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How to nonperturbatively requlate chiral gauge theories is a longstanding problem
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
not an imagined dichotomy — the source of anomalies
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem
regulating fermions requires a mass < chiral symmetry forbids a mass

not an imagined dichotomy — the source of anomalies

...but why is it interesting?
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem
regulating fermions requires a mass < chiral symmetry forbids a mass

not an imagined dichotomy — the source of anomalies

...but why is it interesting?

e ots of cool strongly coupled chiral gauge theory models with massless composite
fermions and other phenomena...
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
not an imagined dichotomy — the source of anomalies

...but why is it interesting?

e ots of cool strongly coupled chiral gauge theory models with massless composite
fermions and other phenomena...

-...but zero evidence that nature makes use of them!
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
not an imagined dichotomy — the source of anomalies

...but why is it interesting?

e ots of cool strongly coupled chiral gauge theory models with massless composite
fermions and other phenomena...

-...but zero evidence that nature makes use of them!

e\Well, the Standard Model is a chiral gauge theory...shouldn’t we know how to regulate it?
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
not an imagined dichotomy — the source of anomalies

...but why is it interesting?

e ots of cool strongly coupled chiral gauge theory models with massless composite
fermions and other phenomena...

-...but zero evidence that nature makes use of them!
e\Well, the Standard Model is a chiral gauge theory...shouldn’t we know how to regulate it?

-...but only the weak interactions make it chiral...we can simulate lattice QCD + EM and
then add weak interactions perturbatively!
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem

regulating fermions requires a mass < chiral symmetry forbids a mass
not an imagined dichotomy — the source of anomalies

...but why is it interesting?

e ots of cool strongly coupled chiral gauge theory models with massless composite
fermions and other phenomena...

-...but zero evidence that nature makes use of them!
e\Well, the Standard Model is a chiral gauge theory...shouldn’t we know how to regulate it?

-...but only the weak interactions make it chiral...we can simulate lattice QCD + EM and
then add weak interactions perturbatively!

-...and besides, chiral gauge theories will likely have exponentially hard sign problems to
overcome!
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How to nonperturbatively requlate chiral gauge theories is a longstanding problem
regulating fermions requires a mass < chiral symmetry forbids a mass

not an imagined dichotomy — the source of anomalies

...but why is it interesting?

eLots of cool strongly coupled chlral | gauge theory models with massless composite
fermions and offasspkrerom THER —
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...but only the weak interactions make it chiral...we can simulate lattice QCD + EM and \\
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Response:
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Response:

* ves, there probably will be a sigh problem. A solution to regulating chiral gauge
theory should provide a Hamiltonian formulation appropriate for a quantum
computer.
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Response:

* ves, there probably will be a signh problem. A solution to regulating chiral gauge

theory should provide a Hamiltonian formulation appropriate for a quantum
computer.

* Weak interactions aren’t weak at high energy... there are nonperturbative SM
processes of interest for simulation, such as weak scale baryogenesis.
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Response:

* ves, there probably will be a signh problem. A solution to regulating chiral gauge

theory should provide a Hamiltonian formulation appropriate for a quantum
computer.

* Weak interactions aren’t weak at high energy... there are nonperturbative SM
processes of interest for simulation, such as weak scale baryogenesis.

* The most interesting possibility: perhaps assumptions about universality are
incorrect, and QCD as part of the SM is not equivalent to a stand-alone vector-like
SU(3) gauge theory with quarks — LQCD might miss something important

“ INSTITUTE for

hy nuctear TheoRY . B. Ka'PLaV\z —~ Rﬁ@%LatLWQ Chiral Gauge TMCOVa and the -StVOng CP Problemw~ ECT™ £/28/25




Response:

* ves, there probably will be a signh problem. A solution to regulating chiral gauge

theory should provide a Hamiltonian formulation appropriate for a quantum
computer.

* Weak interactions aren’t weak at high energy... there are nonperturbative SM
processes of interest for simulation, such as weak scale baryogenesis.
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incorrect, and QCD as part of the SM is not equivalent to a stand-alone vector-like ”
» SU(3) gauge theory with quarks — LQCD might miss something |mportant
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This taIk an explicit reallzatlon of the last pomt
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Response:

* ves, there probably will be a signh problem. A solution to regulating chiral gauge

theory should provide a Hamiltonian formulation appropriate for a quantum
computer.

* Weak interactions aren’t weak at high energy... there are nonperturbative SM
processes of interest for simulation, such as weak scale baryogenesis.
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This taIk an explicit reallzatlon of the last pomt

But how can conventional LQCD differ from QCD in the SM? It works so well!
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Response:

* ves, there probably will be a signh problem. A solution to regulating chiral gauge

theory should provide a Hamiltonian formulation appropriate for a quantum
computer.

* Weak interactions aren’t weak at high energy... there are nonperturbative SM
processes of interest for simulation, such as weak scale baryogenesis.

——
_——

o The most mterestmg p055|b|I|ty perhaps assumptlronboutversallty are - ﬁ*
incorrect, and QCD as part of the SM is not equivalent to a stand-alone vector-like ”
» SU(3) gauge theory with quarks — LQCD might miss something important
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This taIk an explicit reallzatlon of the last pomt

But how can conventional LQCD differ from QCD in the SM? It works so well!
Punchline: stand-alone QCD has a strong CP problem; SM QCD might not.
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< infinite source & sink for j

fermions

Anomalies on the lattice

)
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e Heuristic picture for anomalies relies on a “Hilbert Hotel”...not an option for a lattice

e Chiral symmetry must be broken on the lattice?...but in a way that permits chiral gauge

theory?
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Nielsen-Ninomiya theorem

d
consider Euclidian fermion action on a lattice: S = / (;iw];d\i’(—p)ﬁ(p)‘lf(p)
BZ
wanted: massless Dirac fermion with chiral symmetry
1. D(p) is a periodic, analytic function of p,; =& locality
2. Z?(P) X Yupy for alp,| < 1; I correct continuum limit
3. D(p) invertible everywhere except p,, = 0; %1 no doublers
4. {T',D(p)} = 0. <2 exact chiral symmetry (I = ys)

