Quantum Simulation of Fundamental Physics

Progress and Thoughts ECT*, Trento, September 1, 2025

Martin Savage InQubator for Quantum Simulation (IQuS), University of Washington

High-Energy Collisions

There is a lot of physics that takes place in collisions of matter

- Production of new particles, e.g., Higgs
- Collisions of nuclei with satellites, energy loss with materials quantification
- Properties and thermalization of quark-gluon plasma/liquid
- Fragmentation, hadronization, confinement QCD is now the background
- Transport in strongly interacting, correlated non-equilibrium matter open quantum system(s)
- Neutrino interactions with matter and properties

Hot and Dense Non-Equilibrium Matter

Ordinary Matter

Small number of input parameters responsible for all of strongly interacting matter

Dimensionless plus a scale

LQCD - dimensionless

Hierarchies

Neutron-Induced Fission

NN wavefunction at E=0

IBM Quantum Summit - NYC December 2023

Utility-scale experiments

With quantum systems composed of 100+ qubits, researchers are beginning to explore algorithms and applications at scales beyond brute-force classical computation using IBM Quantum systems.

Evidence for the utility of quantum computing before fault tolerance

Simulating large-size quantum spin chains on cloud-based

127 qubits / 2880 CX gates

Nature, **618**, 500 (2023)

102 qubits / 3186 CX gates

superconducting quantum computers

arXiv:2207.09994

Uncovering Local Integrability in Quantum Many-Body Dynamics

Realizing the Nishimori transition across the error threshold for

124 qubits / 2641 CX gates

arXiv:2307.07552

125 qubits / 429 gates + meas.

constant-depth quantum circuits

arXiv:2309.02863

Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits

arXiv:2308.04481

Efficient Long-Range Entanglement using Dynamic Circuits

101 qubits / 504 gates + meas.

100 qubits / 788 CX gates

arXiv:2308.13065

Quantum reservoir computing with repeated measurements on superconducting devices

120 qubits / 49470 gates + meas.

arXiv:2310.06706

Select Recent Advances in Quantum Computing

Cold-Atom arrays with Optical Tweezers

4 Logical Qubits
32-qubit H2-1 trapped ions
(Quantinuum-Microsoft)

FIG. 1. Level scheme of the ⁴⁰Ca⁺ ion.

Qudits with trapped ions

Surface code >100 superconducting qubits

Rui Cai · Xu-Tao Yu · Zai-Chen Zhang

From Classical to Error-Corrected Quantum Computing

Precision simulations

Logical Qubits

FIG. 1. Level scheme of the ⁴⁰Ca⁺ ion.

Cold Atoms

Physics Output
Ontimization

d by a <u>figure</u> by Daniel Optimization

Landscape of quantum computing from an error correction perspective. Inspired by a <u>figure</u> by Daniel Gottesman.

by Ewan Munro, Co-Founder of Entropica Labs.

Simulating Lattice Gauge Field Theories

Hamiltonian Kogut-Susskind 1970's

Yang-Mills:
Byrnes-Yamamoto
2005

SU(N): Zohar et al (2013)

QLM Banerjee et al Tagliacozzo et al (2013)

Encoding Systems in Multi-Hilbert Spaces Embedded in Large HPC systems

Optimize for target observables - Physics Aware

Human-intensive co-design exploration

Low-Dimensional Models:

e.g., Quantum Electromagnetism in 1 Space and 1 Time Dimensions 2+1D simulations are starting - Zn-like

This model is being used by several groups pursuing quantum simulations

String Breaking as an Example

Quantum simulation of string breaking: summary

Models

1+1D

- Z₂ LGT, trapped ions
- SU(2) LGT, superconducting qubits
- U(1) LGT, atoms in optical lattices

2+1D

- Z₂ LGT, superconducting qubits
- U(1) LGT, Rydberg atom arrays

Phenomenology

- Ground state
- Quench dynamics
 - Resonant string breaking
- Dynamics of strings in 2+1D
- Ramp dynamics

SU(2) lattice gauge theory 1+1D

Ciavarella, arXiv:2411.05915

Confinement and Scalable Circuits

(2023-)

