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Fracton topological phases

quasi-particle excitations w/ mobility constraints
(∼anyons)



Fracton topological phases

quasi-particle excitations w/ mobility constraints
(∼anyons)

Ex.) particles w/ only dipole mobility

realized in systems w/ conserved dipole charge ∼ ∫ 𝑥𝜌 𝑥

[cf. review: Pretko-Chen-You ’20 ]

condensed matter, quantum info., high energy

∃recent attentions in the contexts of



Fracton topological phases
Condensed matter

Quantum information

High energy physics

exotic phases of matter

quantum error correction & quantum hard disk

lattice models have large ground state degeneracy 

new class of symmetries & field theories

(∼extension of toric code)

(∼modulated symmetries, foliated field theories)



Main results
QFT understanding of fractonic lattice models

・Low energy effective theory = Foliated QFT
[cf. Slagle-Aasen-Williamson ’18, etc… ]

・gauging modulated symmetry → Foliated QFT

・interpretation from a topological term

[Ebisu-MH-Nakanishi]

not coupled to metric 
but to foliation 

(=decomposition to submfd.)

(Dijkgraaf-Witten twist term)



4. Summary & Outlook

Plan

1. Introduction

3. Fracton topological phases

2. Review of toric code



Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit
0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝



Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit

A simple way to correct errors:

0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝

① Duplicate the bit (encoding): 0 → 000, 1 → 111

② Error detection & correction by “majority voting”:

001 → 000, 011 → 111, etc…
𝑃୤ୟ୧୪ୣୢ = 3𝑝ଶ 1 − 𝑝 + 𝑝ଷ (improved if 𝑝 < 1/2)



Errors in quantum computers

・have to detect errors & act “inverse of errors”
to recover w/o destroying states

・Unknown unitary operators are multiplied: 

|𝜓⟩ 𝑈|𝜓⟩
error!

(in addition to decoherence & measurement errors)

Computer interacts w/ environment error/noise

not only bit flip!

・need more qubits as in the classical case



Lattice model as Quantum Error Correction 
Encoding

Error detection & recovery

excitation of energy = signal of errors

physical qubits ∼ total Hilbert sp. 

logical qubits ∼ vacuum Hilbert sp. (w/ degeneracy)

recover by map to “nearest” vacuum

Toric code = canonical example (next slides)



Toric code [Kitaev ’97]

Consider 2d periodic square lattice and put qubits on edges

𝐻 = −𝐽 ෍ ෑ 𝑍௘

௘∈డ ୤ୟୡୣ୤ୟୡୣ

 − 𝐽 ෍ ෑ 𝑋௘

௘|డ௘ୀ୴ୣ୰୲ୣ୶୴ୣ୰୲ୣ୶

𝑍

𝑍

𝑍

𝑍 𝑋

𝑋

𝑋

𝑋

All the terms are commuting → ground states:

∏ 𝑍௘௘∈డ(୤ୟୡୣ) 𝑔 = 𝑔 , ∏ 𝑋௘௘|డ௘ୀ୴ୣ୰୲ୣ 𝑔 = 𝑔

(𝐽 > 0)



Ground state degeneracy on torus

∏ 𝑍௘௘∈డ(୤ୟୡୣ) 𝑔 = 𝑔 , ∏ 𝑋௘௘|డ௘ୀ୴ୣ୰୲ୣ୶ 𝑔 = 𝑔

Ground states:

not all the conditions are independent

ෑ ෑ 𝑍௘

௘∈డ(୤ୟୡୣ)

= 1,

୤ୟୡୣୱ

ෑ ෑ 𝑋௘

௘|డ௘ୀ୴ୣ୰୲ୣ୶

= 1

୴ୣ୰୲୧ୡୣୱ

𝑍

𝑍

𝑍

𝑍

𝑍

𝑍

𝑍

𝑍

=

𝑍 𝑍

𝑍

𝑍 𝑍

𝑍

ex.)

