Foliated field theories Masazumi Honda

(本多正純)

based on collaborations with

Hiromi Ebisu (RIKEN iTHEMS), Taiichi Nakanishi (YITP) & Soichiro Shimamori (Osaka U.)

> Bridging analytical and numerical methods for quantum field theory @ECT*, Trento

This workshop:

Bridging analytical & numerical methods for

Quantum field theory

This talk (?):

(in the context of quantum computing)

Quantum field theory for

Bridging analytical & numerical methods

long (?) term

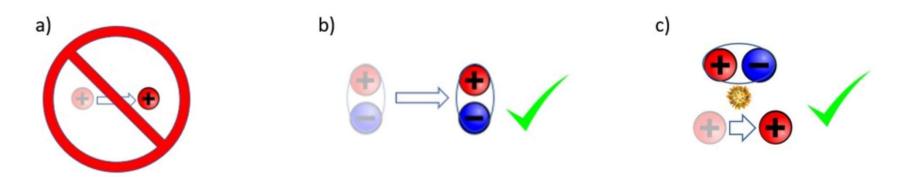
numerical methods for QFT (QFT-QC-QFT)

quasi-particle excitations w/ mobility constraints (~anyons)

quasi-particle excitations w/ mobility constraints (~anyons)

Ex.) particles w/ only dipole mobility

[cf. review: Pretko-Chen-You '20]



realized in systems w/ conserved dipole charge $(\sim \int x \rho(x))$

[∃]recent attentions in the contexts of

condensed matter, quantum info., high energy

Condensed matter

exotic phases of matter

Quantum information

lattice models have large ground state degeneracy

quantum error correction & quantum hard disk (~extension of toric code)

High energy physics

new class of symmetries & field theories

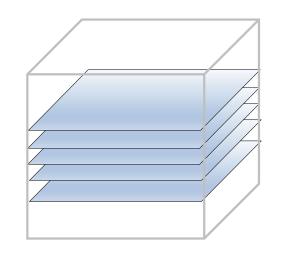
(~modulated symmetries, foliated field theories)

Main results

QFT understanding of fractonic lattice models

Low energy effective theory = Foliated QFT

[cf. Slagle-Aasen-Williamson '18, etc...]



not coupled to metric but to foliation (=decomposition to submfd.)

- gauging modulated symmetry → Foliated QFT
- interpretation from a topological term

(Dijkgraaf-Witten twist term)

<u>Plan</u>

- 1. Introduction
- 2. Review of toric code
- 3. Fracton topological phases
- 4. Summary & Outlook

Errors in classical computers

Computer interacts w/ environment error/noise

Suppose we send a bit but have "error" in probability p

Errors in classical computers

Computer interacts w/ environment error/noise

Suppose we send a bit but have "error" in probability p

A simple way to correct errors:

- ① Duplicate the bit (encoding): $0 \rightarrow 000$, $1 \rightarrow 111$
- 2 Error detection & correction by "majority voting":

$$001 \to 000$$
, $011 \to 111$, etc...

$$P_{\text{failed}} = 3p^2(1-p) + p^3$$
 (improved if $p < 1/2$)

Errors in quantum computers

Computer interacts w/ environment error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

- have to detect errors & act "inverse of errors" to recover w/o destroying states
- need more qubits as in the classical case

Lattice model as Quantum Error Correction

Encoding

physical qubits ~ total Hilbert sp.

logical qubits ~ vacuum Hilbert sp. (w/ degeneracy)

Error detection & recovery

excitation of energy = signal of errors

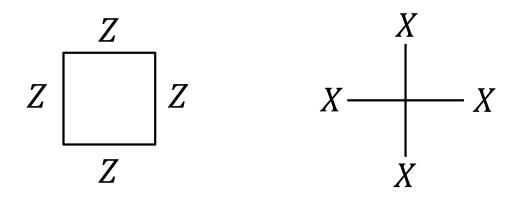
recover by map to "nearest" vacuum

Toric code = canonical example (next slides)