Roland Farrell, Marc Illa, Anthony Ciavarella and MJS

$$\hat{H} = \hat{H}_m + \hat{H}_{kin} + \hat{H}_{el} = \frac{m}{2} \sum_{j=0}^{2L-1} \left[(-1)^j \hat{Z}_j + \hat{I} \right] + \frac{1}{2} \sum_{j=0}^{2L-2} \left(\hat{\sigma}_j^+ \hat{\sigma}_{j+1}^- + \text{h.c.} \right) + \frac{g^2}{2} \sum_{j=0}^{2L-2} \left(\sum_{k \le j} \hat{Q}_k \right)^2$$

Local

Nearest Neighbor

Non-local

Symmetries and Confinement

Classical Extrapolations

Quantum Implementation

Classical Optimization

Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits

Quantum simulations of hadron dynamics in the Schwinger model using 112 qubits

Builds upon ADAPT-VQE by Sophia Economou *et al.*

Production using IBM's QPU Torino

(The largest quantum simulation that had been performed)

Production highlights

- 14K CNOTs for 14 Trotter steps
- 1.05 Trillion total CNOTs applied
- 154 Million shots
- 112 qubits x 370 depth

Decoherence Renormalization

Mitigating Depolarizing Noise on Quantum Computers with Noise-**Estimation Circuits**

Phys. Rev. Lett. **127**, 270502 – Published 27 December 2021

Miroslav Urbanek, Benjamin Nachman, Vincent R. Pascuzzi, Andre He, Christian W. Bauer, and Wibe A. de Jong

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer

Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell Department of Physics and Astronomy, York University, Toronto, Ontario, Canada, M3J 1P3

(Dated: May 2022. Updated: October 2022.)

The device is approaching a classical, depolarized set of qubits as time goes by.

time (in units of $2/g^2$)

Mitigation methods are essential and effective

352

"Physics circuit"

"Mitigation circuit" - all angles set to zero (e.g.)

Hadronization and Fragmentation

Baryon Entanglement, Barata et al, Gong et al

Fragmentation, Bauer et al

Hadronization, Florio et al

Energy Loss and Multi-partite Entanglement, Farrell et al

1+1D Preparing for the Future

Error Correction in Gauge Theories

Abelian Z_n models

Quantum error correction with gauge symmetries

Abhishek Rajput ☑, Alessandro Roggero ☑ & Nathan Wiebe ☑

npj Quantum Information 9, Article number: 41 (2023) Cite this article

Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes

Luca Spagnoli* and Alessandro Roggero[†]
Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy and INFN-TIFPA Trento Institute of Fundamental Physics and Applications, Trento, Italy

Nathan Wiebe[‡]

Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada Pacific Northwest National Laboratory, Richland, WA 99354, USA and Department of Physics, University of Washington, Seattle, WA 98195, USA (Dated: October 7, 2024)

Gauss's law

Stabilizers

1+1D Quantum Chromodynamics

Preparations for quantum simulations of quantum chromodynamics in $1+1\mbox{ dimensions.}$ I. Axial gauge

Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage Phys. Rev. D **107**, 054512 – Published 30 March 2023

Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks

Yasar Y. Atas*,^{1,2,†} Jan F. Haase*,^{1,2,3,‡} Jinglei Zhang,^{1,2,§} Victor Wei,^{1,4} Sieglinde M.-L. Pfaendler,⁵ Randy Lewis,⁶ and Christine A. Muschik^{1,2,7}

IONQ

Pathfinding Quantum Simulations of Neutrinoless Double- β Decay

Ivan A. Chernyshev ,¹ Roland C. Farrell ,² Marc Illa ,³ Martin J. Savage ,³, * Andrii Maksymov ,⁴ Felix Tripier ,⁴ Miguel Angel Lopez-Ruiz ,⁴ Andrew Arrasmith ,⁴ Yvette de Sereville ,⁴ Aharon Brodutch ,⁴ Claudio Girotto ,⁴ Ananth Kaushik ,⁴ and Martin Roetteler ,⁴

$$\begin{split} \hat{H}_{\beta}^{1+1} &= \frac{G}{\sqrt{2}} \sum_{\text{spatial sites}} \left(\overline{\psi}_u \gamma^{\mu} \psi_d \ \overline{\psi}_e \gamma_{\mu} \mathcal{C} \psi_{\nu} + \text{h.c.} \right) \\ &\approx \frac{G}{\sqrt{2}} \sum_{n \text{ even}} \left(\phi_n^{(u)\dagger} \phi_n^{(d)} \phi_n^{(e)\dagger} \phi_{n+1}^{(\nu)} + \text{h.c.} \right) \ , \end{split}$$