Degeneracy:

#(GSD) = 2 × 2 = 4 (2ଶ௚ for genus 𝑔) 



Another viewpoint : operator counting
∏ 𝑍௘௘∈డ(୤ୟୡୣ) 𝑔 = 𝑔 , ∏ 𝑋௘௘|డ௘ୀ୴ୣ୰୲ୣ୶ 𝑔 = 𝑔

Q1. operators commuting w/ the conditions?

ෑ 𝑍௘ ,

௘∈୪୭୭୮

ෑ 𝑋௘

௘∈ୢ୳ୟ୪ ୪୭୭୮
loop ops. :

Q2. 



Another viewpoint : operator counting
∏ 𝑍௘௘∈డ(୤ୟୡୣ) 𝑔 = 𝑔 , ∏ 𝑋௘௘|డ௘ୀ୴ୣ୰୲ୣ୶ 𝑔 = 𝑔

Q1. operators commuting w/ the conditions?

ෑ 𝑍௘ ,

௘∈୪୭୭୮

ෑ 𝑋௘

௘∈ୢ୳ୟ୪ ୪୭୭୮
loop ops. :

Q2. independent operators among them?
loop ops. along topologically the same paths are equivalent
up to actions of the ops. in the conditions

𝑍

𝑍

𝑍

𝑍≃

𝑍 𝑍

𝑍

𝑍 𝑍

𝑍

ex.)

≃ 1

loop ops. along the nontrivial cycles 

#(independent ops.)= 4 = #(GSD)



First excited states

・𝑍௘, 𝑋௘ are anti-commuting w/ two of the terms

First excited states:

・This is still true for

ෑ 𝑍௘ ,

௘∈஼

ෑ 𝑋௘ 

௘∈஼ሚ

where 𝐶, 𝐶ሚ : simply connected open path in (dual) lattice

𝐻 = −𝐽 ෍ ෑ 𝑍௘

௘∈డ ୤ୟୡୣ୤ୟୡୣ

 − 𝐽 ෍ ෑ 𝑋௘

௘|డ௘ୀ୴ୣ୰୲ୣ୶୴ୣ୰୲ୣ୶



First excited states

・𝑍௘, 𝑋௘ are anti-commuting w/ two of the terms

𝐻 = −𝐽 ෍ ෑ 𝑍௘

௘∈డ ୤ୟୡୣ୤ୟୡୣ

 − 𝐽 ෍ ෑ 𝑋௘

௘|డ௘ୀ୴ୣ୰୲ୣ୶୴ୣ୰୲ୣ୶

First excited states:

・This is still true for

ෑ 𝑍௘ ,

௘∈஼

ෑ 𝑋௘ 

௘∈஼ሚ

where 𝐶, 𝐶ሚ : simply connected open path in (dual) lattice

ෑ 𝑍௘ 𝑔 ,

௘∈஼

ෑ 𝑋௘ |𝑔⟩ 

௘∈஼ሚ

corresponding to anyons



Mobility of anyons

𝑍

anyons

𝑍 𝑍

𝑍 𝑍

𝑍

𝑍 𝑍

𝑍 𝑍

Anyons can move in the whole bulk w/o changing energy

⋯



Error correction viewpoint
・physical qubits = qubits on edges

・logical qubits = ground states

・stabilizer conditions:

∏ 𝑍௘௘∈డ(୤ୟୡୣ) 𝑔 = 𝑔 , ∏ 𝑋௘௘|డ௘ୀ୴ୣ୰୲ୣ୶ 𝑔 = 𝑔

・logical ops. = loop ops. along the nontrivial cycles 

・error = ops. giving excitation

・2𝑔 (𝑔:genus) logical qubits by #(edges) physical qubits



Toric code as a 𝟐 lattice gauge theory

ෑ Π௘

௘|డ௘ୀ୴ୣ୰୲ୣ୶

phys = phys

𝒁𝟐 gauge theory on 2d square lattice:

𝐻 = 𝑔ଶ ෍ Π௘

௘

− 𝐽 ෍ ෑ 𝑈௘

௘∈డ ୤ୟୡୣ୤ୟୡୣ

(Π௘𝑈௘ᇲΠ௘
ற = −𝛿௘௘ᇲ𝑈௘)Gauss law:

Ground state for 𝑔 = 0:

∏ 𝑈௘௘|డ௘ୀ୴ୣ୰୲ୣ ground = |ground⟩

In identification (𝑈-basis)∼(computational basis),
this is the same condition as the toric code

(𝑈 ∼ 𝑒௜஺, Π ∼ 𝑒௜ா ∈ 𝒁𝟐)



Low energy effective field theory
BF theory (2+1d topological field theory):

ℒ =
𝑁

2𝜋
𝑏 ∧ 𝑑𝑎 ∝ 𝜖௜௝௞𝑏௜𝜕௝𝑎௞ (𝑎, 𝑏: gauge fields, 𝑁 ∈ 𝒁)



Low energy effective field theory
BF theory (2+1d topological field theory):

ℒ =
𝑁

2𝜋
𝑏 ∧ 𝑑𝑎 ∝ 𝜖௜௝௞𝑏௜𝜕௝𝑎௞ (𝑎, 𝑏: gauge fields, 𝑁 ∈ 𝒁)

Nontrivial gauge invariant ops.:

𝑊 = exp  𝑖 ර𝑎
஼

 ∈ 𝒁𝑵  (C: topologically nontrivial cycle)

Ground state degeneracy:

#(GSD)= 𝑁ଶ௚

the same as 𝑍ே generalization of the toric code
(𝑁 = 2, 𝑔 = 1 in the standard toric code on torus)



Realization on real devise
[Google Quantum AI ’24]
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Generalization of toric code?

・degeneracy of ground states = 2ଶ௚ (𝑔: genus of space)

・ground states = logical qubits

Properties of toric code:

・logical gates = gauge invariant operators

・low energy effective theory = topological gauge theory

・quasi particle = anyon

Generalization w/ larger degeneracy? Fractons!



Fractons?

Fracton = (quasi) particle w/ mobility constraints

e.g. particles w/ only dipole mobility

[cf. Pretko-Chen-You ’20]

realized in systems w/ conserved dipole charge
∫ 𝑥𝜌 𝑥

Generalizing toric code in this direction?



Ex.1) X-cube model (3+1d lattice model)
[cf. Pretko-Chen-You ’20]

Hamiltonian:

Ground states:

(qubits on edges)



Ex.1) X-cube model (3+1d lattice model)
[cf. Pretko-Chen-You ’20]

Hamiltonian:

Ground states:

𝐴௩
௫ 𝑔 = 𝐴௩

௬
𝑔 = 𝐴௩

௭ 𝑔 = 𝐵௖ 𝑔 = |𝑔⟩

Taking into account overlapped constraints,

logଶ #(GSD) = 2𝐿௫ + 2𝐿௬ + 2𝐿௭ − 3
size dependence!

(qubits on edges)



First excited states

Ops. to create first excited states: [cf. Pretko-Chen-You ’20]

𝑋

𝑍

∼ open line op. ∼ open membrane op.



Mobility constraints on “anyons”

𝑋

“anyons”

“Anyons” can move in a straight way w/o changing energy
but consume energy to curve 

𝑋 𝑋 no energy loss

𝑋 𝑋 𝑋 energy loss!

(not-commuting 
w/ 4 terms)

(not-commuting 
w/ 6 terms)



𝑋-cube model:

Properties:

logଶ #(GSD) = 2𝐿௫ + 2𝐿௬ + 2𝐿௭ − 3

・ground state degeneracy

・there are quasi-particle excitations like anyons
but they have constrained mobilities 

∃several lattice models w/ similar properties



𝑋-cube model:

Properties:

logଶ #(GSD) = 2𝐿௫ + 2𝐿௬ + 2𝐿௭ − 3

・ground state degeneracy

・there are quasi-particle excitations like anyons
but they have constrained mobilities 

“topological” phases, symmetries & field theories?

