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Yang-Lee Criticality 
Singularity of Ising Model Partition Function 

• Lee and Yang (1952): Singularity of zeros of partition function as 
a function of complex magnetic field. 

• Kortman and Griffiths (1971): Numerical high temperature 
expansion reveals a power-law singularity near the edge-point 

 .hcrit
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Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation
C. N. YANG AND T. D. LEE

Institute for Advanced Study, Princeton, Kern Jersey
(Received March 31, 1952)

A theory of equations of state and phase transitions is developed that describes the condensed as well as
the gas phases and the transition regions. The thermodynamic properties of an infiriite sample are studied
rigorously and Mayer's theory is re-examined.

I. INTRODUCTION difference lay, not in the difference of the models, but
in the inadequacy of Mayer's method for dealing with
a condensed phase. This led to a study of the analytical
behavior of the grand partition function of an assembly
of interacting atoms, and we were able, as in the special
case mentioned above, to identify and characterize
quite generally the condensation phenomena. These
general conclusions will. be presented in the present
paper.
The problem is approached by allowing the fugacity

to take on complex values. Although only real values of
the fugacity are of any physical interest, the analytical
behavior of the thermodynamic functions can only be
completely revealed by going into the complex plane,
whereby one is able to obtain a description of the con-
densed phases as well as the gas phase and the transition
regions. This approach is of a very general nature and.
can be applied to other problems of phase transitions
such as ferromagnetism, order disorder transition, etc.
It will be emphasized that also this approach can lead
to practical approximation methods for the description
of systems undergoing transitions. These points will be
discussed in paper II.
Thephysical conclusions of this paper derive from some

mathematical results which we shall state in the form
of two theorems. Due to the nature of the problem
(which involves a double limiting process) it is im-
perative to have mathematical rigor preserved through-
out. The proofs are necessarily of a mathematical nature
and will be given in the appendix.

'HIS and a subsequent paper will be concerned, with
. the problem of a statistical theory of equations of

state and phase transitions. This problem has always
interested physicists both from the practical viewpoint
of seeking for a workable theory of properties of matter
(such as a theory of liquids) and also from the more
academic viewpoint of understanding the occurrence of
the discontinuities associated with phase transitions in
the thermodynamic functions.
The work reported in this paper is quite general and

fairly abstract. We are returning in a subsequent paper
to the illustration and application of the methods here
outlined. In order to present the work of this present
paper in its proper perspective, it may be helpful if we
outline briefly the history of our own thinking on the
subject.
About a year ago one of us was able to make progress'

with the problem of the spontaneous magnetization of
the Ising model, taking advantage of some special
properties of this problem when treated by the Onsager-
Kaufman method. ' We then noted that the solution
there obtained was also the solution of another, physi-
cally quite difterent, but formally identical, problem.
This is the problem of a lattice gas with attractive
interaction between nearest neighbors. We were thus
able to follow in detail the behavior of such a lattice
gas, which in many ways should reveal the features of
an actual gas. In particular, we were able to study and
characterize the condensation phenonenon, and to
identify the liquid, gas, and transition regions in the
p—v diagram. The isotherms thus obtained are flat in
the transition region and rise very rapidly with in-
creasing density in the liquid phase. At this point, we
were led to compare the specific solution with the well-
known work' of Mayer on the theory of condensation of
gases. In particular we were led to inquire as to why, in
Mayer's theory, the isotherms stay Rat beyond the con-
densation point and do not give the equation of state
for the liquid phase. It soon became apparent that this

II. INTERACTION
We consider a monatomic gas with the interaction

U=P u(r, ;),
where r,; is the distance between the ith and jth atoms.
The following assumptions are made about the nature
of these interactions':
(1) The atoms have a finite impenetrable core of

diameter a, so that u(r) =+ ~ for r=a.
(2) The interaction has a finite range b so that' C. N. Yang, Phys. Rev. 85, 808 (1952).

~ L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys.
Rev. 76, 1232 (1949).

3 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and
Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937);J. E. Mayer an
S. F. Harrison, J. Chem. Phys. 6, 87, 101 (1938); B. Kahn an
G. E. Uhlenbeck, Physica 5, 399 (1938).M. Born and K, Fuchs
Proc. Roy. Soc. (London) A166, 391 (1938).

u(r) =0 for r=b
d (3) u(r) is nowhere minus infinity.