Nielsen-Ninomiya theorem: one can have at most three of these four desired attributes

Need #4 to project out a Weyl fermion from a massless Dirac fermion. What else to sacrifice?
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Nielsen-Ninomiya theorem

dip - ~
consider Euclidian fermion action on a lattice: S = / £ W (—p)D(p)¥(p)

1. [j(p) is a periodic, analytic function of p,; ’; |0ca|it\y

2. D(p) o< yupy for alpu| < 1; %1 COTTact continuum limit

3. D(p) invertible everywhere except p,, = 0; %1 no doublers

4. {I', D(p)} = 0. %3 exact chiral symmetry (I = ys)

Nielsen-Ninomiya theorem: one can have at most three of these four desired attributes

Need #4 to project out a Weyl fermion from a massless Dirac fermion. What else to sacrifice?
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Nielsen-Ninomiya theorem

dip - ~
consider Euclidian fermion action on a lattice: S = / £ W (—p)D(p)¥(p)

1. [j(p) is a periodic, analytic function of p,; ’; |0ca|it\y

2. D(p) o Yup for alp,| < 1 &7 correct continuum limit

3. D(p) invertible everywhere except p,, = 0; %1 no doublers

4. {I', D(p)} = 0. %3 exact chiral symmetry (I = ys)

Nielsen-Ninomiya theorem: one can have at most three of these four desired attributes

Need #4 to project out a Weyl fermion from a massless Dirac fermion. What else to sacrifice?

Where else do chiral fermions appear in nature?
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Chiral edge states appear naturally in
the Integer Quantum Hall Effect:

QOO0
QOO0
QOO0
OO0O00O
QOO0
QOO0
OO0

And the Hall current accounts
properly for the axial anomaly

TTTTTTTTTTTTTT
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Chiral edge states appear naturally in Analog for Dirac fermions with domain wall mass

the Integer Quantum Hall Effect: [Jackiw & Rebbi]:

OO0O0O0

OOOOO Has solutions: VU = ¢__ (565))(__

QOO0 Yo Xt =

[& + V505 + m($5)} v =0

OO0O00O _

OOOOO O+ (T5) =

OO0O0O0 i

=S
oT /%5 m(s)ds

m

OO0 )

And the Hall current accounts
properly for the axial anomaly

Chern-Simons current in the bulk accounts properly

for the axial anomaly [Callan & Harvey]
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Why does a Dirac equation have a massless chiral edge state?
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...50 a domain wall is a boundary between two topological phases...
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...50 a domain wall is a boundary between two topological phases...

e ...the only way to connect two topological phases is for the theory to go
gapless at the interface
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...s0 a domain wall is a boundary between two topological phases...

e ...the only way to connect two topological phases is for the theory to go
gapless at the interface

Toy example: topological insulator in 0+1 dimensions — quantum mechanics with a gap

H(s)p = E(s)y, |E(s)| > A
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...50 a domain wall is a boundary between two topological phases...

e ...the only way to connect two topological phases is for the theory to go
gapless at the interface

Toy example: topological insulator in 0+1 dimensions — quantum mechanics with a gap
H(s)y = E(s)¢y, [E(s)] > A

e Define topological qguantum number: v = # of negative energy states.
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...50 a domain wall is a boundary between two topological phases...

e ...the only way to connect two topological phases is for the theory to go
gapless at the interface

Toy example: topological insulator in 0+1 dimensions — quantum mechanics with a gap
H(s)y = E(s)¢y, [E(s)] > A

e Define topological qguantum number: v = # of negative energy states.
e Theories with different parameter s are then topologically equivalent.
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Why does a Dirac equation have a massless chiral edge state?

e Because a QFT with a free massive Dirac fermion is in different
topological phases depending on the sign of the mass

e ...50 a domain wall is a boundary between two topological phases...

e ...the only way to connect two topological phases is for the theory to go
gapless at the interface

Toy example: topological insulator in 0+1 dimensions — quantum mechanics with a gap
H(s)y = E(s)¢y, [E(s)] > A

e Define topological qguantum number: v = # of negative energy states.
e Theories with different parameter s are then topologically equivalent.
e For the topology to change, theory has to go gapless.
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What is topologically quantized in a QFT of massive Dirac fermions?
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What is topologically quantized in a QFT of massive Dirac fermions?

88888 In the Integer Quantum Hall Effect it is the Hall conductivity
QOO The QFT analog is the coefficient of the Chern-Simons term
QOO0

eelele’e obtained by integrating out the massive fermion in a background
88800 gauge field.

KE€Eqabe 1TA,OpA. ...
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What is topologically quantized in a QFT of massive Dirac fermions?

88888 In the Integer Quantum Hall Effect it is the Hall conductivity
QOO The QFT analog is the coefficient of the Chern-Simons term
QOO0

eelele’e obtained by integrating out the massive fermion in a background
88800 gauge field.

KE€Eqabe 1TA,OpA. ...

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

dp 0S~1(p) 0S~1(p)
[ [ [ ]
€010y / o Tr S(p) - S(p) .

where S(p) is the fermion propagator. When the theory is regulated, this is a winding
number for the map S(p) from Sd (momentum space) to Sd = SO(d+1)/SO(d)

D. B. Kaplan ~ Regulating Chiral Gauge Theory and the Strong CP Problem~ ECT™ 2/28/25



Remarkable fact:

Since the topology is in momentum/spin space, topological phases and massless
edge states appear at domain wall boundary on an infinite spacetime lattice
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Remarkable fact:

Since the topology is in momentum/spin space, topological phases and massless
edge states appear at domain wall boundary on an infinite spacetime lattice

E.g. Wilson fermions (pBk 1992; K. Jansen, M. Schmaltz 1993; M. Golterman, K. Jansen, DBK, 1993):
T