This may imply new types of 

∃several lattice models w/ similar properties



Ex.2) “dipolar”  𝒁𝑵 toric code
[Pace-Wen ’22]

2+1d lattice w/ 𝒁𝑵 × 𝒁𝑵 d.o.f. on sites & 𝒁𝑵 on dual sites

𝑃(௫ො,௬ොାଵ/ଶ) 𝑄(௫ොାଵ/ଶ,௬ො)

Ground states:

𝑉 ௫ො,௬ො

Hamiltonian:



Ex.2) “dipolar”  𝒁𝑵 toric code
[Pace-Wen ’22]

𝑉 ௫ො,௬ො 𝑔 = 𝑃 ௫ො,௬ොାଵ/ଶ 𝑔 = 𝑄 ௫ොାଵ/ଶ,௬ො 𝑔 = |𝑔⟩

2+1d lattice w/ 𝒁𝑵 × 𝒁𝑵 d.o.f. on sites & 𝒁𝑵 on dual sites

𝑃(௫ො,௬ොାଵ/ଶ) 𝑄(௫ොାଵ/ଶ,௬ො)

Ground states:

𝑉 ௫ො,௬ො

Hamiltonian:



Symmetries behind fraction-like theory
Modulated symmetry:

Φ 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ → 𝑒௜ఏ(௧,௫భ,⋯,௫೏)Φ 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ

𝜃(𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ) : not arbitrary function unlike gauge trans. 



Symmetries behind fraction-like theory
Modulated symmetry:

Φ 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ → 𝑒௜ఏ(௧,௫భ,⋯,௫೏)Φ 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ

𝜃(𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ) : not arbitrary function unlike gauge trans. 

・subsystem symmetry

𝜃 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ = 𝜃(𝑥ଵ, ⋯ , 𝑥ௗି௣)

・multi-pole symmetry

𝜃 𝑡, 𝑥ଵ, ⋯ , 𝑥ௗ : finite order polynomial of space

(e.g. X-cube model)

(e.g. “dipolar” toric code)

・
・
・



Constructing effective QFT for dipole case
Dipole sym. algebra: 𝑄ூ ∼ ∫ 𝑑ଶ𝑥 𝑥ூ𝜌(𝑥)

gauging consistent w/ the algebra

𝑃ூ, 𝑄 = 0, 𝑃ூ, 𝑄௃ = 𝛿ூ௃𝑄 (𝐼 = 𝑥, 𝑦)



Constructing effective QFT for dipole case
Dipole sym. algebra: 𝑄ூ ∼ ∫ 𝑑ଶ𝑥 𝑥ூ𝜌(𝑥)

gauging consistent w/ the algebra

Dipole gauge trans. :

write down BF-like gauge inv. action

[Ebisu-MH-Nakanishi ’23]

𝑃ூ, 𝑄 = 0, 𝑃ூ, 𝑄௃ = 𝛿ூ௃𝑄 (𝐼 = 𝑥, 𝑦)

𝑎 → 𝑎 + 𝑑Λ + 𝜎ூ𝑑𝑥ூ,  𝐴ூ → 𝐴ூ + 𝑑𝜎ூ



Constructing effective QFT for dipole case
Dipole sym. algebra:

𝑒௫ = 𝑑𝑥, 𝑒௬ = 𝑑𝑦

𝑄ூ ∼ ∫ 𝑑ଶ𝑥 𝑥ூ𝜌(𝑥)

gauging consistent w/ the algebra

Dipole gauge trans. :

write down BF-like gauge inv. action

Foliated BF theory:

[Ebisu-MH-Nakanishi ’23]

partially topological

𝑃ூ, 𝑄 = 0, 𝑃ூ, 𝑄௃ = 𝛿ூ௃𝑄 (𝐼 = 𝑥, 𝑦)

𝑎 → 𝑎 + 𝑑Λ + 𝜎ூ𝑑𝑥ூ,  𝐴ூ → 𝐴ூ + 𝑑𝜎ூ



Foliated BF theory
BF theory (for toric code):

Foliated BF theory (for dipolar toric code):

𝑒௫ = 𝑑𝑥, 𝑒௬ = 𝑑𝑦
Ground state degeneracy on  torus:



Generalization of toric code?

