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(~anyons)



Fracton topological phases
||

quasi-particle excitations w/ mobility constraints
(~anyons)

EX.) pa rt|C|eS W/ Only dip0|e m0b|||ty [cf. review: Pretko-Chen-You ’20 ]

a) b) c)

‘ — 'Qi Q‘Z‘s}
O . ‘e

realized in systems w/ conserved dipole charge (~ fxp(x))

drecent attentions in the contexts of

condensed matter, quantum info., high energy



Fracton topological phases

Condensed matter ®

o9
®

exotic phases of matter

Quantum information
lattice models have large ground state degeneracy

U

gquantum error correction & quantum hard disk

(~extension of toric code)

High energy physics

new class of symmetries & field theories

(~modulated symmetries, foliated field theories)



I\/I a i n reS u Its [Ebisu-MH-Nakanishi]

QFT understanding of fractonic lattice models

Low energy effective theory = Foliated QFT

[cf. Slagle-Aasen-Williamson '18, etc... ]

not coupled to metric

Z but to foliation

(=decomposition to submfd.)

gauging modulated symmetry — Foliated QFT

interpretation from a topological term
(Dijkgraaf-Witten twist term)
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1. Introduction

2. Review of toric code

3. Fracton topological phases

4. Summary & Outlook



Errors in classical computers

Computer interacts w/ environment mm) error/noise
1 —_
0 p

one bit

Supose we send a bit but have “error” in probability p



Errors in classical computers

Computer interacts w/ environment mm) error/noise
1 —_
0 p

Spose we send a bit but have “error” in probability p

A simple way to correct errors:
(D Duplicate the bit (encoding): 0 —» 000, 1 - 111

@ Error detection & correction by “majority voting”:
001 - 000, 011 —» 111, etc...

) Prieq =302(1—p)+p3  (improvedifp < 1/2)



Errors in quantum computers

Computer interacts w/ environment mm) error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

error!

¥y == UlY)

not only bit flip!

*have to detect errors & act “inverse of errors”
to recover w/o destroying states

need more qubits as in the classical case



Lattice model as Quantum Error Correction

Encoding

physical qubits ~ total Hilbert sp.

IOgicaI qultS ~ vacuum Hilbert SP. (w/degeneracy)

Error detection & recovery

excitation of energy = signal of errors

—> recover by map to “nearest” vacuum

Toric code = canonical example (extsices)



Toric code oo

Consider 2d periodic square lattice and put qubits on edges

==y || z-1) || % 0¢>0

face eed(face) vertex e|de=vertex
7 X
Z Z X X
Z X

All the terms are commuting — ground states:

Heea(face) Ze |g> — |g>» He|ae=verte Xe |g> — |g>



Ground state degeneracy on torus

Ground states:

Heea(face) Le |g> — |g)' He|ae=vertexXe |g> — |g>

not all the conditions are independent

[ 1 2= [ I] %

faces eed(face) vertices e|de=vertex
" ex.) Z Z Z__Z )
Z Z\Z 7 = Z : Z
~ Z Z Z | Z ~
Degeneracy:

#H(GSD)=2Xx2 =4  (2%9 for genus g)



Another viewpoint : operator counting

Heea(face) Ze lg) = 1g), He|ae=verteXXe l9) =1g)

Q1. operators commuting w/ the conc

itions?

—> loop ops.: l_[ Ze

Xe

e€loop eedual loop

Q2.



Another viewpoint : operator counting

Heea(face) Ze lg) = 1g), He|ae=verteXXe l9) =1g)

Q1. operators commuting w/ the conc

itions?

—> loop ops.: l_[ Ze

Xe

e€loop eedual loop

Q2. independent operators among them?

loop ops. along topologically the same paths are equivalent

up to actions of the ops. in the conditions

" ex.) Z Z A

~ 7 A Z

—> loop ops. along the nontrivial cycles
#(independent ops.)= 4 = #(GSD)



First excited states

[H=—fz 123 11 xe}

face eed(face) vertex e|de=vertex

Z,, X, are anti-commuting w/ two of the terms
*This is still true for

[~ [~

eeC ecC

where C, C : simply connected open path in (dual) lattice

First excited states:




First excited states

[H=—fz 123 11 xe}

face eed(face) vertex e|de=vertex

Z,, X, are anti-commuting w/ two of the terms
*This is still true for

[~ [~

eeC ecC

where C, C : simply connected open path in (dual) lattice

First excited states:

| AZe 19), l_[Xe 1)