The theory can be easily generalized to include many
body forces and forces with a weak long tail such as
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Density of Zeros on the Lee-Yang Circle for Two Ising Ferroinagnets*

Peter J. Kortmant and Robert B. Griffiths
Department of Physics, Carnegie Mellon Univ-ersity, Pittsburgh, pennsylvania Z53Z3

(Received 20 September 1971)

Extrapolations of high-field and high-temperature series expansions have been used to
construct numerical approximations to the density of zeros g(0} on the Lee-Yang circle
for the Ising ferromagnets on a two-dimensional square and a three-dimensional dia-
mond lattice. For temperatures above the critical temperature the density is zero for
I&l «o and then varies as (& -&o)", with p =—0.1 and + 0.1 for the square and diamond
lattices, respectively.

Lee and Yang' in 1952 pointed out that the ther-
modynamic properties of an Ising ferromagnet in
the thermodynamic limit, in the presence (or ab-
sence) of a magnetic field H, are determined by
the limiting density of zeros of the partition func-
tion, g(0), on the unit circle z =e' in the complex
z =exp(- 2H/T) plane (with H and T in suitable di-
mensionless units). There have been many stud-
ies of the thermodynamic properties of Ising fer-
romagnets, especially near the critical point, '
but despite the fact that g(6) (as a function of T)
contains all this information, and is of fundamen-
tal significance for the theory of phase transi-
tions, ' very little is known about its actual form.
We present below results of what we believe to

be the first systematic investigation of g(8), based
on extrapolations of high-temperature and high-
field series, for two Ising ferromagnets which
exhibit a phase transition and a critical point:
the square lattice and the diamond lattice, with
nearest-neighbor interactions.
We have obtained quantitative information about

some features of g previously anticipated such as
the existence of a gap lOI&6o(T), centered at (}
= 0, in which g is zero if the temperature exceeds
the critical temperature T, . (Such a gap implies
that the free energy is an analytic function of H
for all real values of H including H = 0, and thus
there is no phase transition as a function of H. '
Such analyticity, and thereby the existence of a
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Yang-Lee Criticality
Ginzburg-Landau Description for d<6

• Fisher (1978): YL has a continuous description of  
field theory 
 
 

• Density of zeros analogous to magnetization 

• Critical exponent estimated using  expansion.

iϕ3

(6 − ϵ)

VOLUME 40, NUMBER 25 PHYSICAL REVIEW LETTERS 19JuNE 1978

where

Q, = -y(5x'+ 1), Q, = 2x(3x'+ 8y'+ 1), Q, = -4y(11x'+ 2y'+ 1), g, = 8x(5x'+ 12y'+ 1) . (12)

Higher k's repeat in this case also. All P ~ 's, k -4, can be reduced to multiples of P& ), P&', P&'), P&').
The TS solution previously known corresponds to the restrictions P&') = —12P&'), P&') = P&"= 0. The

complete solution we will now be able to generate from 5= 2 will contain five arbitrary parameters in-
cluding the mass. %hen the NUT parameter is excluded, we will have a four-parameter asymptotically
flat metric, As an example, we give the solution corresponding to P&') = —4P&'), P&') = P&3) =0:

4ix(x' —1) —4Py (x' —y')
(x + 1)'(x' —1) —2i Py (x + 1)(x' —2x +y') —P'(x' —y')'

The complete 5= 2 solution plus further details will be published elsewhere. ' This work was sup-
ported by the National Science Foundation under Grant No. PHYV6-12246.

(13)

W. Kinnersley, J. Math. Phys. (N.Y.) 18, 1529 (1977).
W. Kinnersley and D. M. Chitre, J. Math. Phys. (N.Y.) 18, 1588 (1977).
W. Kinnersley and D. M. Chitre, to be published.
D. M. Chitre, to be published.
5W. Kinnersley and D. M. Chitre, to be published.

Yang-Lee Edge Singularity and p3 Field Theory

Michael E. Fisher
Baker Laboratory, Cornell University, Ithaca, Net York 14853

(Received 20 April 1978)
The edge of the gap in the distribution of Yang-Lee zeros at B=iHO(T) on the imaginary

magnetic field axis in ferromagnets above Y', is essentially a critical point. In terms of
the edge exponents 6 and q, the density of zeros obeys 8 &H") - [H"—Ho(T)], with o.