>2300 entangling gates

Pathfinding Quantum Simulations of Neutrinoless Double- β Decay

Ivan A. Chernyshev •, 1 Roland C. Farrell •, 2 Marc Illa •, 3 Martin J. Savage •, 3, * Andrii Maksymov •, 4 Felix Tripier •, 4 Miguel Angel Lopez-Ruiz •, 4 Andrew Arrasmith •, 4 Yvette de Sereville •, 4 Aharon Brodutch •, 4 Claudio Girotto •, 4 Ananth Kaushik •, 4 and Martin Roetteler •, 4

>450 entangling gates

Dynamical Quantum Phase Transitions

Dynamical topological transitions in the massive Schwinger model with a θ -term

T. V. Zache,^{1,*} N. Mueller,² J. T. Schneider,¹ F. Jendrzejewski,³ J. Berges,¹ and P. Hauke^{1,3}

Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory

2018

2023

Niklas Mueller,^{1,2,3,*} Joseph A. Carolan,⁴ Andrew Connelly,⁵ Zohreh Davoudi,^{1,6,†} Eugene F. Dumitrescu,^{7,‡} and Kübra Yeter-Aydeniz⁸

Modeling the QCD Phase Diagram

$$\mathcal{H} = \bar{\psi}(i\gamma_1\partial_1 + m)\psi - g(\bar{\psi}\psi)^2 - \mu\bar{\psi}\gamma_0\psi$$

Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States

Zohreh Davoudi,^{1,2,*} Niklas Mueller,^{1,3,†} and Connor Powers^{1,2,‡}

¹Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742, USA ²Institute for Robust Quantum Simulation, University of Maryland, College Park, Maryland 20742, USA ³Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742, USA

Phys. Rev. Lett. **131**, 081901 – Published 21 August 2023

Dynamical Gauge Fields - Yang-Mills Byrnes-Yamamoto — Kogut-Susskind

Many ways to map/distribute the field(s) in the UV (lattice spacing) Consider the Kogut-Susskind basis = electric basis

SU(3) Yang-Mills Plaquettes

IBM

A Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge Theory in the Local Multiplet Basis

Anthony Ciavarella,¹,* Natalie Klco,²,† and Martin J. Savage¹,‡

Quantum Circuits for SU(3) Lattice Gauge Theory

Praveen Balaji¹, Cianán Conefrey-Shinozaki¹, Patrick Draper*¹, Jason K. Elhaderi¹, Drishti Gupta¹, Luis Hidalgo¹, Andrew Lytle¹, and Enrico Rinaldi²

Preparation of the SU(3) Lattice Yang-Mills Vacuum with Variational Quantum Methods

Anthony N Ciavarella¹,* and Ivan A Chernyshev¹,†

Hot Starts

Quantum Simulation of SU(3) Lattice Yang Mills Theory at Leading Order in Large

Anthony N. Ciavarella ¹, and Christian W. Bauer ¹, ,

Perturbative Expansions and Effective Field Theories

Reducing Group Space Overheads in non-Abelian LGT reducing the number of links per vertex

From square plaquettes to triamond lattices for SU(2) gauge theory

Ali H. Z. Kavaki* and Randy Lewis[†]

2024

Quantum and classical spin network algorithms for q-deformed Kogut-Susskind gauge theories

Torsten V. Zache,* Daniel González-Cuadra, and Peter Zoller

2023

Transport Properties Shear Viscosity in 2+1D SU(2)

Editors' Suggestion

Open Access

Classical and quantum computing of shear viscosity for (2+1)D SU(2) gauge theory

Berndt Mueller and Xiaojun Yao

Francesco Turro, Anthony Ciavarella, and Xiaojun Yao Phys. Rev. D **109**, 114511 – Published 13 June 2024

$$H = \frac{3\sqrt{3}g^2}{4} \sum_{\text{links}} E_i^a E_i^a - \frac{4\sqrt{3}}{9g^2a^2} \sum_{\text{plaqs}} \bigcirc$$

$$T^{xy} = -\frac{g^2}{\sqrt{3}a^2} \left((E_1^a)^2 - (E_3^a)^2 \right)$$

Quantum algorithm for G_r^{xy}

On 4×4 lattice w/ $j_{\text{max}} = 0.5$

At the Quantum Limit, same as liquid created in heavy-ion collisions

Improved Hamiltonian for Honeycomb lattices non-Abelian LGTs in 2+1

Improved honeycomb and hyperhoneycomb lattice Hamiltonians for quantum simulations of non-Abelian gauge theories