‘eEC eeC

corresponding to anyons



Mobility of anyons

1
e
, —> Z
} %Z
anyons
z Z | 7|
e e
N > Ll | =
e i

Anyons can move in the whole bulk w/o changing energy



Error correction viewpoint

physical qubits = qubits on edges
"logical qubits = ground states

-stabilizer conditions:

Meeactace) Ze 19) = 19),  Tejgevertex Xe 19) = 19)
*logical ops. = loop ops. along the nontrivial cycles
"error = ops. giving excitation

29 (g:genus) logical qubits by #(edges) physical qubits



Toric code as a Z, lattice gauge theory

Z, gauge theory on 2d square lattice: (U~ e, 1 ~ e € Z;)

XN

face eed(face)

Gauss law: (MU M) = =6,,/U,)

l_[ [l [phys) = [phys)

e|de=vertex

Ground state for g = O:

He|ae=verte U, |ground) = |ground)

In identification (U-basis)~(computational basis),
this is the same condition as the toric code



Low energy effective field theory

BF theory (2+1d topological field theory):

N
L=—bAda x €;j;,b LdJak  (a,b: gauge fields, N € Z)
2T J



Low energy effective field theory

BF theory (2+1d topological field theory):

N
L=—bAda x €;j;,b LdJak  (a,b: gauge fields, N € Z)
2T J

Nontrivial gauge invariant ops.:

W = exp [ l % CL] € Zy (C: topologically nontrivial cycle)
C

Ground state degeneracy:

#(GSD)= N 49

the same as Z, generalization of the toric code
(N = 2,g = 1 inthe standard toric code on torus)



Realization on real devise

[Google Quantum Al '24]

0.5
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I

Logical error probability

0.1 -
7x7
Y o A . S “3 errors at a time”
0 50 100 150 200 250 Q7 QUbitS
Quantum error correction cycle
Article

Quantum error correction below the surface
code threshold
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Generalization of toric code?

Properties of toric code:

p—

ground states = logical qubits

-degeneracy of ground states = 229 (g: genus of space)

- +*low energy effective theory = topological gauge theory

"logical gates = gauge invariant operators

" quasi particle = anyon

—

Generalization w/ larger degeneracy? :> Fractons!



Fractons?

[cf. Pretko-Chen-You "20]

Fracton = (quasi) particle w/ mobility constraints

e.g. particles w/ only dipole mobility

a) b) c)

\‘ @ ©6

realized in systems w/ conserved dipole charge

@ (f xP(X))

Generalizing toric code in this direction?




Ex.1) X-cube model (3+1d lattice model)

&l [cf. Pretko-Chen-You "20]

T (qubits on edges)

Hamiltonian:

Ground states:




Ex.1) X-cube model (3+1d lattice model)

2l / [cf. Pretko-Chen-You "20]

’ * (qubits on edges)

- ,

® g
A =112 B.=][x
de

Hamiltonian:
H=-) (A;+A3+A})-) B.

v

Ground states:
A¥lg) = Aylg) = AZlg) = B:lg) = |g)
Taking into account overlapped constraints,

log, #(GSD) = 2L, + 2L, + 2L, — 3

size dependence!




First excited states

H=-) (A7+A¥+A))-) B 7| :

v

Ops. to create first excited states:

———

yi
TP
| |
X

~ open line op.

it
B

°
A=T]z B.=][x
+oy de

[cf. Pretko-Chen-You ’20]

=i
Z R
//in

~ open mem

orane op.



Mobility constraints on “anyons”

H=-Y (A+AY+4) - B, % }

v

A=T]2 B,.:HX
X ) |:> X | X no energy loss
“« wn % 1 (not-commuting
nyong w/ 4 terms)
|::> i |
vy | v | x energy loss!
%w (not-commuting
w/ 6 terms)

“Anyons” can move in a straight way w/o changing energy
but consume energy to curve



X-cube model:
H=-Y (AT+AY+A4) - B,

v

Properties:

m—

"ground state degeneracy
log, #(GSD) = 2L, + 2L, + 2L, — 3

there are quasi-particle excitations like anyons
but they have constrained mobilities

—

Iseveral lattice models w/ similar properties



X-cube model:

H=-Y (AZ+ A1+ A45) -3 B.

v

Properties:

m—

"ground state degeneracy
log, #(GSD) = 2L, + 2L, + 2L, — 3

there are quasi-particle excitations like anyons
but they have constrained mobilities

—

Iseveral lattice models w/ similar properties
This may imply new types of

“topological” phases, symmetries & field theories?