_ v(x+ afl) — Yz — afi)
D =~,0+ M - QA < () = - ,
- : V(x+ afl) — 2¢(x) + (z — afi)

~ . e T —

D(p) = M + E LSNPy Yy T 5(1 — Cospu) Apla) a2

— _
M
Nontrivial topological phases for 0 < - < 2d  with phase boundaries at = 0,2,...,2d
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Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime

gz (gauge coupling)

Aoki phasé
Usual tuning for
\ Wilson fermions (4d)
-10 8 -6 -4 -2 0 m/l’ (ratio of mass to Wilson coupling)

S Aoki, Prog Th Phys 122 (1996) 179
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Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime

gz (gauge coupling)

Aoki phasé
Usual tuning for
\ Wilson fermions (4d)
-10 , -8 , -6

4 -2 0 /T (ratio of mass to Wilson coupling)
Q U S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —
where to sit for chiral DWFs
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periodic BC

iiiniiiiiniiiiiin] open BC (D=0) (v shamir 1993

periodic BC

M=r=1

Obtain almost massless RH & LH Weyl
—2M L

fermions... mass X € Lattice has topology of an open

cylinder with two boundaries

INSTITUTE for

hy nuctear TheoRY . B. Ka'PLaV\z —~ Rﬁ@l/LLatLWQ Chiral Gauge ThCOVﬁ and the -StVOng CP Problemw~ ECT™ £/28/25




Won’t there be doubled copies of RH Weyl

fermions on each wall?

i} n § LH Weyl
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Won’t there be doubled copies of RH Weyl

fermions on each wall?

i} n § LH Weyl

No! thanks to Wilson term, profile

of zeromode (x e ‘" effls

Mg ~ M cosp

At critical | pcrit| < T, Meff changes sign, state delocalizes
IIIII1=I-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
AN
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Won’t there be doubled copies of RH Weyl

fermions on each wall?

No! thanks to Wilson term, profile

of zeromode (x e~ ‘effts

Meg ~ M cosp

—_— -

At critical | pcrit| < T, Meff changes sign, state delocalizes =——
T —
)
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What has been gained?? Wanted:

1. D(p) is a periodic, analytic function of Dy < |ocality

2. D(p) o< vupy for alp,| < 1; I correct continuum limit

3. ( ) invertible everywhere except Py = 0; <) no doublers

4. {I', D(p)} = 0. < exact chiral symmetry (I = ys)
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What has been gained?? Wanted:

. D(p) is a periodic, analytic function of Dy %) |ocality
. D(p)

(

X Yupu for alp,| < 1; <0 correct continuum limit

. D invertible everywhere except p,, = 0; %3 no doublers

1

_ 0 N

)} =0. = exact chiral symmetry (I = ys)

With exponentially light Dirac fermion, #4 is violated.

Any advantage of domain wall fermions over Wilson fermions?
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What has been gained?? Wanted:

~

1. D(p) is a periodic, analytic function of p,; %) |ocality

2. I?(P) X Yupy for alp,| < 1; <) correct continuum limit

3. D invertible everywhere except p,, = 0; <3 no doublers

4. { )} = 0. %2 exact chiral symmetry (I = ys)

With exponentially light Dirac fermion, #4 is violated.

Any advantage of domain wall fermions over Wilson fermions?

Yes... {D, F} = DI'D Obeys “Ginsparg-Wilson” equation

e reproduces the correct chiral anomalies
e but still enforces multiplicative mass renormalization
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What has been gained?? Wanted:

~

1. D(p) is a periodic, analytic function of p,; %) |ocality

2. I?(P) X Yupy for alp,| < 1; <) correct continuum limit

3. D invertible everywhere except p,, = 0; <3 no doublers

4. { )} = 0. %2 exact chiral symmetry (I = ys)

With exponentially light Dirac fermion, #4 is violated.

Any advantage of domain wall fermions over Wilson fermions?

Yes... {15, F} = DI'D Obeys “Ginsparg-Wilson” equation

e reproduces the correct chiral anomalies
e but still enforces multiplicative mass renormalization
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What has been gained?? Wanted:

1. D(p) is a periodic, analytic function of p,,; %) |ocality

2. I?(P) X Yupu for alp,| < 1; <) correct continuum limit

3. D invertible everywhere except p,, = 0; <3 no doublers

4. 4 )} = 0. % exact chiral symmetry (I = ys)

With exponentially light Dirac fermion, #4 is violated.

Any advantage of domain wall fermions over Wilson fermions?

~ - - O_CD"‘ \
Yes... {D,F} = DI'D  Obeys “Ginsparg-Wilson” equation \ent O atn $10
exceV . e\e PO oe
C
e reproduces the correct chiral anomalies \\ete"o
* but still enforces multiplicative mass renormalization ‘“eON
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Appearance of chiral fermions at topological phase boundaries is a robust phenomenon

A strip with two boundaries produced LH + RH chiral edge states.

Consider instead edge states on manifold with a single boundary.
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Appearance of chiral fermions at topological phase boundaries is a robust phenomenon

A strip with two boundaries produced LH + RH chiral edge states.

Consider instead edge states on manifold with a single boundary.

Dirac fermion in d+1 continuum dimensions: m, r< R

— M — —0o0
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Appearance of chiral fermions at topological phase boundaries is a robust phenomenon

A strip with two boundaries produced LH + RH chiral edge states.

Consider instead edge states on manifold with a single boundary.