Toric code

Consider 2d periodic square lattice and put qubits on edges

$$H = -J \sum_{\text{face } e \in \partial \text{(face)}} Z_e - J \sum_{\text{vertex } e \mid \partial e = \text{vertex}} X_e \qquad (J > 0)$$



All the terms are commuting \rightarrow ground states:

$$\prod_{e \in \partial \text{(face)}} Z_e |g\rangle = |g\rangle, \quad \prod_{e | \partial e = \text{verte}} X_e |g\rangle = |g\rangle$$

Ground state degeneracy on torus

Ground states:

$$\prod_{e \in \partial \text{(face)}} Z_e |g\rangle = |g\rangle, \quad \prod_{e | \partial e = \text{vertex}} X_e |g\rangle = |g\rangle$$

not all the conditions are independent

Degeneracy:

$$\#(GSD) = 2 \times 2 = 4$$
 (2^{2g} for genus g)

Another viewpoint: operator counting

$$\prod_{e \in \partial \text{(face)}} Z_e |g\rangle = |g\rangle, \qquad \prod_{e | \partial e = \text{vertex}} X_e |g\rangle = |g\rangle$$

Q1. operators commuting w/ the conditions?

$$\square$$
 loop ops.: $\prod_{e \in \text{loop}} Z_e$, $\prod_{e \in \text{dual loop}} X_e$

Q2.

Another viewpoint: operator counting

$$\prod_{e \in \partial \text{(face)}} Z_e |g\rangle = |g\rangle, \qquad \prod_{e | \partial e = \text{vertex}} X_e |g\rangle = |g\rangle$$

Q1. operators commuting w/ the conditions?

$$\square$$
 loop ops.: $\prod_{e \in \text{loop}} Z_e$, $\prod_{e \in \text{dual loop}} X_e$

Q2. independent operators among them?

loop ops. along topologically the same paths are equivalent up to actions of the ops. in the conditions

 \Rightarrow loop ops. along the nontrivial cycles #(independent ops.)= 4 = #(GSD)

First excited states

$$H = -J \sum_{\text{face } e \in \partial \text{(face)}} Z_e - J \sum_{\text{vertex } e \mid \partial e = \text{vertex}} X_e$$

- ${}^{\bullet}Z_e, X_e$ are anti-commuting w/ two of the terms
- This is still true for

$$\prod_{e \in C} Z_e , \qquad \prod_{e \in \tilde{C}} X_e$$

where C, \tilde{C} : simply connected open path in (dual) lattice

First excited states:

First excited states

$$H = -J \sum_{\text{face } e \in \partial(\text{face})} Z_e - J \sum_{\text{vertex } e \mid \partial e = \text{vertex}} X_e$$

- ${}^{\bullet}Z_e, X_e$ are anti-commuting w/ two of the terms
- This is still true for

