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Infrared phases of QCD
• QCD: (3+1) d  Yang-Mills theory coupled to  massless 

quarks in the fundamental representation  

• It is well known that the infrared phases depend on the values 
of  and  :                                                                                               
1) Infrared free quarks and gluons for                         
2) Interacting CFT for                                         
3) Chiral symmetry breaking for                                   
4) Gapped with unique vacuum for                                                    
5) The  parameter becomes physical for :                      
gapped with unique vacuum for generic ; two degenerate 
vacua at 
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• The picture of infrared phases is mainly based on empirical 
evidences, lattice results and educated guessworks 

• Very little has been rigorously/coherently derived, other exotic 
phases of QCD may be possible

Punchline

Instead of pinning down the phase diagram for specific  
and  , we establish a general no-go theorem that states 
the incompatibility of unbroken chiral symmetry and color 
screening.

Nc
Nf



• Characterized by the following RG flow

Color screening

Quarks and 
gluons 


in ultraviolet theory

Infrared-free fixed point of 
Hadrons

• The fact that all the hadrons must be color singlets in the low energy 
theory is conventionally denoted as “confinement”. More precisely, in 
the presence of massless dynamical quarks in the fundamental 
representation, Wilson lines are screened, hence it needs to be 
distinguished from the genuine confinement. Perhaps one can call 
the infrared description “screening confinement”.



• Option 1: Assuming that theory flows in the infrared to a fully color-
screened, infrared-free phase described by color-singlet hadrons, 
chiral symmetry must be spontaneously broken. 

• Option 2: Conversely, any phase with unbroken chiral symmetry 
must retain unscreened color charges.

Implications of the no-go theorem

Both consistent with the general wisdom



• Revisiting ’t Hooft’s cargese lectures in 1979

• The no-go theorem can be derived from rigorous algebraic 
equations



• Consider a QCD-like theory with 



• ’t Hooft: weakly gauging  and 
adding spectator fermions 
(leptons), which are charged only 
under  but not under color, to 
cancel the anomalies of quarks 

• Anomalies match in the UV and IR 

G[Nf] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf]

G[Nf]

Perturbative chiral anomalies of QCD
Quarks 

and gluons  
q, g


in UV theory

𝒜(q) = 𝒜(Φ)

qL ∼ (fund., singlet, 1/Nc)

qR ∼ (singlet, fund., 1/Nc)

• The triangle anomalies  and  do not 
vanish, hence there is obstruction to gauging 

[SU(Nf )L,R]3 [SU(Nf )L,R]2U(1)B

G[Nf]
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’t Hooft anomaly matching conditions

𝒜(q) = 𝒜(Φ)

Quarks 
and gluons  
in UV theory

Bμ+ leptons

𝒜(q) + 𝒜(L) = 0
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Quarks 
and gluons  
in UV theory

Hadrons  
 in IR theory

Φ

Bμ+ leptons

𝒜(q) + 𝒜(L) = 0

Bμ+ leptons

𝒜(Φ) + 𝒜(L) = 0

𝒜(q) = 𝒜(Φ)



• For establishing the no-go theorem, it is sufficient to prove that infrared 
description of “confinement without chiral symmetry breaking” is invalid  

• The assumption of color screening implies that each hadron is a color 
singlet, i.e., the numbers of constituent quarks and antiquarks have to 
satisfy the constraint 

• However, color-singlet hadrons furnish general irreducible 
representations under , which is not under control 

• The assumption of unbroken chiral symmetry implies that ’t Hooft 
anomalies are matched by (spin-1/2) massless composite fermions 

G[Nf ]

Infrared description

It’s sufficient to consider odd  ; for even  all hadrons are bosons Nc Nc
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• Anomaly matching conditions (AMC):

anomaly coefficient 
(hadrons)

anomaly coefficient 
(quarks)

Index ℓ(r) ≡
# times r appears in 
the spectrum with 

helicity +1/2
−

# times r appears in 
the spectrum with 

helicity −1/2



• Anomaly matching conditions (AMC):

anomaly coefficient 
(hadrons)

anomaly coefficient 
(quarks)

Index ℓ(r) ≡
# times r appears in 
the spectrum with 

helicity +1/2
−

# times r appears in 
the spectrum with 

helicity −1/2

Clearly, 1) all indices must be integers for a physical spectrum 

               2) the index vanishes when helicities are paired.  

