝑣∈VΘ𝑔𝑣,𝑣]
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30

⨁

𝑅𝑔
𝑅

𝒪

=
|3⟩ |4⟩ |5⟩

aux 𝑑=2 aux 𝑑=2 ⨁ ⨁

𝑅𝑔
𝑅

𝑔 is a reflection
𝑅𝑔

𝑅†෡Θ𝑔
𝑅𝑅𝑔

𝑅 = diag(1,1,1, −1, −1, −1)

𝒪
=

|2⟩

⊕3 1aux 𝑑=3 aux 𝑑=3

|3⟩

⊕3 1

|4⟩

⊕3-1

|5⟩

⊕3-1

𝑅𝑔
𝑅 𝑅𝑔

𝑅 𝑔 is a rotation
𝑅𝑔

𝑅†෡Θ𝑔
𝑅𝑅𝑔

𝑅 =

diag(1,1, 𝑒2𝜋𝑖/3, 𝑒2𝜋𝑖/3, 𝑒−2𝜋𝑖/3, 𝑒−2𝜋𝑖/3)



Lattice QCD

• QCD Lagrangian on a discrete spacetime grid, Wick rotation 
to Euclidean time;

• Observables are calculated using the Path Integral formalism;

• Monte Carlo methods for probability distribution of gauge 
configurations.

Credit: Lattice QCD GPU Inverters on ROCm Platform

෠𝒪 =
1

𝑍0
∫ 𝒟 ത𝜓, 𝜓 𝒟 𝐴 𝑒−∫ 𝑑4𝑥𝐸ℒ𝐸𝒪
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Lattice QCD

෠𝒪 =
1

𝑍0
∫ 𝒟 ത𝜓, 𝜓 𝒟 𝐴 𝑒−∫ 𝑑4𝑥𝐸ℒ𝐸𝒪

Successes

Hadron spectrum and exotic states
Hadron form factors
Quark masses and the strong coupling 
costant
Decay rates and low energy constants
Two- and three-body scattering 
amplitudes

✓
✓

✓

✓
✓

Shortcomings

QCD phase diagram:
Sign problem:
Statistical weights are not positive
Euclidean time:
Real time evolution of system
Many-body processes are harder to 
obtain

Lattice QCD
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Lattice QCD

෠𝒪 =
1

𝑍0
∫ 𝒟 ത𝜓, 𝜓 𝒟 𝐴 𝑒−∫ 𝑑4𝑥𝐸ℒ𝐸𝒪

Shortcomings

QCD phase diagram:
Sign problem:
Statistical weights are not positive
Euclidean time:
Real time evolution of system
Many-body processes are harder to 
obtain

Hamiltonian Formulation

1. No sign problem

2. Both real- and imaginary-time evolution

3. Many-body processes and scattering

4. Hilbert space scales exponentially with 

the system size Quantum simulation

෠𝒪(𝑡) = ⟨0|𝑒𝑖𝐻𝑡 ෠𝒪 0 𝑒−𝑖𝐻𝑡|0⟩
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Matter fieldsGauge fields

Local symmetry, eg 𝛁 ⋅ 𝑬 = −𝜌

Quantum simulations of lattice 
gauge theories DA RIFARE

How we store information
𝜓 = … U𝐚U𝐛U𝐜U𝐝Φ𝐐 …

The dimension of the Hilbert space grows exponentially, but it is 
partitioned in gauge sectors described by local gauge 
symmetries.

Symmetry group 𝑔 ∈ 𝐺, group elements represent Gauge fields 
on lattice links.

Form of local symmetries

Θ𝑔,𝑣 = 𝕀⨂𝕀 … Θ𝑔,𝐚
𝐿 Θ𝑔,𝐛

𝐿 Θ𝑔,𝐜
𝑅 Θ𝑔,𝐝

𝑅 Θ𝑔
𝑄

… 𝕀⨂𝕀, 𝑔 ∈ 𝐺, unitary, not 
Hermitian
𝐻, Θ𝑔,𝑣 = 0

Θ𝑔,𝑣 𝜓 phys = 1 𝜓 phys

Zohar and Burrello, PRD, 2015

a

b

c
d
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Measurement-induced gauge protection in digital 
quantum simulations

Dark 
states, 
stabilized 
by 
measure
ments

Quantum Zeno regime

Quantum Zeno transition between 
protected and chaotic phases

35

By JozumBjada - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=112625244

Taking the continuous time limit

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෡Θ𝑛𝜌෡Θ𝑛
† −

1

2
෡Θ𝑛

† ෡Θ𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1]
• Random gauge transformations [2] 
• Continuous measurements
• Continuous limit for DPS

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688



Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ ෡𝐻, 𝜌 + 𝛾 ෍

𝑛

෠𝐺𝑛𝜌 ෠𝐺𝑛
† −

1

2
෠𝐺𝑛

† ෠𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Continuous measurements
• Continuous limit for DPS

Digital vs Analog: same ensemble 
average, different stochastic trajectories
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Non-Abelian LGT: 𝐷3 and a qudit approach

𝑫𝟑 gauge symmetry group
• Smallest discrete nonabelian group ⇒ “fits” Ca trapped ion qudit

platform.
• LGTs: natural application for qudit quantum hardware. Qudits 

efficiently represent high-dimensional gauge fields: local 
operations act on a single gauge field ( 𝐺 ≤ 𝑑);
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Non-Abelian LGT

𝑫𝟑 gauge symmetry group

2+1-dimensional square lattice, pure gauge:

෡𝐻0 = −
1

𝑔2 ෍

𝑝

ℛ Tr ෡𝑈𝑝1

𝑗 ෡𝑈𝑝2

𝑗 ෡𝑈𝑝3

𝑗† ෡𝑈𝑝4

𝑗†
+ ෡𝐻𝐸

෡𝐻𝐵 , ෡𝐻𝐸 ≠ 0

Gauge transformations on vertex 𝒗

෡Θ𝒗,𝑔 = ෡Θ𝟏,𝑔
𝐿 ෡Θ𝟐,𝑔

𝐿 ෡Θ𝟑,𝑔
𝑅 ෡Θ𝟒,𝑔

𝑅 , ෡Θ𝒗,𝑔, ෡Θ𝒗,ℎ ≠ 0

෡Θ𝒗,𝑔 𝜓phys = 𝜓phys ∀𝑔 ∈ 𝐺, 𝒗

෡𝐻𝐵

෡𝐻𝐵

෡𝐻𝐸

෡Θ𝒗,𝑔

𝒗
𝟏

𝟐

𝟑

𝟒
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Non-Abelian LGT: Dynamical Post Selection (DPS)

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

Eigenbasis of ෡Θ𝒗,𝑔

Plaquette operator
Local gauge charge

Digital post-selection auxiliary qudit
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Non-Abelian LGT: post-Processed Symmetry Verification (PSV)

The projection of a noisy outcome 𝜌 of a simulation onto the 
symmetry-preserving subspace  (defined by Π𝑠) is

𝜌𝑠 =
Π𝑠𝜌Π𝑠

Tr[Π𝑠𝜌]

We can find the following expression

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌

Tr Π𝑠𝜌
=

∑𝒈∈G×𝑛𝑣 Tr[𝜌𝑂Π𝑣∈VΘ𝑔𝑣,𝑣]

∑𝒈∈G×𝑛𝑣 Tr[𝜌Π𝑣∈VΘ𝑔𝑣,𝑣]

The projection onto the gauge sector is computed by sampling 
several observables to construct the ratio.

40
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