=1/6=(d —2+@)/(d2 —q). Classical behavior (a=~) occurs for d&d =6. The appropriate
field-theoretic renormalization. group entails a my coupling and, with e = 6—d —0, yields
q =—e/9 for all n & ~. This correlates well with refined series estimates for d =2 and
d=8 and with exact results for d= 1 (q=—1),

Consider the magnetization, M(H, T), of a fer-
romagnet at fixed temperature T. According to
Yang and Lee, ' the analytic behavior of M (FI, T)
as a function of the magnetic field H can be under-
stood by studying the asymptotic distribution of
the zeros of the partition function in the complex
magnetic-field plane (H', H") = (Re[H], Im[H]).
Very generally, the distribution of zeros in the
thermodynamic limit is expected to concentrate
on curvilinear loci in the complex field plane; in-
deed, for a variety of models of a ferromagnet, ' ~
including Ising models' and spherical models, it
is known rigorously that the zeros concentrate on-
ly on the imaginary axis, H =i&". In that case
the magnetization for all real and complex H can
be expressed as an integral over g(II";T), the
asymptotic density of zeros. Below the critical
temperature T„one has g(0;T) &0 and the mag-

netization as a function of real field exhibits a
first-order transition with a jump 2M, (T) o"- g.(0;
T).
On the other hand, for T &T„ there is agap of

width 2H, (T) in the distribution of zeros, and
M(FI, T) is analytic for )Im(H)~ &H,(T). The edges
of this gap, at H = + iH, (T), must be branch points
of the function M(H, T); Kortman and Griffiths'
have pointed out the interest in determining the
nature of these branch points, which we term the
Yang-I ee edge singularities. Since these are the
signularities closest to the real axis, they play a
dominant role in determining the observable be-
havior of M for realII and T. Indeed they should
enter into the asymptotic equation of state near
the critical point, although it transpires that none
of the equations proposed for d &4 in the current
literature contain the correct singularities t

1610 1978 The American Physical Society
η = −
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η(d = 1) = − 1
Δ(d = 2) ≈ − 0.34



Yang-Lee Criticality
YL in 2D: exact minimal model solution

• In 2D, there are series of exactly solvable CFTs. 

• Cardy (1985): Yang-Lee is M(2,5)

[ A.Belavin, A. Polyakov, A. Zamolodchikov ’84 ] 

VOLUME 54, NUMBER 13 PHYSICAL REVIEW LETTERS 1 APRIL 1985

Conformal Invariance and the Yang-Lee Edge Singularity in Two Dimensions

John L. Cardy
Department ofPhysics, University of California, Santa Barbara, California 93106

(Received 8 January 1985)

It is shown that very general features of the critical theory of the Yang-Lee edge singularity in
two dimensions completely determine the way in which the theory realizes conformal invariance.
This leads to the value a. = —~ for the edge exponent, and makes possible the calculation of the
correlation functions.

PACS numbers: 05.50.+q, 05.70.Jk

Recently there has been considerable progress in ex-
ploiting the principle of conformal invariance of two-
dimensional systems at the critical point to obtain in-
formation about critical exponents and correlation
functions. '2 Unfortunately this principle by itself is
not sufficiently restrictive, and other criteria, such as
full unitarity of the theory, 2 have been invoked.
While such criteria are necessary for a sensible
quantum field theory, many interesting critical points
do not correspond to unitary theories. Another diffi-
culty of this approach is in the identification of a given
realization of conformal symmetry with a particular
universality class. So far, this has been accomplished
only by matching the predicted exponents, or the con-
formal anomaly c, with those values already known by
other means.
The Yang-Lee edge singularity3 4 is perhaps the sim-

plest nonunitary critical point. In addition, as will be
discussed below, it also corresponds to the simplest
universality class. It will turn out that these properties
are sufficient to determine a simple way in which con-
formal invariance can be realized in this model in two
dimensions. This determines the critical exponents
and the correlation functions.
The Yang-Lee edge singularity3 4 occurs in an Ising

model above its critical temperature in a nonzero,
purely imaginary magnetic field ih. For h larger than
some critical value h, (T) the partition function ac-
quires zeros, which become dense on the line
Reh ) h, in the thermodynamic limit. The density of
these zeros behaves near h, likes (h —h, ) . Fisher6
showed how the point h = h, can be regarded as a con-
ventional critical point. In high dimensions it corre-
sponds to the infrared behavior of the field theory of a
single scalar field @(r) with an action

A = J ddr [—,' ('7@) + i (h —h, )@+ ,' ig$ ]. (1)—

The imaginary coupling makes the theory nonunitary.
The critical point is where the renormalized coeffi-
cients of @ and @2 vanish. In 6—e dimensions there
are apparently two relevant fields, coupling to @ and