Marc Illa (1)*, Martin J. Savage (1)†,‡, and Xiaojun Yao (1)§

Show more 💙

Phys. Rev. D **111**, 114520 – **Published 26 June, 2025**

DOI: https://doi.org/10.1103/3rwf-f844

$$\Gamma_{6,10}^{(HC)} = \frac{14}{9} \Gamma_6^{(HC)} - \frac{5}{36} \Gamma_{10}^{(HC)} = \frac{g^2}{4} S_0^2 \sum_a [B^a(\boldsymbol{x})]^2 + \mathcal{O}(b^7)$$

Improved Hamiltonian for Hyper-Honeycomb lattices non-Abelian LGTs in 3+1

Improved honeycomb and hyperhoneycomb lattice Hamiltonians for quantum simulations of non-Abelian gauge theories

Marc Illa (D*, Martin J. Savage (D†,‡, and Xiaojun Yao (D§

Phys. Rev. D **111**, 114520 – **Published 26 June, 2025**DOI: https://doi.org/10.1103/3rwf-f844

(a)

Defines Leading-Order Magnetic Contribution

$$\Gamma_{10,12}^{(\mathrm{HHC})} = \Gamma_{10}^{(\mathrm{HHC})} + \frac{5}{4}\Gamma_{12}^{(\mathrm{HHC})} = \frac{3g^2bV}{8} \sum_{x,i} [B_i^a(x)]^2 + \mathcal{O}(b^6)$$

Improved Hamiltonian - Tadpoles

Dynamical Local Tadpole-Improvement in Quantum Simulations of Gauge Theories

Marc Illa[®],* Martin J. Savage[®],[†] and Xiaojun Yao[®]

Space-time dependent tadpole corrections
$$\hat{H}=rac{g^2}{2a^{d-2}}\sum_{b, ext{links}}|\hat{m{E}}^{(b)}|^2$$

$$+ \frac{1}{2a^{4-d}g^2} \sum_i \left[2N_c - \frac{1}{u_{0,i}^4} \left(\hat{\Box}_i + \hat{\Box}_i^\dagger \right) \right]$$

$$u_{0,i} = \left(1 + \frac{1}{2N_c} \langle \psi | \hat{\Box}_i + \hat{\Box}_i^{\dagger} | \psi \rangle\right)^{1/4}$$

Improved Hamiltonian - Tadpoles

Dynamical Local Tadpole-Improvement in Quantum Simulations of Gauge Theories

Marc Illa[®],* Martin J. Savage[®],[†] and Xiaojun Yao[®]

Scalar Field Theory with bounded, smooth wave packet on interacting vacuum

$$\langle \Psi | \phi_{\alpha}^2 | \Psi \rangle \rightarrow \frac{1}{L} \sum_{k} \frac{1}{2E_k} + \left| \sum_{k} \frac{g_k V_{k\alpha}}{\sqrt{E_k}} \right|^2$$

Vacuum tadpole correction plus Lattice spacing finite density term

Entanglement and Thermalization

Quantum Computing Universal Thermalization Dynamics in a (2+1)D Lattice Gauge Theory

Niklas Mueller,^{1,*} Tianyi Wang,^{2,3,4} Or Katz,^{3,5,6} Zohreh Davoudi,^{7,8,4,9} and Marko Cetina^{2,3,5,4}

Entanglement and Thermalization Stabilizer Scars

When is a Quantum Computer Required?

Quantum Complexity of Physical Systems?

qm≫€ts #4

Why should you care about Magic

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane, David B. Kaplan, Natalie Klco, and Martin J. Savage Phys. Rev. Lett. **122**, 102001 – Published 14 March 2019

Low-energy QCD: NN and YN S-Wave Scattering

$$\hat{\mathbf{S}}_{\sigma} = \frac{1}{4} \left(3e^{i2\delta_3} + e^{i2\delta_1} \right) \hat{\mathbf{1}} + \frac{1}{4} \left(e^{i2\delta_3} - e^{i2\delta_1} \right) \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}$$

$$e_p(\hat{A}) \longrightarrow \mathcal{E}(\hat{\mathbf{S}}_{\sigma}) = \frac{1}{6} \sin^2(2(\delta_3 - \delta_1))$$