Ex.2) “dipolar” Zy toric code
[Pace-Wen '22]

2+1d lattice w/ Zy X Zy d.o.f. on sites & Zy on dual sites

%
Xg . Xo Zf 5
D(XIX—DE' 7T o 7y %0
— [] L O | O 2t L] Z
nLl ) O P .
XO 0 1 |:I
IX2 .
Viz9) Pgy+12)  Q@+1/29)

Hamiltonian:
Haip = — Z U'(i.;’::- + Pz g+172) + (‘.):Jr-q,-"‘.’.g})] + (h.c.) .

¥,y

Ground states:




Ex.2) “dipolar” Zy toric code
[Pace-Wen '22]

2+1d lattice w/ Zy X Zy d.o.f. on sites & Zy on dual sites

%

X; . X Zf
i o &
B O | O 7t (] ,
X1 [] D‘f X, B n 7 2
X, Xo Z -
IX2 ,
Viz9) Pizy+1/2)  Quz+1/29)
Hamiltonian:
Haip = — Z :1'{1&;): + Pz g+172) + Qi+ |_,.-‘z,!',;.] + (h.c.) .
Ty

Ground states:

Ve lg) = Pay+1/2)l9) = Qev1/29)19) = 19)

GSD = N’ x ged(N, L,) x ged(N, L,) x ged(N, L,, L,).




Symmetries behind fraction-like theory
Modulated symmetry:

D(t, %1, xq) = ePEXLXDD(t, 11, -+, x4)

O(t,xq,:+,x4) : not arbitrary function unlike gauge trans.



Symmetries behind fraction-like theory
Modulated symmetry:

(I)(t’ X1, xd) RN eie(t;xl;”';xd)CI)(t, X1, xd)
O(t,xq,:+,x4) : not arbitrary function unlike gauge trans.

*subsystem symmetry

(e.g. X-cube model)
0(t, X1, '"de) = 0(xq, 'xd—p)

multi-pole symmetry (e.g. “dipolar” toric code)

O(t,xq, -, xq): finite order polynomial of space



Constructing effective QFT for dipole case

Dipole sym. algebra: 0, ~ [ d?x x!p(x)

[P}, Q] =0, [Pl» Q]] — 51]Q (I =x1Y)

@ gauging consistent w/ the algebra



Constructing effective QFT for dipole case

Dipole sym. algebra: 0, ~ [ d?x x!p(x)

[P, Q] =0, [PI» Q]] = 0,0 d=xy)
@ gauging consistent w/ the algebra

Dipole gauge trans. : [Ebisu-MH-Nakanishi ‘23]

a—-a+dA+odx;, A - Al +do;

@ write down BF-like gauge inv. action



Constructing effective QFT for dipole case
Dipole sym. algebra: 0, ~ [ d?x x!p(x)

[P;, Q] =0, [PI» Q]] — 51]Q (I =x1Y)

! ‘ gauging consistent w/ the algebra

Dipole gauge trans. : [Ebisu-MH-Nakanishi ‘23]

a—-a+dA+odx;, A - A +do;

! ‘ write down BF-like gauge inv. action

Foliated BF theory: e* = dx,e¥ = dy

N N N
Laip = —aAdb+ D Q—WAI A de! + Q—WAI AbAel.

—

F==z 9

partially topological



Foliated BF theory

BF theory (for toric code):

N N
LT = i = b A da,
2T 2T

Foliated BF theory (for dipolar toric code):

N N N
Laiip = 5—a Ndb + > %Af Ade! + 27AI AbAel.

-

=@ .4

e* =dx,e’ =dy
Ground state degeneracy on torus:

GSD = N* x ged(N, L) x ged(N, L,) x ged(N, L, Ly,).




Generalization of toric code?

[cf. Ebisu-MH-Nakanishi]

Properties of fractonic generalization:

p—

ground states = logical qubits

degeneracy of grounds states = size dependent

low energy theory = partially topological gauge theory
(“foliated BF theory”)

*logical gates = gauge invariant operators

" quasi particles = anyons w/ mobility constraints

S—

But (w/the same number of physical qubits)

should be less tolerant to errors than toric code

— what’s more detailed properties as codes? (to be studied)



QFT as a generator of error correcting code?