Dirac fermion in d+1 continuum dimensions: {m r< R

— M — —0o0

Shouldn’t this have a single Weyl fermion edge state?
Which must be exactly massless?
Which can be realized with Wilson fermions on a lattice?
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Lots of (wrong) reasons for why this shouldn’t work...so it took 30 years to check it

_—"

out.
Moral: Think less, calculate more
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Lots of (wrong) reasons for why this shouldn’t work...so it took 30 years to check it
Out.
Moral: Think less, calculate more

— M — —o

Solve the Dirac equation with this mass profile
(DBK: Phys. Rev. Lett. 132 (2024) 141603, arXiv:2312.01494)
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Find:
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Find:

e There is a Weyl edge mode circulating the disc in only one direction
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Find:

e There is a Weyl edge mode circulating the disc in only one direction

e |[ts chiral symmetry is exact even at finite size: part of the exact U(1) fermion number
symmetry of the higher dimension theory
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Find:

e There is a Weyl edge mode circulating the disc in only one direction

e |[ts chiral symmetry is exact even at finite size: part of the exact U(1) fermion number
symmetry of the higher dimension theory

e The total angular momentum coordinate (-j/R) plays the role of linear momentum
around the disc edge, j = +1/2, +3/2,...
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Find:

e There is a Weyl edge mode circulating the disc in only one direction

e |[ts chiral symmetry is exact even at finite size: part of the exact U(1) fermion number
symmetry of the higher dimension theory

e The total angular momentum coordinate (-j/R) plays the role of linear momentum
around the disc edge, j = +1/2, +3/2,...

e On an annulus (inner radius R’) there is a mirror Weyl state on inner boundary with
momentum (+j/R’)
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Find:

e There is a Weyl edge mode circulating the disc in only one direction

e |[ts chiral symmetry is exact even at finite size: part of the exact U(1) fermion number
symmetry of the higher dimension theory

e The total angular momentum coordinate (-j/R) plays the role of linear momentum
around the disc edge, j = +1/2, +3/2,...

e On an annulus (inner radius R’) there is a mirror Weyl state on inner boundary with
momentum (+j/R’)

Furthermore, the same physics works on the lattice...physics is like the continuum
annulus with R” = a = lattice spacing. Thus mirror states to not have a continuous
spectrum as R =><o, invalidating assumption of Nielsen-Ninomiya
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Haise = Pr Hpx 1, PR

NUCLEAR THEORY

Look at 1+1 dispersion relation
Work on a lattice disc with

open BC
We took L=70, R = 34.

Weyl edge state?
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If you want E vs p for the edge

state, plot E vs J
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DBK, S. Sen: Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012
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DBK, S. Sen: Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012
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Nielsen-Ninomiya would have you believe this is not possible for sensible system
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Back to the continuum.

Equivalent to finite disk
with BC

e Add 5d background gauge field By, k=1,...,5.
e Look at physics below gap m (integrate out massive fermion modes)
e To tame divergences, include a Pauli-Villars field*, same BC but mass -m

* Role of PV field is crucial — it compactifies momentum space, required for topological
interpretation, quantized Chern-Simons coefficient, anomaly inflow...
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Integrate out massive bulk fermion + PV field with background 5d gauge field By

o BBk stxx.A)
/ ax dx A B, Au(z) = By(z,7)| _,

= 4d boundary gauge
field

X = Weyl boundary mode with 4d action
A = bulk fermion contribution to fermion determinant
A* = Pauli-Villars contribution to fermion determinant

ePauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
eThe remaining imaginary part is proportional to the n-invariant of the bulk Dirac

operator = (regulated) sum of A/|A| ... from: N im A

W%l_{noo Im _ln N—im. — Wm

ein perturbation theory, n-invariant = Chern-Simons operator
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]

e The remaining imaginary part is proportional to the n-invariant
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
e The remaining imaginary part is proportional to the n-invariant

e [in perturbation theory, the n-invariantis proportional to the Chern-Simons
operator]
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
e The remaining imaginary part is proportional to the n-invariant

e [in perturbation theory, the n-invariantis proportional to the Chern-Simons
operator]

e n-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984;
Witten, Yonekura 2020]. It allows bulk physics to compensate for the gauge
symmetry violation of the boundary theory.
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
e The remaining imaginary part is proportional to the n-invariant

e [in perturbation theory, the n-invariantis proportional to the Chern-Simons
operator]

e n-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984;
Witten, Yonekura 2020]. It allows bulk physics to compensate for the gauge
symmetry violation of the boundary theory.

e When the boundary theory is free of gauge anomalies, the n-invariant only
depends on the 4d boundary values of the gauge fields A,(x) = Bu(x,R)
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e Pauli-Villars has canceled the real part of the fermion contribution to log[A/A*]
e The remaining imaginary part is proportional to the n-invariant

e [in perturbation theory, the n-invariantis proportional to the Chern-Simons
operator]

e n-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984;
Witten, Yonekura 2020]. It allows bulk physics to compensate for the gauge
symmetry violation of the boundary theory.

e When the boundary theory is free of gauge anomalies, the n-invariant only
depends on the 4d boundary values of the gauge fields A,(x) = Bu(x,R)

Boundary theory that is free of gauge anomalies is described by partition function that
only depends on boundary values of the gauge fields
€Z¢ A (z))
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It appears that we can weight by the 4d Yang-Mills action, integrate over the
boundary gauge fields, and have a path integral for an chiral gauge theory:

dA €_SYM[A] dX d>_< €i¢[A] G_S(XOZ;AM)
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Proposal for defining chiral gauge theory: phase of fermion measure determined
from bulk physics, automatically fails if boundary gauge theory is anomalous

dA €_SYM[A] dX d}Z €Z¢[A] e_S(XQ_(aAu)

This passes a critical common sense test:

Q: “What would go wrong if we tried to regulate a 4d theory that suffered from
gauge anomalies?”

A: “It would not look like a 4d gauge theory (n[Bk] depends on 5d gauge fields)”
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Two important ingredients:

eExistence of robust chiral edge states
\When anomalies cancel, bulk fermions contribute phase that only depends on boundary
gauge field
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Two important ingredients:

eExistence of robust chiral edge states
\When anomalies cancel, bulk fermions contribute phase that only depends on boundary
gauge field

Realizable on a lattice?
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Two important ingredients:

eExistence of robust chiral edge states
\When anomalies cancel, bulk fermions contribute phase that only depends on boundary
gauge field

Realizable on a lattice?

eExistence of robust chiral edge states

Yes. Relies on boundary between topological phases, achievable with
Wilson fermions on finite lattice.
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Two important ingredients:

eExistence of robust chiral edge states
\When anomalies cancel, bulk fermions contribute phase that only depends on boundary
gauge field

Realizable on a lattice?

eExistence of robust chiral edge states

Yes. Relies on boundary between topological phases, achievable with
Wilson fermions on finite lattice.

e\When anomalies cancel, bulk fermions contribute phase that only depends on
boundary gauge field

Not automatic...
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The lattice is regulated; momentum space is a torus. No need for a Pauli-Villars field
from the point of view of requiring finite results & well defined topology.