$$\prod_{e \in C} Z_e , \qquad \prod_{e \in \tilde{C}} X_e$$

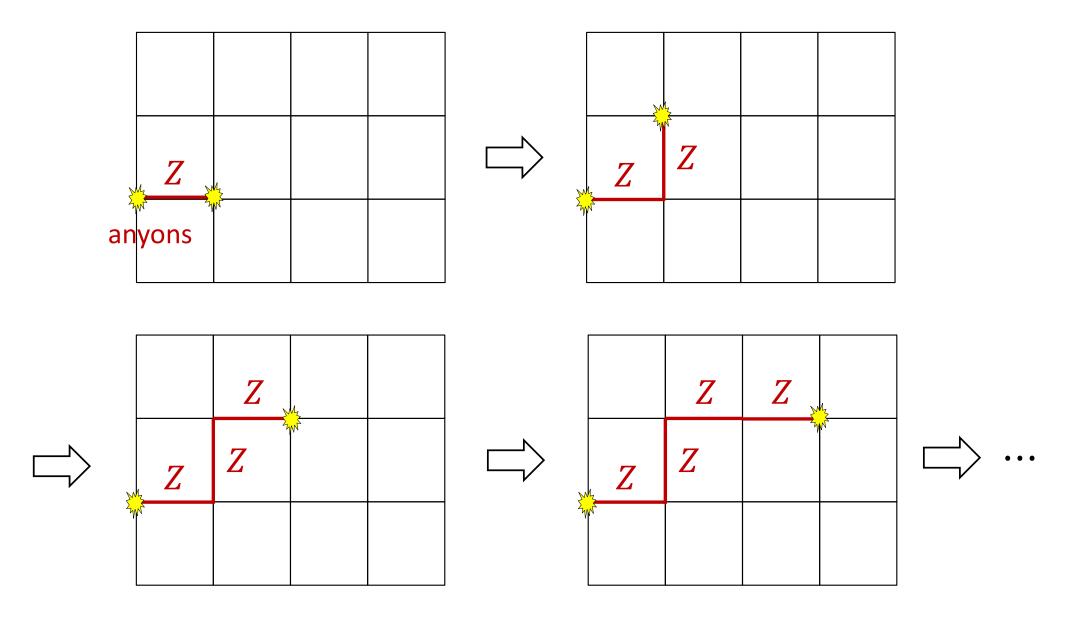
where C, \tilde{C} : simply connected open path in (dual) lattice

First excited states:

$$\prod_{e \in C} Z_e |g\rangle, \qquad \prod_{e \in \tilde{C}} X_e |g\rangle$$

corresponding to anyons

Mobility of anyons



Anyons can move in the whole bulk w/o changing energy

Error correction viewpoint

- physical qubits = qubits on edges
- logical qubits = ground states
- stabilizer conditions:

$$\prod_{e \in \partial \text{(face)}} Z_e |g\rangle = |g\rangle, \quad \prod_{e | \partial e = \text{vertex}} X_e |g\rangle = |g\rangle$$

- logical ops. = loop ops. along the nontrivial cycles
- •error = ops. giving excitation
- -2g (g:genus) logical qubits by #(edges) physical qubits

Toric code as a \mathbb{Z}_2 lattice gauge theory

 Z_2 gauge theory on 2d square lattice: $(U \sim e^{iA}, \Pi \sim e^{iE} \in Z_2)$

$$(U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbf{Z_2})$$

$$H = g^2 \sum_{e} \Pi_e - J \sum_{\text{face } e \in \partial(\text{face})} U_e$$

Gauss law:

$$(\Pi_e U_{e'} \Pi_e^{\dagger} = -\delta_{ee'} U_e)$$

$$\prod_{e \mid \partial e = \text{vertex}} \Pi_e \mid \text{phys} \rangle = \mid \text{phys} \rangle$$

Ground state for g = 0:

$$\prod_{e|\partial e=\text{verte}} U_e | \text{ground} \rangle = | \text{ground} \rangle$$

In identification (U-basis) \sim (computational basis), this is the same condition as the toric code

Low energy effective field theory

BF theory (2+1d topological field theory):

$$\mathcal{L} = \frac{N}{2\pi} b \wedge da \propto \epsilon_{ijk} b^i \partial^j a^k \quad (a, b: \text{gauge fields}, N \in \mathbf{Z})$$

Low energy effective field theory

BF theory (2+1d topological field theory):

$$\mathcal{L} = \frac{N}{2\pi} b \wedge da \propto \epsilon_{ijk} b^i \partial^j a^k \quad (a, b: \text{gauge fields}, N \in \mathbf{Z})$$

Nontrivial gauge invariant ops.:

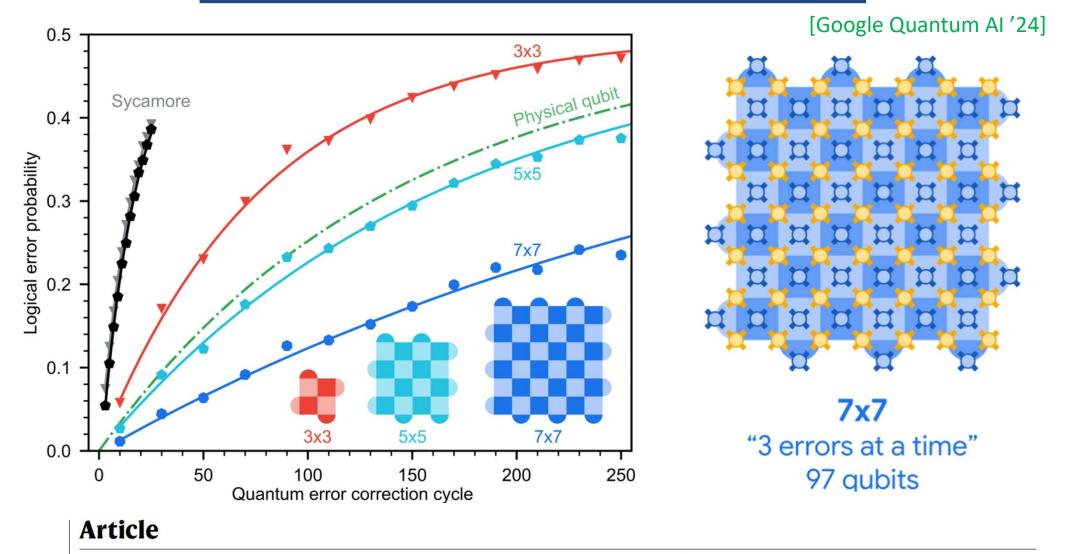
$$W = \exp\left[i\oint_{C}a\right] \in \mathbf{Z}_{N}$$
 (C: topologically nontrivial cycle)

Ground state degeneracy:

$$\#(GSD) = N^{2g}$$

the same as Z_N generalization of the toric code (N=2,g=1) in the standard toric code on torus)

Realization on real devise



Quantum error correction below the surface code threshold

<u>Plan</u>

- 1. Introduction
- 2. Review of toric code
- 3. Fracton topological phases
- 4. Summary & Outlook

Generalization of toric code?

Properties of toric code:

- •ground states = logical qubits
- degeneracy of ground states = 2^{2g} (g: genus of space)
- low energy effective theory = topological gauge theory
- logical gates = gauge invariant operators
- -quasi particle = anyon

Generalization w/ larger degeneracy?

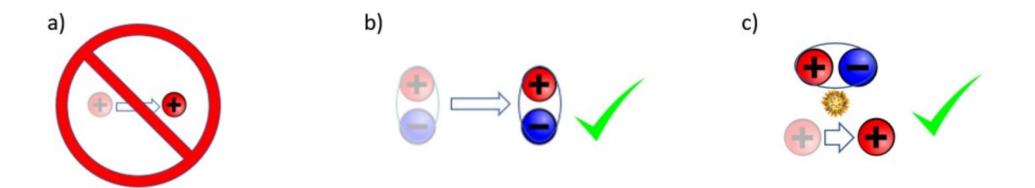
Fractons!

Fractons?

[cf. Pretko-Chen-You '20]

Fracton = (quasi) particle w/ mobility constraints

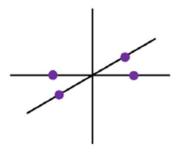
e.g. particles w/ only dipole mobility



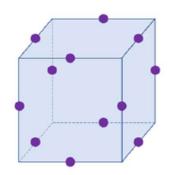
realized in systems w/ conserved dipole charge

Generalizing toric code in this direction?