・degeneracy of grounds states = size dependent

・ground states = logical qubits

Properties of fractonic generalization:

・logical gates = gauge invariant operators

・low energy theory = partially topological gauge theory

・quasi particles = anyons w/ mobility constraints

But  (w/ the same number of physical qubits)

[cf. Ebisu-MH-Nakanishi]

(“foliated BF theory”)

→ what’s more detailed properties as codes? (to be studied)

should be less tolerant to errors than toric code



QFT as a generator of error correcting code?

Idea：if we get something new in one of them, 
then try to fill the other parts

[Ebisu-MH-Nakanishi ’23]

・Lattice model interpreted as error correction (QEC)

・Low energy effective theory = QFT (BF theory)

Toric code

QFT Lattice model QEC

[Pace-Wen ’22]ex.) “Dipolar” generalization of toric code

corresponds to a “layer” of BF theory w/ some rule

[Kitaev ’97]

interesting to find new class of QFTs w/ similar properties



Comment (1/3): higher form generalization
[Ebisu-MH-Nakanishi ’24]

gauge trans. :

∃mixed ’t Hooft anomaly btw 𝑝-form & (𝑑 − 𝑝)-form syms.
(and its anomaly inflow argument)



Comment (2/3): redundancy of normal field 
[Ebisu-MH-Nakanishi-Shimamori ’24]

But,

𝜔 & 𝑐 𝑥 𝜔 give the same foliation structure

→ Ideally foliated QFT should have
𝜔 ∼ 𝑐 𝑥 𝜔

foliated BF theories don’t have the redundancy

Recently we constructed

a QFT w/ the redundancy based on a characteristic class
involving foliation called Godbillon-Vey class:



Comment (3/3): fractonic “chiral” fermion
[MH-Nakanishi ’22](d+1)-dim. fermion w/ subsystem sym.:

𝜓±: 1-component Grassmann, 𝜕# ≔ 𝜕ଵ ⋯ 𝜕ௗ

“Naive” lattice fermion:

(d:odd)

In momentum basis,

# of zero modes:

desired:



Summary & Outlook
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exotic phases of matter

quantum error correction & quantum hard disk

lattice models have large ground state degeneracy 

new class of symmetries & field theories

(∼extension of toric code)

(∼modulated symmetries, foliated field theories)



Summary
QFT understanding of fractonic lattice models

・Low energy effective theory = Foliated QFT
[cf. Slagle-Aasen-Williamson ’18, etc… ]

・gauging modulated symmetry → Foliated QFT

・interpretation from a topological term

[Ebisu-MH-Nakanishi]

not coupled to metric 
but to foliation 

(=decomposition to submfd.)

(Dijkgraaf-Witten twist term)



Outlook

・thermalization of fractons?

Thanks!

・quantum information properties of fractonic lattice models

・exploring dualities btw foliated QFT & tensor gauge theories

・more general modulated symmetries? 

・classification of partially topological theories
[cf. viewpoint from characteristic class involving foliation:  Ebisu-MH-Nakanishi-Shimamori ’24]

・interacting theories

(e.g. non-abelian, non-invertible)

・SUSY observables & foliation? [cf. Closset-Dumitrescu-Festuccia-Komargodski ’13]

・topological string w/ “flavor” brane & foliation? 
[cf. Aganagic-Costello-McNamara-Vafa ’17, Aharony-Feldman-MH ’19]

[cf. Cao-Lee-Yamazaki-Zheng ’23, Furukawa ’25, etc…]

・Lattice regularization

[cf. Ohmori-Shimamura, etc…]