A|B] = det D,,(B) Dw = Wilson operator with open BC

However:
e Aincludes both bulk and edge contributions

e The bulk contribution to the fermion determinant A[B] is not a pure phase... the
real part of log[A[B]] contributes to a bulk 5d Yang-Mills operator, for example,
which will give a 5d Coulomb law between boundary charges instead of 4d.
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We also need to cancel bulk contribution to Re| log| A[B] ] for the theory to look 4d.
e Must not remove boundary fermion contribution

e Must not change imaginary part, which already correctly encodes anomalies

Pr0p053|; det Dw > det Dw boundary mass term,
\/det (Dw’er + 126, R) avoids light PV edge
| states
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Are we done?

INSTITUTE for

‘..‘ NUCLEAR THEORY . B. Ka'PLaV\z —~ Rﬁ@%LatLWQ Cl’li«YﬂL qauge ThﬂOVﬁ and the StVOVb@ CP PVObLCVM/" ECT™ /28/25




Are we done?

No. Must address: “How do we realize the 5d gauge field configurations?”
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Are we done?
No. Must address: “How do we realize the 5d gauge field configurations?”

The continuum theory w/o gauge anomalies only depends on the boundary values of the
gauge field —> can we just set the bulk gauge field to zero? Or zero up to 4d gauge
transformations?
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Are we done?
No. Must address: “How do we realize the 5d gauge field configurations?”

The continuum theory w/o gauge anomalies only depends on the boundary values of the
gauge field —> can we just set the bulk gauge field to zero? Or zero up to 4d gauge
transformations?
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Are we done?

No. Must address: “How do we realize the 5d gauge field configurations?”

The continuum theory w/o gauge anomalies only depends on the boundary values of the

gauge field —> can we just set the bulk gauge field to zero? Or zero up to 4d gauge
transformations?

No: To maintain bulk gap, cannot couple fermions to fields with large gradients (on scale
of the gap, or on the scale of the inverse lattice spacing).
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Are we done?

No. Must address: “How do we realize the 5d gauge field configurations?”

The continuum theory w/o gauge anomalies only depends on the boundary values of the

gauge field —> can we just set the bulk gauge field to zero? Or zero up to 4d gauge
transformations?

No: To maintain bulk gap, cannot couple fermions to fields with large gradients (on scale
of the gap, or on the scale of the inverse lattice spacing).

Can we always continue the boundary gauge field into the 5d bulk smoothly?
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Are we done?

No. Must address: “How do we realize the 5d gauge field configurations?”

The continuum theory w/o gauge anomalies only depends on the boundary values of the

gauge field —> can we just set the bulk gauge field to zero? Or zero up to 4d gauge
transformations?

No: To maintain bulk gap, cannot couple fermions to fields with large gradients (on scale
of the gap, or on the scale of the inverse lattice spacing).

Can we always continue the boundary gauge field into the 5d bulk smoothly?

No. There can be topological obstructions to doing so.
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A concrete proposal to continuing boundary gauge field A, into the bulk:

Bk(x,r) solves the 5d Euclidian Yang-Mills equations subject to BC
BH(XIR)zAH(X)l BS(X,R)=O
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A concrete proposal to continuing boundary gauge field A, into the bulk:
Bk(x,r) solves the 5d Euclidian Yang-Mills equations subject to BC

Bu(x,R)=Au(x), Bs(x,R)=0

e smooth 4d A, fields on boundary will ensure smooth
By fields nearby in the bulk

% \ A. e Chiral edge states will not be destroyed
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A concrete proposal to continuing boundary gauge field A, into the bulk:

Bk(x,r) solves the 5d Euclidian Yang-Mills equations subject to BC
BH(XIR)zAH(X)I BS(X/R)zO

e smooth 4d A, fields on boundary will ensure smooth
By fields nearby in the bulk

% \ A. e Chiral edge states will not be destroyed

But suppose A, has nontrivial topology... as one contracts interior 4d surface, winding
number must change discontinuously —> ensures that Bk has a singularity in the bulk
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One instanton in boundary theory, continued into bulk

Singular gauge
field in interior

The inability to define interior gauge field
smoothly is related to two objections to chiral
boundary proposal:

e Existence of bulk fermion zeromodes (Aoki et al)
e Undesirable exact U(1) symmetries (Golterman & Shamir)
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One instanton in boundary theory, continued into bulk

Singular gauge
field in interior

The inability to define interior gauge field
smoothly is related to two objections to chiral
boundary proposal:

e Existence of bulk fermion zeromodes (Aoki et al)
e Undesirable exact U(1) symmetries (Golterman & Shamir)

To understand the implications, consider simple case where boundary theory is supposed
to look like N«=1 QCD
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What is Ns=1 QCD with nonzero quark mass supposed to look like?
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What is Ns=1 QCD with nonzero quark mass supposed to look like?

e Exact U(1)y symmetry,
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What is Ns=1 QCD with nonzero quark mass supposed to look like?

e Exact U(1)y symmetry,

e U(1)ais broken by explicitly by anomaly and quark mass,
spontaneously by quark condensate
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What is Ns=1 QCD with nonzero quark mass supposed to look like?

e Exact U(1)y symmetry,

e U(1)ais broken by explicitly by anomaly and quark mass,
spontaneously by quark condensate

e Massive n” meson, even in limit of zero quark mass
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What is Ns=1 QCD with nonzero quark mass supposed to look like?