SU(4) for 2 flavors and **SU(16)** for 3 flavors - more symmetry than large-Nc, [SU(4) and SU(6)]

Emergent approximate symmetries in nuclear systems

Suppressed fluctuations in entanglement

Suppressed sign problems in classical simulations

Entanglement Rearrangment, Effective Model Spaces and Symmetries

Home > The European Physical Journal A > Article

Multi-body entanglement and information rearrangement in nuclear many-body systems: a study of the Lipkin-Meshkov-Glick model

Regular Article - Theoretical Physics | Published: 17 October 2023 Volume 59, article number 231, (2023) Cite this article

S. Momme Hengstenberg, Caroline E. P. Robin 🔀 & Martin J. Savage

$$\varepsilon$$
 $rac{1}{p=1}$
 $rac{1}{p=2}$
 $rac{1}{p=3}$
 $rac{1}{p=N}$
 $rac{1}{p=N}$
 $rac{1}{p=N}$

$$\hat{W}: \begin{array}{c|c} & & & & & & \\ \hline & & & & & \\ \hline p=1 & & p=2 & & p=3 & & \\ \hline \end{array} \begin{array}{c} & & & & \\ \hline & & & \\ \hline p=N & & \\ \hline \end{array}$$

$$\hat{H} = \frac{\varepsilon}{2} \sum_{\sigma p} \sigma \hat{c}_{p\sigma}^{\dagger} \hat{c}_{p\sigma} - \frac{V}{2} \sum_{pq\sigma} \hat{c}_{p\sigma}^{\dagger} \hat{c}_{q\sigma}^{\dagger} \hat{c}_{q-\sigma} \hat{c}_{p-\sigma}$$

$$-\frac{W}{2} \sum_{pq\sigma} \hat{c}_{p\sigma}^{\dagger} \hat{c}_{q-\sigma}^{\dagger} \hat{c}_{q-\sigma} \hat{c}_{p-\sigma} ,$$

$$= \varepsilon \hat{J}_z - \frac{V}{2} \left(\hat{J}_+^2 + \hat{J}_-^2 \right) - \frac{W}{2} \left(\hat{J}_+ \hat{J}_- + \hat{J}_- \hat{J}_+ - \hat{N} \right) ,$$

$$\begin{pmatrix} \hat{c}_{p+}(\beta) \\ \hat{c}_{p-}(\beta) \end{pmatrix} = \begin{pmatrix} \cos(\beta/2) - \sin(\beta/2) \\ \sin(\beta/2) & \cos(\beta/2) \end{pmatrix} \begin{pmatrix} \hat{c}_{p+} \\ \hat{c}_{p-} \end{pmatrix}$$

The Magic Power of the S-Matrix - Fluctuations in Magic

$$\overline{\mathcal{M}}(\hat{\mathbf{S}}) \equiv \frac{1}{\mathcal{N}_{ss}} \sum_{i=1}^{\mathcal{N}_{ss}} \mathcal{M}\left(\hat{\mathbf{S}} | \Psi_i \rangle\right)$$

Nuclear Theory

[Submitted on 16 May 2024 (v1), last revised 20 May 2024 (this version, v2)]

The Magic in Nuclear and Hypernuclear Forces

Caroline E. P. Robin, Martin J. Savage

$$\hat{\mathbf{S}}_{\sigma} = \frac{1}{4} \left(3e^{i2\delta_3} + e^{i2\delta_1} \right) \hat{\mathbf{1}} + \frac{1}{4} \left(e^{i2\delta_3} - e^{i2\delta_1} \right) \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}$$

$$\overline{\mathcal{M}}(\hat{\mathbf{S}}) = \frac{3}{20} \left(3 + \cos(4\Delta\delta) \right) \sin^2(2\Delta\delta) ,$$

$$\overline{\mathcal{E}}(\hat{\mathbf{S}}) = \frac{1}{6} \sin^2(2\Delta\delta) ,$$

Neutron-Proton

Hyperon-Nucleon

Indicates the fluctuations in quantum magic due to nuclear forces

Magic and Multi-Partite Entanglement in Nuclei

Quantum magic and multipartite entanglement in the structure of nuclei

Florian Brökemeier (D¹, S. Momme Hengstenberg (D¹, James W. T. Keeble (D¹, Caroline E. P. Robin (D^{1,2,*}, Federico Rocco (D¹, and Martin J. Savage (D^{3,†}