Ex.1) X-cube model (3+1d lattice model)



$$A_v^z = \prod_{+_{xy}} Z$$



$$B_c = \prod_{\partial c} X$$

[cf. Pretko-Chen-You '20]

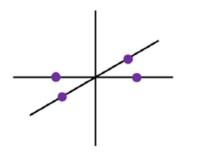
(qubits on edges)

Hamiltonian:

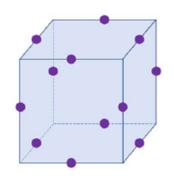
$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

Ground states:

Ex.1) X-cube model (3+1d lattice model)



$$A_v^z = \prod_{+_{xy}} Z$$



$$B_c = \prod_{\partial c} X$$

[cf. Pretko-Chen-You '20]

(qubits on edges)

Hamiltonian:

$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

Ground states:

$$A_v^x|g\rangle = A_v^y|g\rangle = A_v^z|g\rangle = B_c|g\rangle = |g\rangle$$

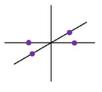
Taking into account overlapped constraints,

$$\log_2 \#(GSD) = 2L_x + 2L_y + 2L_z - 3$$

size dependence!

First excited states

$$H = -\sum_{v} \left(A_v^x + A_v^y + A_v^z \right) - \sum_{c} B_c$$



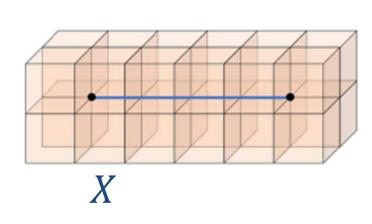
$$A^z_v = \prod_{+_{xy}} Z$$

$$B_c = \prod X$$

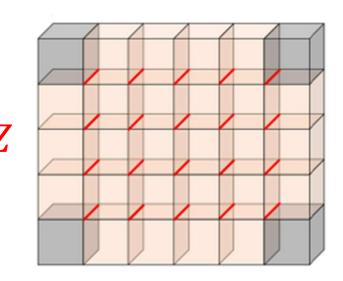
$$B_c = \prod_{\partial c} X$$

Ops. to create first excited states:

[cf. Pretko-Chen-You '20]



~ open line op.



~ open membrane op.

Mobility constraints on "anyons"

"Anyons" can move in a straight way w/o changing energy but consume energy to curve

X-cube model:

$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

Properties:

ground state degeneracy

$$\log_2 \#(GSD) = 2L_x + 2L_y + 2L_z - 3$$

 there are quasi-particle excitations like anyons but they have constrained mobilities

∃several lattice models w/ similar properties

X-cube model:

$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

Properties:

ground state degeneracy

$$\log_2 \#(GSD) = 2L_x + 2L_y + 2L_z - 3$$

 there are quasi-particle excitations like anyons but they have constrained mobilities

∃several lattice models w/ similar properties

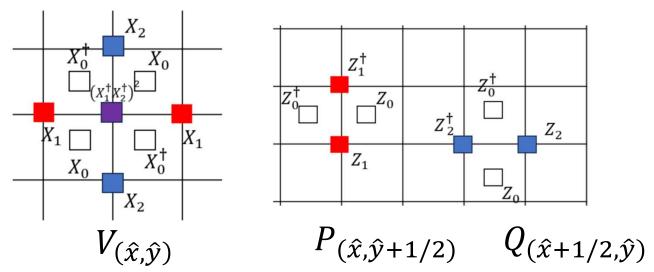
This may imply new types of

"topological" phases, symmetries & field theories?

Ex.2) "dipolar" Z_N toric code

[Pace-Wen '22]

2+1d lattice w/ $Z_N \times Z_N$ d.o.f. on sites & Z_N on dual sites



Hamiltonian:

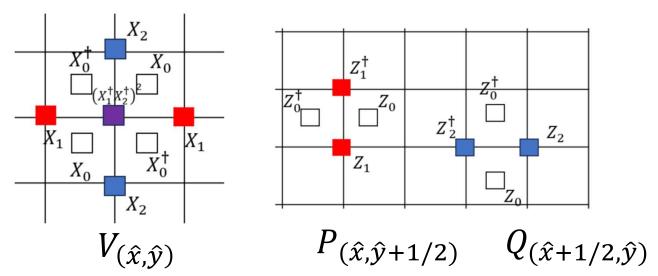
$$H_{dip} := -\sum_{\hat{x},\hat{y}} \left[V_{(\hat{x},\hat{y})} + P_{(\hat{x},\hat{y}+1/2)} + Q_{(\hat{x}+1/2,\hat{y})} \right] + (h.c.)$$
.