               3) Nontrivial indices (i.e. ) imply enhanced symmetry in the infrared.ℓ(r) > 1



• Failure of matching ’t Hooft anomalies with integral indices 
necessarily suggests chiral symmetry breaking 

• The challenge is to prove the AMC equations do not have 
integer solutions for any spectrum of color-singlet hadrons and 
for any  and  in the confining phase 

• The statement can be proven when                                                                               
—  is even such that the infrared spectrum is bosonic                     
—  is proportional to a nontrivial prime factor of                        
(We proved the second case in full generality, see 2404.02967)

Nc Nf

Nc
Nf Nc
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necessarily suggests chiral symmetry breaking 

• The challenge is to prove the AMC equations do not have 
integer solutions for any spectrum of color-singlet hadrons and 
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• For special  and  , there is hope to prove

Nc Nf

Nc Nf

[Preskill, Weinberg, 
Phys.Rev.D 24 (1981) 1059]

Nc = 3



• Failure of matching ’t Hooft anomalies with integral indices 
necessarily suggests chiral symmetry breaking 

• The challenge is to prove the AMC equations do not have 
integer solutions for any spectrum of color-singlet hadrons and 
for any  and  

• For special  and  , there is hope to prove

Nc Nf

Nc Nf

[Weinberg, QFT textbook vol.2, section 22.5]



This result is valid for any spectrum of color-singlet 
composite fermions, see the proof in 2404.02967



• For general  and  , AMC alone is not restrictive enough 

• Question: can we find additional constraints that can be used 
together with AMC? 

• Answer: Yes, the so-called Persistent Mass Condition

Nc Nf

Additional constraints needed

— The intuition is to deform the massless theory with small quark 
masses and keep track of the symmetries.  This is another probe 
which is allowed only in vectorlike theories. 
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• Question: can we find additional constraints that can be used 
together with AMC? 

• Answer: Yes, the so-called Persistent Mass Condition (PMC)

Nc Nf

Additional constraints needed

— The intuition is to deform the massless theory with quark masses 
and keep track of the symmetries.  This is another probe which is 
allowed only in vectorlike theories. 



• PMC states that bound states with massive constituents (and with 
nonzero  charges) are massive 

• Proven following Vafa and Witten [Nucl.Phys.B 234 (1984) 173-188] with mild 
assumptions 

• PMC implies that the vectorlike part of  cannot be spontaneously 
broken (i.e., the Vafa-Witten theorem) 

• Relatedly, Weingarten’s hadrons mass inequalities [Phys. Rev. Lett. 51, 1830 
(1983)] suggest the presence of massless pseudo-scalars interpolated by 
the pseudo-density operator  , which look like Nambu-Goldstone 
bosons. However, such an argument is not conclusive, since it can 
happen that

U(1)Hi

G[Nf ]

q̄iγ5qj
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• 1) For vectorlike gauge theories, the measure is positive-definite 
when all quark masses are real and positive 

• 2) The bound on the quark propagator in the background of 
gauge fields (with some technicalities on smearing): 

Vafa and Witten’s proof on PMC

|SA(x, y) | < e−m|x−y|

There are two key ingredients: 
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|⟨B(x)†B(y)⟩ | ≤ e−(nH⋅m+nL⋅ϵ)|x−y|

 = numbers of quark propagators from  to nH (nL) x y

M ≥ nHm + nLϵ

• Let  be the quark mass of one flavor, and  that of the others. 
Let  be a composite operator, it follows that 

m ϵ
B(x)

• At large distances, ⟨B(x)†B(y)⟩ ∼ e−M|x−y|

• Bound on hadron mass versus its quark constituents

• Taking the limit ϵ → 0

 reduces to                                          G[Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf ,1] = SU(Nf − 1)L × SU(Nf − 1)R × U(1)B × U(1)H1

—

—

M ≥ nHm > 0 for  nH > 0

(Notice that the hadron must be charged nontrivially 
under  to ensure  .)U(1)H1

nH > 0
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The PMC equations connected by the diagonal lines can be identified,             
since each irrep of  can be identified with 

that of  with zero  
charge. 
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The PMC equations connected by the diagonal lines can be identified,             
since each irrep of  can be identified with 

that of  with zero  
charge, vice versa. 