However, correlations of @ are related to those of
P by the equation of motion, so in fact P2 is a redun-
dant operator. The two-point function (@(r, )@(r2) )

x~q = —,
' [(pn++ qn )'—(n++n )'], (2)

where p, q are positive integers, n+ =np + (1+n02)' 2,
and no is related to the conformal anomaly c of the
theory by c =1—24AO. In such theories, the correla-
tion functions satisfy linear differential equations, and
there are restrictions on which three-point functions
may be nonzero: ($~ q $~ q $~ q ) is zero unless (i)
pt+p2+p3=1 (mod2), (ii) (p, —1), (p2 —1), and
(p3 —1) satisfy the triangle inequalities (p~ —1)
+ (p2 —1)~ (p3 —1), etc. Similar conditions must be
satisfied by the q, . For theories where n+/n is a ra-
tional number, these conditions imply that there are
only a finite number of basic operators in the theory.
Such cases appear to be connected to integrable
models in a way which is not yet understood. "
Let us assume that the critical theory corresponding

to the Yang-Lee edge in two dimensions is in the class
considered by Belavin, Polyakov, and Zamolodchikov,
and use conditions (a) and (b) as constraints on the
possible realizations. Since $ is to be relevant, it must
have a scaling dimension x ( 2. This restricts it to lie
in the strip

A A+ (PA++/A ( A+ A (3)

The conditions (i) and (ii) imply that the correlation
functions (&f»q$zq@ ) may be nonzero if p'= p +1ue ue

behaves like ~rt —r2~ at the critical point, where
2X = d—2+q is related to a- by Fisher's relation6
tT = (d —2+ q)/(d+ 2—q). The simplicity of this
universality class lies in its lack of any internal sym-
metry, and in the existence of only one independent
(relevant) exponent.
In order to characterize the theory in two dimen-

sions, the following properties [valid to all orders in
the (6—d) expansion ] will be assumed: (a) there is
only one9 relevant operator @; (b) the three-point
function ($(rt)@(r2)@(r3)) is nonzero.
Belavin, Polyakov, and Zamolodchikov' have shown

that there is a large class of field theories which realize
conformal symmetry in a simple way. The allowed
scaling dimensions of scalar operators in these theories
are given by the Kac formula'0

1354 1985 The American Physical Society

 is unitary, everything else is non-unitaryM(p, p + 1)
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Strategy
Connecting Energy Levels in Various Dimensions

•   expansion is known up to high loops orders. 

• One can study it better by putting in d=2 information 
through a two-sided Padé.

(6 − ϵ)

Cμνκλ

TT̄
Q = ϕ∂4ϕCμνκλ

   ΔQμνκλ

[ Borinsky, Gracey, Kompaniets, Schnetz ’21 ] 
[Bonfim, Kirkham, McKane ’80] 
[Fei, Giombi, Klebanov, and Tarnopolsky ’14] 
(6 loops just published recently by Oliver SCHNETZ)

⋯
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Strategy
Non-Hermitian Quantum Criticality: a 2D story

•   

• Transverse Field Ising Model with an imaginary field. 
Theory is non-Hermitian but still PT-symmetric. 

• Eigenvalues are real or complex conjugate pairs. 

• Eigenvalues must be real for small enough , then 
there is a critical point where two eigenvalues merge. 

• Eigenvectors are bi-orthogonal. Because Hamiltonian 
is complex symmetric, the eigenvectors are 
orthonormal under .

hz

ψT
mψn = δmn

[Uzelac ’79-81, Gehlen ’91 and ’94 ]

[Castro-Alvaredo, Fing’09 ]



Strategy
Non-Hermitian Quantum Criticality: a 2D story

• Transverse Field Ising Model with an imaginary field. 
Theory is non-Hermitian but still PT-symmetric. 

• Radial quantization: eigen val.   scaling dim. E ↔ Δ

[Uzelac ’79-81, Gehlen ’91 and ’94 ]

[Castro-Alvaredo, Fing’09 ]

J = 1J = 1
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Strategy
Non-Hermitian Quantum Criticality: a 2D story

• Get pseudo critical point at finite N, then 
extrapolate. 

• Multiple critical criteria converge to same 
. Choose one for the best of numerics. 

• Large  is advantageous.

hcrit.
z

hx

[Uzelac ’79-81, Gehlen ’91 and ’94 ]

[Castro-Alvaredo, Fing’09 ]
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Now, consider a 2+1D model

• Sphere geometry is the best for CFT due to 
state-operator correspondence. 

• How to attach spins to spherical d.o.f is a 
challenge. Fuzzy sphere gives a good 
solution protecting symmetry by sacrificing 
locality. 

• Model given by fermion density operators 
attached to SO(3) orbitals.  