Show more 💙

Phys. Rev. C **111**, 034317 – **Published 11 March, 2025**

DOI: https://doi.org/10.1103/PhysRevC.111.034317

8-tangles

Magic and Multi-Partite Entanglement in Nuclei

$$H_{FS} = -\sum_{k=1}^{N} \frac{\omega_k}{2} \sigma_k^z + \frac{\mu}{2N} \sum_{i < j}^{N} \mathcal{J}_{ij} \vec{\sigma}_i \cdot \vec{\sigma}_j$$

Neutrino Flavor Dynamics in Supernova

Simulations with qubits and qutrits

Quantum Complexity in Neutrinos- **Qutrits**

Quantum magic and computational complexity in the neutrino sector

<u>Ivan Chernyshev</u> 1,*, <u>Caroline E. P. Robin</u> 2,3,†, and <u>Martin J. Savage</u> 1,‡,§

Show more 💙

Phys. Rev. Research 7, 023228 - Published 4 June, 2025

DOI: https://doi.org/10.1103/PhysRevResearch.7.023228

For the two-qutrit system, explicit calculation gives a maximum value of magic in a tensor-product state of M2 = 2 (consistent with $2 \times$ the maximum value for a single three-flavor neutrino), while entangled states can support a maximum value of M2 = 2.23379.

$$\begin{split} \hat{\Sigma}_{i} &\in \{\hat{I}, \hat{X}, \hat{Z}, \hat{X}^{2}, \omega \hat{X} \hat{Z}, \hat{Z}^{2}, \omega^{2} \hat{X} \hat{Z}^{2}, \hat{X}^{2} \hat{Z}, \hat{X}^{2} \hat{Z}^{2} \}, \\ \hat{X}|j\rangle &= |j+1\rangle \ , \ \hat{Z}|j\rangle \ = \ \omega^{j}|j\rangle \ , \ \omega \ = \ e^{i2\pi/3} \end{split}$$

MSW effects: 1000 km

Figure created by Ramya Bhaskar

Quantum Complexity in Neutrinos

Lorentz Violation by Lattice Spacing

Steps toward quantum simulations of hadronization and energy loss in dense matter

Roland C. Farrell (1)1,2,*, Marc Illa (1)1,†, and Martin J. Savage (1)1,‡,§

Show more 💙

Phys. Rev. C **111**, 015202 – **Published 14 January, 2025**

DOI: https://doi.org/10.1103/PhysRevC.111.015202

Lorentz Violation by the Lattice Spacing

What is the Magic doing?

From NISQ to Fault Tolerant Sequency Hierarchies

Hierarchical qubit maps and hierarchically implemented quantum error correction

Sequency Hierarchy Truncation (SeqHT) for Adiabatic State Preparation and Time Evolution in Quantum Simulations

1-Plaquette of SU(2) Yang-Mills Magic to Guide Truncations (?)

Marc IIIa + MJS

$$\hat{H} = \frac{g^2}{2} \sum_{\text{a,links}} |\mathbf{E}^a|^2 + \frac{1}{2g^2} \left(4 - \hat{\Box} - \hat{\Box}^\dagger \right) \qquad H_{j,j'} = \frac{1}{2} g^2 j(j+1) \delta_{j,j'} + \frac{1}{g^2} \left(2\delta_{j,j'} - \delta_{j+1,j'} - \delta_{j-1,j'} \right)$$

Summary and Outlook

A unique time in the history of computing!!

Quantum simulations focused on fundamental physics are advancing

Evolution from NISQ to fault tolerant/error correcting

Understanding how to organize quantum complexity

(Multiple) focused teams with access to forefront quantum hardware are essential

FIN

Pathfinding Quantum Simulations of Neutrinoless Double- β Decay

Ivan A. Chernyshev , 1 Roland C. Farrell , 2 Marc Illa , 3 Martin J. Savage , 3, * Andrii Maksymov , 4 Felix Tripier , 4 Miguel Angel Lopez-Ruiz , 4 Andrew Arrasmith , 4 Yvette de Sereville , 4 Aharon Brodutch , 4 Claudio Girotto , 4 Ananth Kaushik , 4 and Martin Roetteler , †

>450 entangling gates