G[Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf + 1,1] = SU(Nf )L × SU(Nf )R × U(1)B × U(1)H1
U(1)H1

An observation on PMC equations



• Coherent structure of PMC for theories with different   while 
 is fixed:

Nf

Nc

• Summarizing in one line, we have the identifications                                             
PMC   PMC[ ][Nf , i] ∼ Nf − 1, i − 1

The coherent view of PMC



Our proof

based on induction and contradiction



QCD with Nc = 3

Nf0 (Np
f )min

No solution of AMC
Prime factor

Nf

The theory where the 
assumption of “confinement 

without SB” is tested χ

• Suppose the assumption is true for  , there exist integral solutions to 
AMC[ ] & PMC[ ]. 

• Downlifting: constructing integral solutions of AMC[  - 1] & PMC[  - 1] 
from those of AMC[ ] & PMC[ ]. Eventually, we find integral solutions 
for AMC[3] & PMC[3] 

• However, there isn’t any integral solution for AMC[3]. Contradiction!

Nf
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Downlifting



• With PMC[ ]  PMC , their indices solve PMC[ ] 
where , which are all the PMC equations for the theory of  
flavors.

Nf − 1, i − 1 ∼ [Nf , i] Nf − 1, i − 1
2 ≤ i ≤ Nf − 2 Nf − 1

• Let us start with , which solves AMC[ ] & PMC[ ]. 

• Giving mass to one flavor, decomposing the irreps  to 
. The index of each  is calculable from that of .

{ℓ(r)} Nf Nf

r ∈ G[Nf]
r′￼∈ G[Nf ,1] r′￼ r

• Their indices solve PMC[ ] with  by decomposition 
step by step. (Notice their indices are not set to zero by PMC[ ].)

Nf , i 2 ≤ i ≤ Nf − 2
Nf ,1

G[Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf ,1] = SU(Nf − 1)L × SU(Nf − 1)R × U(1)B × U(1)H1

—

—

• For  with  :r′￼ H1 = 0

• where
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G[Nf ,1] = SU(Nf − 1)L × SU(Nf − 1)R × U(1)B × U(1)H1

—

—

• For  with  :r′￼ H1 = 0

• where



• Hence, we have shown that the downlifted indices given by the ansatz 
successfully solves PMC .  

• Next, we show the same ansatz also solves AMC . 

[Nf − 1]

[Nf − 1]



• Let us evaluate anomaly coefficients of  on the 
 Lie subalgebra. Following the rule of decomposition, 

we have 

SU(Nf )L,R

SU(Nf − 1)L,R

• Plugging this equation into AMC[ ] and switching the order of 
sums, we have

Nf

• PMC[ ] imply the sum in the parenthesis in the second line 
vanishes unless for  with zero  charge; therefore 

Nf ,1
r′￼ U(1)H1

• This equation can be viewed as AMC , whose solution is 
happily the ansatz!
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• Let us evaluate anomaly coefficients of  on the 
 Lie subalgebra. Following the rule of decomposition, 

we have 

SU(Nf )L,R

SU(Nf − 1)L,R

• Plugging this equation into AMC[ ] and switching the order of 
sums, we have

Nf

• PMC[ ] imply the sum in the parenthesis in the second line 
vanishes unless for  with zero  charge; therefore 

Nf ,1
r′￼ U(1)H1

• This equation can be viewed as AMC , where the indices are 
given by the ansatz. 

[Nf − 1]



• Pros: Our proof crucially relies on the coherent structure of 
PMC for QCD theories of different  while  is fixed, which 
however does not involve further assumptions on the putative 
hadron spectrum.                                                 

• Cons: We cannot prove for  smaller than the smallest prime 
factor of . For instance, .   

• Question: What we studied may be viewed as the “zero-form” 
QCD, which only involves local data relevant for particles. How 
solid our result is given the possible impact of nonlocal data of 
higher symmetries? Which QCD??

Nf Nc

Nf

Nc Nc = 3, Nf = 2

Summary and outlook

Thank you! Comments welcome!