Ground states:

Ex.2) "dipolar" Z_N toric code

[Pace-Wen '22]

2+1d lattice w/ $Z_N \times Z_N$ d.o.f. on sites & Z_N on dual sites



Hamiltonian:

$$H_{dip} := -\sum_{\hat{x},\hat{y}} \left[V_{(\hat{x},\hat{y})} + P_{(\hat{x},\hat{y}+1/2)} + Q_{(\hat{x}+1/2,\hat{y})} \right] + (h.c.)$$
.

Ground states:

$$V_{(\hat{x},\hat{y})}|g\rangle = P_{(\hat{x},\hat{y}+1/2)}|g\rangle = Q_{(\hat{x}+1/2,\hat{y})}|g\rangle = |g\rangle$$

$$GSD = N^3 \times \gcd(N, L_x) \times \gcd(N, L_y) \times \gcd(N, L_x, L_y).$$

Symmetries behind fraction-like theory

Modulated symmetry:

$$\Phi(t, x_1, \dots, x_d) \to e^{i\theta(t, x_1, \dots, x_d)} \Phi(t, x_1, \dots, x_d)$$

 $\theta(t, x_1, \dots, x_d)$: not arbitrary function unlike gauge trans.

Symmetries behind fraction-like theory

Modulated symmetry:

$$\Phi(t, x_1, \dots, x_d) \to e^{i\theta(t, x_1, \dots, x_d)} \Phi(t, x_1, \dots, x_d)$$

 $\theta(t, x_1, \dots, x_d)$: not arbitrary function unlike gauge trans.

subsystem symmetry

(e.g. X-cube model)

$$\theta(t, x_1, \cdots, x_d) = \theta(x_1, \cdots, x_{d-p})$$

multi-pole symmetry

(e.g. "dipolar" toric code)

 $\theta(t, x_1, \dots, x_d)$: finite order polynomial of space

•

Constructing effective QFT for dipole case

Dipole sym. algebra:

$$Q_I \sim \int d^2x \, x^I \rho(x)$$

$$[P_I, Q] = 0, \quad [P_I, Q_J] = \delta_{IJ}Q \quad (I = x, y)$$

Constructing effective QFT for dipole case

Dipole sym. algebra:

$$Q_I \sim \int d^2x \, x^I \rho(x)$$

$$[P_I, Q] = 0, \quad [P_I, Q_J] = \delta_{IJ}Q \quad (I = x, y)$$

Dipole gauge trans.:

[Ebisu-MH-Nakanishi '23]

$$a \rightarrow a + d\Lambda + \sigma_I dx_I$$
, $A^I \rightarrow A^I + d\sigma_I$

write down BF-like gauge inv. action

Constructing effective QFT for dipole case

Dipole sym. algebra:

$$Q_I \sim \int d^2x \, x^I \rho(x)$$

$$[P_I, Q] = 0, \quad [P_I, Q_J] = \delta_{IJ}Q \quad (I = x, y)$$

$$(I=x,y)$$

gauging consistent w/ the algebra

Dipole gauge trans.:

[Ebisu-MH-Nakanishi '23]

$$a \rightarrow a + d\Lambda + \sigma_I dx_I$$
, $A^I \rightarrow A^I + d\sigma_I$

write down BF-like gauge inv. action

Foliated BF theory:

$$e^x = dx$$
, $e^y = dy$

$$\mathcal{L}_{dip} = \frac{N}{2\pi} a \wedge db + \sum_{I=x,y} \frac{N}{2\pi} A^I \wedge dc^I + \frac{N}{2\pi} A^I \wedge b \wedge e^I.$$

partially topological

Foliated BF theory

BF theory (for toric code):

$$\mathcal{L}_{TC} = \frac{N}{2\pi}b \wedge f = \frac{N}{2\pi}b \wedge da,$$

Foliated BF theory (for dipolar toric code):

$$\mathcal{L}_{dip} = \frac{N}{2\pi} a \wedge db + \sum_{I=x,y} \frac{N}{2\pi} A^I \wedge dc^I + \frac{N}{2\pi} A^I \wedge b \wedge e^I.$$

 $e^x = dx, e^y = dy$

Ground state degeneracy on torus:

$$GSD = N^3 \times \gcd(N, L_x) \times \gcd(N, L_y) \times \gcd(N, L_x, L_y).$$

Generalization of toric code?

Properties of fractonic generalization:

[cf. Ebisu-MH-Nakanishi]

- •ground states = logical qubits
- degeneracy of grounds states = size dependent
- low energy theory = partially topological gauge theory ("foliated BF theory")
- logical gates = gauge invariant operators
- -quasi particles = anyons w/ mobility constraints

But (w/ the same number of physical qubits)

- should be less tolerant to errors than toric code
- → what's more detailed properties as codes? (to be studied)

QFT as a generator of error correcting code?

Toric code

[Kitaev '97]

- Lattice model interpreted as error correction (QEC)
 Low energy effective theory = QFT (BF theory)

QFT ↔ Lattice model ↔ QEC

Idea: if we get something new in one of them, then try to fill the other parts

ex.) "Dipolar" generalization of toric code

[Pace-Wen '22]

corresponds to a "layer" of BF theory w/ some rule

[Ebisu-MH-Nakanishi '23]

interesting to find new class of QFTs w/ similar properties

Comment (1/3): higher form generalization

[Ebisu-MH-Nakanishi '24]

$$\mathcal{L} = \frac{N}{2\pi} \left[b^{(d-p)} \wedge f^{(p+1)} + \sum_{I} c^{I(d-p)} \wedge F^{I(p+1)} \right]$$

$$= \frac{N}{2\pi} \left[b^{(d-p)} \wedge \left(da^{(p)} + (-1)^p \sum_{I} A^{I(p)} \wedge e^I \right) + \sum_{I} c^{I(d-p)} \wedge dA^{I(p)} \right]$$

gauge trans.:

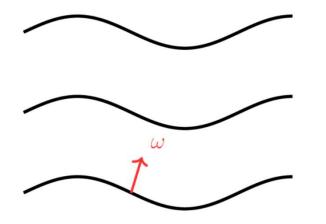
$$c^{I(d-p)} \to c^{I(d-p)} + d\chi^{I(d-p-1)} + (-1)^{d-p} \sigma^{(d-p-1)} \wedge e^I, \quad b^{(d-p)} \to b^{(d-p)} + d\sigma^{(d-p-1)}$$

$$GSD = N^{K(d,p)} \times \prod_{1 \leq i_1 < i_2 \cdots < i_p \leq d} \gcd(N, L_{i_1}, L_{i_2}, \cdots, L_{i_p}) \times \prod_{1 \leq i_1 < i_2 \cdots < i_{p+1} \leq d} \gcd(N, L_{i_1}, L_{i_2}, \cdots, L_{i_{p+1}})$$

 $^\exists$ mixed 't Hooft anomaly btw p-form & (d-p)-form syms. (and its anomaly inflow argument)

Comment (2/3): redundancy of normal field

[Ebisu-MH-Nakanishi-Shimamori '24]