e Exact U(1)y symmetry,

e U(1)ais broken by explicitly by anomaly and quark mass,
spontaneously by quark condensate

e Massive n” meson, even in limit of zero quark mass

e Possible 6 term and strong CP violation
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Heuristic picture of n” physics:

If the U(1)a were only spontaneously broken

e n’ would be the Nambu-Goldstone boson L = 20,7 ()0 (z)
e U(1)arealized as shift symmetryn” ->n’ +f
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Heuristic picture of n” physics:

If the U(1)a were only spontaneously broken

e n’ would be the Nambu-Goldstone boson L = 20,17 ()0, (x)
e U(1)arealized as shift symmetryn” ->n’ +f

If the U(1)a were only spontaneously broken + explicitly broken by small complex quark
mass Mqe®

e U(1)arealized as approximate shift symmetryn” ->n’ +f
* n" would be the pseudo Nambu-Goldstone boson, mass proportional to VMq

e The angle 6 appears...but can be shifted away by n” ->n” +0f ... no CP violation if

one ignores the anomaly

£_1 /8 / (77/ )
= —-0,n0,n — M, cos 0] +...

2 f
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Anomaly enters through index theorem: quark zeromodes associated with nonzero
winding number
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Anomaly enters through index theorem: quark zeromodes associated with nonzero
winding number

't Hooft’s model for how the n’ gets a mass contribution from instantons via anomaly

—
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Anomaly enters through index theorem: quark zeromodes associated with nonzero
winding number

't Hooft’s model for how the n’ gets a mass contribution from instantons via anomaly

qguark zeromode wave function outside of instanton falls
—P-O—b— off exactly like quark propagator, so instantons behave
like qrQL vertices

summing over all unique instanton & anti-instanton positions exponentiates
effective vertex and contributes U(1)a - violating term to action

)

o Sinst. _ Z (AICYRC]L(I') dx)n (AijLQR(y) dy)n _ 6/\ f((?RqL(x)+C?LQR($))d$

n! n!

(A = QCD mass scale not computable in instanton model)
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Y >N, A
match to n’ effective theory:  dran(e) = 5™ qugr(e) — S o = M
1 / /
Obtain: L = 5 i, ﬁun M’Qf c:()s77 M, cos (77 9) + ...

large anomaly j L

contribution

small quark mass
contribution
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X i (@)/f _ 2 i/ (2)/f AX e

match to n’ effective theory: drqL(z) = e o Lgr(@) = 5 , 7 ;

. 1 /2 77/ 77/
Obtain: L=—-0,n0,n — — M, £2 cos M, cos 0] +...

2
large anomaly j k small quark mass
contribution contribution

Now CP-violating angle O is physical if Mq#0; it can be shifted into anomaly
term but cannot be removed.
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match to n’ effective theory: drL(z) = e o Lgr(@) = 5 , 7
1 / /
Obtain: £—§ i, aun —M’Qf Cos77 M, cos (77 «9) + ...
large anomaly j k small quark mass
contribution contribution

Now CP-violating angle O is physical if Mq#0; it can be shifted into anomaly
term but cannot be removed.

Can we achieve this physics from the 5d chiral boundary theory proposal?
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Golterman & Shamir (continuum version):
Consider Ns=1 QCD on the boundary (1 LH + 1 RH Weyl fermion)

g, g~ From 5d theory:
L=¢T(D+m)yT +4~ (D —m)p~ + PV

e

This has exact U(1) x U(1) symmetry.
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Golterman & Shamir (continuum version):
Consider Ns=1 QCD on the boundary (1 LH + 1 RH Weyl fermion)

q, g~ From 5d theory:

L=yT(D+m)YpT +¢~ (DD —m)yp~ + PV “(R) =0

i
<

This has exact U(1) x U(1) symmetry.

Callan-Harvey anomaly in-flow argument: put in source for conserved current corresponding

to w:: N eiiiozwzz
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Golterman & Shamir (continuum version):
Consider Ns=1 QCD on the boundary (1 LH + 1 RH Weyl fermion)

q, g~ From 5d theory:

L=¢T(D+m)yT +4~ (D —m)p~ + PV

i
<

(R) =0

This has exact U(1) x U(1) symmetry.

Callan-Harvey anomaly in-flow argument: put in source for conserved current corresponding
tO —— T 19 4
w__ N e zozw__

varying action w.r.t. source gives the correct anomalous WT identity for U(1)a current in the
boundary theory:

1
107
r=R

804 ijya,y5q — 5 GSMVpJTr F,uI/Fpa
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Golterman & Shamir (continuum version):
Consider Ns=1 QCD on the boundary (1 LH + 1 RH Weyl fermion)

q, g~ From 5d theory:

L=¢T(D+m)yT +4~ (D —m)p~ + PV

i
<

(R) =0

This has exact U(1) x U(1) symmetry.

Callan-Harvey anomaly in-flow argument: put in source for conserved current corresponding
tO —— T 19 4
w__ N e zozw__

varying action w.r.t. source gives the correct anomalous WT identity for U(1)a current in the

boundary theory: g\O““\
. 1 YooY
Oq q7y Y54 = 1672 GSMVpJTr F,uI/Fpa %006 3\\\\
" r=R (\O((\
(o)
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Golterman & Shamir:

..but our formula for the effective theory after integrating out the bulk fermions
without a source looked like:

dA G_SYM[A] dX d}Z €Z¢[A] 6_S<X7>27Au)
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Golterman & Shamir:

..but our formula for the effective theory after integrating out the bulk fermions
without a source looked like:

dA €_SYM[A] dX d>_< €Z¢[A] e_S(vavAu)

This is supposed to be the low energy effective theory of the 5d system which possesses an
exact U(1) x U(1) symmetry, but this theory only has an exact U(1)y symmetry (¢ does not
compensate for the axial anomaly of the x measure)
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Golterman & Shamir:

..but our formula for the effective theory after integrating out the bulk fermions
without a source looked like:

dA €_SYM[A] dX d}Z €Z¢[A] e_S(XQ_(aAu)