Toric code (Kitaev '97]

~ «Lattice model interpreted as error correction (QEC)

*Low energy effective theory = QFT (BF theory)
QFT < Lattice model © QEC

ldea:if we get something new in one of them,
then try to fill the other parts

ex.) “Dipolar” generalization of toric code [Pace-Wen "22]

U

corresponds to a “layer” of BF theory w/ some rule
[Ebisu-MH-Nakanishi 23]

interesting to find new class of QFTs w/ similar properties



Comment (1/3): higher form generalization

[Ebisu-MH-Nakanishi ’24]

¢ = % pld=p) A fPHD) LV (Hd=P) A Fl(p—l—l)]
/

/

-
= —— |p¥=P) A (da(”) + (—1 )"ZAI(”) /\el) —{-ZC](‘]_”) /‘\([AI(”)]
/

gauge trans. :

Cl(d—p) —)(,‘I(d_p)—I—(/%l(d_p_l)-|—(—l)d_pG(d_p_l)/\(’[. b(d—p) _>b((l—p)+dc(d—p—l)

GSD = NK(d:p) o [T  gedW.Li.Ly, - L) X I1 ged(N. Liy. Liy,--- , Li,.,)

| <iy <ip-<ip<d | <iy <ige<ipy1 <d

Imixed 't Hooft anomaly btw p-form & (d — p)-form syms.
(and its anomaly inflow argument)



Comment (2/3): redundancy of normal field

[Ebisu-MH-Nakanishi-Shimamori ’24]

/\/
~ T~~~ ldeally foliated QFT should have

/\v w ~ c(x)w

But,

w & c(x)w give the same foliation structure

foliated BF theories don’t have the redundancy

Recently we constructed

a QFT w/ the redundancy based on a characteristic class

involving foliation called Godbillon-Vey class:

k
Slb,c, A\, @] = —/ {b/\dc—)\/\(d@/\w—w/\b)
J M3

T



I”

Comment (3/3): fractonic “chiral” fermion

(d+1)-dim. fermion w/ subsystem sym.: [MH-Nakanishi '22]

L
Loy = 'lQU {zz (O — ac)‘l) )+ (0 + OC)([) ] (d:odd)
[ Y4: 1-component Grassmann, 0, := 0, :+- dg4 J

“Naive” lattice fermion:

d
11'11\( — Z ﬂj E (nA#Cn [Aié — HA;& A;{,&fﬁ — fﬁ+«»i - fﬁ—p,--j
i=1

In momentum basis,

i = 52 (H sin (k;a) ) b_;zbz.

# of zero modes:

14 d
)Z_ _4 Z L,L "+2(1_2 Z L,’LJ —2(1_1;[4—"2(]

1<i<j<d J 1<i<j<d

] . d_ v v
[deswed. ,-:.ff_-.<;<,,LfLJ + 3 L, —ZL 1] J

1<icai<ld



Summary & Outlook



Fracton topological phases

Condensed matter ®

o9
®

exotic phases of matter

Quantum information
lattice models have large ground state degeneracy

U

gquantum error correction & quantum hard disk

(~extension of toric code)

High energy physics

new class of symmetries & field theories

(~modulated symmetries, foliated field theories)



S u m m a ry [Ebisu-MH-Nakanishi]

QFT understanding of fractonic lattice models

Low energy effective theory = Foliated QFT

[cf. Slagle-Aasen-Williamson '18, etc... ]

not coupled to metric

é but to foliation

(=decomposition to submfd.)

gauging modulated symmetry — Foliated QFT

interpretation from a topological term
(Dijkgraaf-Witten twist term)



Outlook

quantum information properties of fractonic lattice models

thermalization of fractons?

"interacting theories

- Lattice regularization

"more general modulated symmetries?
(e.g. non-abelian, non-invertible) (cf Cao-Lee-Yamazaki-Zheng ‘23, Furukawa ‘25, etc...
exploring dualities btw foliated QFT & tensor gauge theories

[cf. Ohmori-Shimamura, etc...]

- classification of partially topological theories

[cf. viewpoint from characteristic class involving foliation: Ebisu-MH-Nakanishi-Shimamori’24]

- SUSY Obse rvables & fOIlat|On? [cf. Closset-Dumitrescu-Festuccia-Komargodski ’13]

topological string w/ “flavor” brane & foliation?
[cf. Aganagic-Costello-McNamara-Vafa 17, Aharony-Feldman-MH "19] Th a n kS !