 $\omega \& c(x)\omega$ give the same foliation structure

→ Ideally foliated QFT should have

$$\omega \sim c(x)\omega$$

But,

foliated BF theories don't have the redundancy

Recently we constructed

a QFT w/ the redundancy based on a characteristic class involving foliation called Godbillon-Vey class:

$$S[b, c, \lambda, \phi] = \frac{k}{2\pi} \int_{M^3} \left[b \wedge dc - \lambda \wedge (d\phi \wedge \omega - \omega \wedge b) \right]$$

Comment (3/3): fractonic "chiral" fermion

(d+1)-dim. fermion w/ subsystem sym.:

[MH-Nakanishi '22]

$$\mathcal{L}_{\psi} := \frac{\mu_0}{2} \left[i \psi_+ (\partial_t - \alpha \partial_\#^d) \psi_+ + i \psi_- (\partial_t + \alpha \partial_\#^d) \psi_- \right] \qquad \text{(d:odd)}$$

$$\left[\psi_{\pm} : \text{1-component Grassmann}, \quad \partial_\# \coloneqq \partial_1 \cdots \partial_d \right]$$

"Naive" lattice fermion:

$$H_{\text{naive}} = i\beta \sum_{\vec{n}} c_{\vec{n}} \tilde{\Delta}_{\#}^{d} c_{\vec{n}}, \quad \left(\tilde{\Delta}_{\#}^{d} := \prod_{i=1}^{d} \tilde{\Delta}_{\#}^{i}, \quad \tilde{\Delta}_{\#}^{i} f_{\vec{n}} := f_{\vec{n} + e_{i}} - f_{\vec{n} - e_{i}}. \right)$$

In momentum basis,

$$H_{\text{naive}} = \beta \sum_{\vec{k}} \left(\prod_{i=1}^{d} \sin(k_i a) \right) b_{-\vec{k}} b_{\vec{k}}.$$

of zero modes:

$$2\sum_{i=1}^{d} \frac{V}{L_i} - 4\sum_{1 \le i < j \le d} \frac{V}{L_i L_j} + \dots + 2^{d-2} \sum_{1 \le i < j \le d} L_i L_j - 2^{d-1} \sum_{i=1}^{d} L_i + 2^d$$

desired:
$$\sum_{i=1}^{d} \frac{V}{L_i} - \sum_{1 < i < j < d} \frac{V}{L_i L_j} + \dots + \sum_{1 < i < j < d} L_i L_j - \sum_{i=1}^{d} L_i + 1$$

Fracton topological phases

Condensed matter

exotic phases of matter

Quantum information

lattice models have large ground state degeneracy

quantum error correction & quantum hard disk (~extension of toric code)

High energy physics

new class of symmetries & field theories

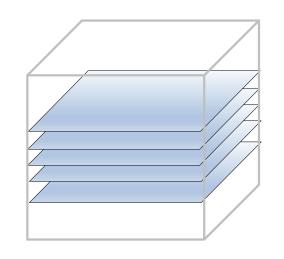
(~modulated symmetries, foliated field theories)

Summary

QFT understanding of fractonic lattice models

Low energy effective theory = Foliated QFT

[cf. Slagle-Aasen-Williamson '18, etc...]



not coupled to metric but to foliation (=decomposition to submfd.)

- gauging modulated symmetry → Foliated QFT
- interpretation from a topological term

(Dijkgraaf-Witten twist term)

<u>Outlook</u>

- quantum information properties of fractonic lattice models
- thermalization of fractons?
- interacting theories
- Lattice regularization
- more general modulated symmetries?
 (e.g. non-abelian, non-invertible) [cf. Cao-Lee-Yamazaki-Zheng '23, Furukawa '25, etc...]
- exploring dualities btw foliated QFT & tensor gauge theories

[cf. Ohmori-Shimamura, etc...]

classification of partially topological theories

[cf. viewpoint from characteristic class involving foliation: Ebisu-MH-Nakanishi-Shimamori '24]

- SUSY observables & foliation? [cf. Closset-Dumitrescu-Festuccia-Komargodski'13]
- •topological string w/ "flavor" brane & foliation?