This is supposed to be the low energy effective theory of the 5d system which possesses an
exact U(1) x U(1) symmetry, but this theory only has an exact U(1)y symmetry (¢ does not
compensate for the axial anomaly of the x measure)

The GS conclusion:
e the true boundary theory one obtains must actually have an exact U(1)a symmetry
e when U(1)aspontaneously breaks there must be a massless NGB
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Golterman & Shamir:

..but our formula for the effective theory after integrating out the bulk fermions
without a source looked like:

dA €_SYM[A] dX d}Z €Z¢[A] e_S(XQ_(aAu)

This is supposed to be the low energy effective theory of the 5d system which possesses an
exact U(1) x U(1) symmetry, but this theory only has an exact U(1)y symmetry (¢ does not
compensate for the axial anomaly of the x measure)

The GS conclusion:
e the true boundary theory one obtains must actually have an exact U(1)a symmetry ‘/
e when U(1)aspontaneously breaks there must be a massless NGB
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Golterman & Shamir:

..but our formula for the effective theory after integrating out the bulk fermions
without a source looked like:

dA €_SYM[A] dX d}Z €Z¢[A] e_S(XQ_(aAu)

This is supposed to be the low energy effective theory of the 5d system which possesses an
exact U(1) x U(1) symmetry, but this theory only has an exact U(1)y symmetry (¢ does not
compensate for the axial anomaly of the x measure)

The GS conclusion:
e the true boundary theory one obtains must actually have an exact U(1)a symmetry ‘/
e when U(1)aspontaneously breaks there must be a massless NGB X
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The GS conclusion:
e the true boundary theory one obtains must actually have an exact U(1)a symmetry
e when U(1)aspontaneously breaks there must be a massless NGB

Our conclusion:

e the true boundary theory one obtains must actually have an exact U(1)a symmetry
e when U(1)aspontaneously breaks there is not a massless NGB

e Furthermore, the theory does not exhibit strong CP violation

e The existence of bulk gauge field singularities and bulk fermion zeromodes play central
role
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One instanton in boundary theory, continued into bulk
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One instanton in boundary theory, continued into bulk

Singular gauge
field in interiar

INSTITUTE for

‘..‘ NUCLEAR THEORY D. B. Kaptaw —~ Cl/lLYaL @auge tl/lCDVg ‘fYDVM, 'ﬁ«\/e dimcwsiows ~ SULAC 4/32/25




One instanton in boundary theory, continued into bulk

/\‘

fermion Singular gauge

zeromode field in interigr
on boundary
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One instanton in boundary theory, continued into bulk

/\‘

fermion Singular gau
zeromode

on boundary

e
field in interiar

fermion zeromode

in bulk (Aoki et al.) Will
be exponentially

localized due to gap.
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One instanton in boundary theory, continued into bulk

/\

fermion Singular gau
zeromode

on boundary

e

field in interiar

fermion zeromode

in bulk (Aoki et al.) Will
be exponentially

localized due to gap.

Fermion zeromodes must exist in bulk: index of of Dirac operator on 4d manifold which is the
boundary of 5d manifold must vanish (singularity is disconnected part of boundary)
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One instanton in boundary theory, continued into bulk

/\‘

fermion Singular gau
zeromode

on boundary

e
field in interiar

fermion zeromode

in bulk (Aoki et al.) Will
be exponentially

localized due to gap.

Fermion zeromodes must exist in bulk: index of of Dirac operator on 4d manifold which is the
boundary of 5d manifold must vanish (singularity is disconnected part of boundary)

Callan-Harvey analysis assumed all bulk fermions gapped, integrated them out.

Not true in the presence of nontrivial topology.
e
AN\
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To redo the 't Hooft analysis including bulk fermion zeromodes make assumption about
gauge field flow into the interior (“annealing flow”):
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To redo the 't Hooft analysis including bulk fermion zeromodes make assumption about
gauge field flow into the interior (“annealing flow”):

Gauge field singularities in the bulk are the minimal number required by topology
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To redo the 't Hooft analysis including bulk fermion zeromodes make assumption about
gauge field flow into the interior (“annealing flow”):

Gauge field singularities in the bulk are the minimal number required by topology

Anti-Instanton In

Instanton In

boundary theory mry theory
fermion A fermion
zeromode zeromode

nonsingular gauge
field in interior,
no bulk zeromodes

on boundary on boundary
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To redo the 't Hooft analysis including bulk fermion zeromodes simplify analysis by
considering annulus, with no singularities in the bulk:

RH fermion
zeromodes g
on outer ¥ LH fermion
boundary zeromode q
LH fermio on outer
zeromode boundary
on inner
boundary
“ weLear heory . B Kaplan ~ Regulating Chiral gauwge Theory and the Strong CP Problem~ ECT™* &/28/25




Define 't Hooft instanton vertices

d*x _ d*x d*y - _ d*y -
O=A| =g O=A[ =23 X =A X =A .
Ty draL Ty aan s /V/ 77 QrAL /V/ 77 QLOR
Sum the instanton contributions:

en/n instantons/anti-instantons on outer boundary

e | n-n| instantons or anti-instantons on inner boundary

5. ey VO (VO)™ 1, s ) L o\ (i) oy =
e_Smt = Zez(”_”)e( )" VO) ((V X)=OQ(n —n) 4+ (V' X)™ ”)@(n—n)—l—(Sn,ﬁ)

n! n!

n,n

= L1+ 4y + Z3 @(n){l n >0
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Define 't Hooft instanton vertices

d*x _ d*x d*y - _ d*y -
O=A| =g O=A[ =23 X =A X =A .
Ty draL Ty aan s /V/ 77 QrAL /V/ 77 QLOR
Sum the instanton contributions:

en/n instantons/anti-instantons on outer boundary

e | n-n| instantons or anti-instantons on inner boundary

5. e VO (VO 1, (s ) ) N () @
e_Smt = Zez(”_”)e( )" VO) ((V X)=e(n —n) + (V' X)" ”)@(n—n)—l—(Sn,ﬁ)

n! n!