• Geometry is emergent with radius .∝ N

Hu, He, Zhu ‘23
Zhu, Han, Huffman, Hofman, He ‘22



3D YL Criticality on Fuzzy Sphere
Fuzzy Sphere Ising Model with Imaginary Field

[Zhu, Han, Huffman, Hofmann, He ’23
Hu, He, Zhu ‘23, ‘24]

N fermions

Fuzzy Sphere Ising Model

Density-Density InteractionHopping

2D lattice 3D Fuzzy Sphere

Density Density

X, Z ψ†σxψ, ψ†σzψ

(ψ†σzψ)U(ψ†σzψ)ZiZi+1

U : V0 + V1∇2 + ⋯
[https://docs.fuzzified.world/
Zheng Zhou, 2503.00100]



• Start in the paramagnetic phase, bring  close to 
merging, fix  using , and extrapolate.

ihz
ih*z (N) rT = 3

3D YL Criticality on Fuzzy Sphere
Finding the critical point

Same pattern as 2D

V0 = 4.75 for the rest of the talk 



• Start in the paramagnetic phase, bring  close to 
merging, fix  using , and extrapolate.

ihz
ih*z (N) rT = 3

3D YL Criticality on Fuzzy Sphere
Finding the critical point



3D YL Criticality on Fuzzy Sphere
Extracting the scaling dimensions

• Finite size result is still far. One needs to fit. 

• Error analysis provided by Conformal perturbation 
theory (CPT). 

• Going to the pseudo critical point removes the leading 
power.  

• Estimate the leading error (Δϕ3 − 3)/2 ≈ 0.8

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.21
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0.23

0.24

0.25

0.26

0.213 + 0.407
N0.8
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N1.8
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N0.8

+ 0.172
N1.3

- 1.72
N1.8

+ 1.08
N2.3

0.212 + 0.488
N0.8

- 1.12
N1.3

+ 3.65
N1.8

- 9.64
N2.3

+ 8.42
N2.8

[B.-X. Lao and S. Rychkov,  2307.02540,  
A. M. L¨auchli, L. Herviou, P. H. Wilhelm, and S. Rychkov, 2504.00842]

hx = 20

(N ∼ R2)

(Δϕ3 ≈ 4.6)



3D YL Criticality on Fuzzy Sphere
 universalityhx
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3D YL Criticality on Fuzzy Sphere
Extracting the scaling dimensions
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3D YL Criticality on Fuzzy Sphere
Compute the OPE coefficients

• Fuzzy sphere operators flow to 
CFT operators 

• Eigenstates ~ CFT local operators 

• Leading errors are expected to 
come from        .

Gliozzi et al. '14
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3D YL Criticality on Fuzzy Sphere
Spinning OPEs: checking conservation of T

• 3-point functions of general 
spinning operators come with 
multiple polarizations. 

• In the case with stress tensor, the 
conservation  gives 
additional constraints

∂μTμν = 0
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• Descendant 3pt function are completely 
determined by conformal algebra 

• One can reverse the logic: by comparing 
primary and descendant 3pt functions, one can 
derive identities that fix  .Δϕ

3D YL Criticality on Fuzzy Sphere
Determine  from CFT self-consistencyΔϕ
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3D YL Criticality on Fuzzy Sphere
Compare Data



• Manifestly local interaction. 

• SO(3) broken to finite groups. 

• Number of sites is rigid.

Radial Quantization: Fuzzy Sphere vs. Polyhedron

• Exact SO(3) symmetry. 

• Locality is approximate. 

• Free to change number of sites.

[ Brower, Fleming, Neuberger ’12, ‘13
Gluck, Fleming, Brower, et all ‘23
Lao, Rychkov ‘23][Zhu, Han, Huffman, Hofmann, He ’23

Hu, He, Zhu ‘23, ‘24]

N fermions

En ∼
Δn

R
|En⟩ ∼ On(0) |0⟩



3D YL Criticality on Platonic solids

• Qualitatively same as fuzzy sphere. 

• No easy extrapolation. 

• Use stress tensor = 3 criterion.

Cube Icosahedron Dodecahedron



4D YL Criticality on the 24-cell
Numerically accessible CFT beyond 3D

• Regular polytope in 4D with 24 vertices. 

• Similar behavior as lower dimensions. 

• Prediction from 2-sided Padé:



Outlook
• We obtained numerical solution to quantum YL criticality in various dimensions and 

they agree well with the  expansion and are comfortably consistent with 
conformal symmetry. 

• The  family has many members. E.g.  has a Ginzburg-Landau description of 
two scalars with imaginary cubic couplings. 

• It would be interesting to combine fuzzy sphere and bootstrap study in 3D. Non-
unitary bootstrap requires a initial guess with some precision, which fuzzy sphere 
can provide. Or could we figure out how to use positivity in open-systems? 

• The fact that 24-cell gives us reasonable accuracy for 4D YL is encouraging. Could 
we generalize fuzzy sphere to 4D?

6 − ϵ

ϕ3 M(3,8)



Thank you!