n,n

= L1+ 4y + Z3 @(n){l n >0

Each term in sum is invariant under the exact 5d U(1)a :

O — 0 , O — e "0 , X — e~ X , X — e X
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3, ey VO (VO)™ 1, (i _ o (h)
e~ Vit = Ze“n—n)@( ) VO ((v X)=Me(n —n) + (VX)) n>@(n—n)+5n,ﬁ)

n! n!

n,mn

— 71+ Ty + Za @(n){1 n >0

The X operators involve Q zeromodes highly localized on inner boundary of annulus (or
at singularity deep in the bulk); O operators are on outer boundary
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aJ - = Vo) V@ n / n _ I v\ (n— -
e_smt = Ze’(”_”)e( )" ( _) ((V X)"=MQ(n —n) + (V' X)) ”)@(n—n)+5n,ﬁ)

n! n!

n,mn

— 71+ Ty + Za @(n){1 n> 0

The X operators involve Q zeromodes highly localized on inner boundary of annulus (or
at singularity deep in the bulk); O operators are on outer boundary

X operators do not contribute to Green functions that only involve fields on the outer
boundary, where “we live”
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—Sint  _ Z oi(n—n)0 (VO)" (V_@)ﬁ ((V/X)(n—ﬁ)@(n —n) + (VX)) (7 — n) + 5n’ﬁ)

n! n!

n,mn

— 71+ Ty + Za @(n){1 n> 0

The X operators involve Q zeromodes highly localized on inner boundary of annulus (or
at singularity deep in the bulk); O operators are on outer boundary

X operators do not contribute to Green functions that only involve fields on the outer
boundary, where “we live”

So only the 3rd sum Z3 without X operators is experimentally accessible to us. This
comes entirely from contributions where n = n; we see topological fluctuations, but net

topology is zero.
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n! n!

~ * (A [q dz)" (A [q dy)" S
7, _ oSt _ Z ( quqL(az) :13) ( quqR(?/) Z/) A <2AV\/qRqL quR>
n=0

~ V— 00 i A — InV\"
Sinst. >V __ZA\/QRQL qr.qr + O ( % )

4
Bar notation = spatial average: 0 = / dv.:c O(x)
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n! n!

~ * (A [q dz)" (A [q dy)" S
7, _ oSt _ Z ( quqL(az) :13) ( quqR(y) ?/) A <2AV\/qRqL quR>
n=0

~ V— 00 i A — InV\"
Sinst. >V __ZA\/QRQL qr.qr + O ( % )

4
Bar notation = spatial average: 0 = / dv.:c O(x)

Now assume chiral symmetry breaking and match to the n’ Lagrangian as before

Linst. = —VM2 {2,/ (@77) (=77

/ / i / 7\ 2 14N
= 500 0un' (@) + My, f* | =1+ 5 (0 () — ')+ O(n*)
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Linst. = ~VM2 f2\/ (@777) (e-n'/7)

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...
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Linst. = ~VM2 f2\/ (@777) (e-n'/7)

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...

... N has a normal (anomalously) heavy dispersion relation, except for p=0 mode,
which sees that the total topology of the world is trivial
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Linst. = —VMg,fz\/(ei”’/f) (e_iﬁ’/f) -

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...

... N has a normal (anomalously) heavy dispersion relation, except for p=0 mode,
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension
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Linst. = —VMg,fz\/(ei”’/f) (e_iﬁ’/f) -

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...

... N has a normal (anomalously) heavy dispersion relation, except for p=0 mode,
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If | now add a quark mass with a complex phase, the shift symmetry allows me to remove it.
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Linst. = —VMg,fz\/(ei”’/f) (e_iﬁ’/f) -

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...

... N has a normal (anomalously) heavy dispersion relation, except for p=0 mode,
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If | now add a quark mass with a complex phase, the shift symmetry allows me to remove it.

» NO strong CP problem in this world, and no light O-+ meson (n’, axion...)
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Linst. = —VMg,fz\/(ei”’/f) (e_iﬁ’/f) -

/ / i / 7\ 2 Z
= 500 Ot (x) + My f* | =1+ 5 (o (@) =) + O(n')

Without quark mass, theory possesses exact shift symmetry n” —>n’ + f corresponding to
exact U(1)a symmetry...

... N has a normal (anomalously) heavy dispersion relation, except for p=0 mode,
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If | now add a quark mass with a complex phase, the shift symmetry allows me to remove it.

,*/

» NO strong CP problem in this world, and no light 0+ meson (n’, axion...) (ol
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Conclusions

An excitingly simple picture is emerging:
Regulated chiral gauge theory as a boundary theory, without requiring new dynamics
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Conclusions

An excitingly simple picture is emerging:
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Conclusions

An excitingly simple picture is emerging:
Regulated chiral gauge theory as a boundary theory, without requiring new dynamics

An extra dimension is a natural UV completion for anomalies, and with described

construction, local 4D theory emerges only if 4d gauge anomalies cancel (discrete and
perturbative)

The Nielsen-Ninomiya theorem is no longer an obstacle.

2 It appears that this theory is not purely 4d when gauge field topology is
nontrivial (The n” portal ()

20nly correlation functions between matter in this world and highly localized
fields deep in the 5th dimension can see CP violation... no strong CP problem

2 ...yet at the same time, the n’ is heavy and there is no axion

2 Perhaps QCD embedded in SM is not equivalent to standard LQCD at nontrivial
topology?
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To do: lattice

2 |Is the method of eliminating the modulus of the fermion determinant local?
2 |Is the ideal form of annealing flow achievable on the lattice?

2 |s a Hamiltonian formulation possible? (Desirable for quantum computing)

To do: beyond the lattice

2 If a Hamiltonian formulation is possible, there will be a dynamical Minkowski
spacetime version of the theory... it will be weird, given that only 4d gauge fields
are dynamical. Can one construct a cosmological model for 5d BSM physics?
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