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• yes, there probably will be a sign problem.  A solution to regulating chiral gauge 
theory should provide a Hamiltonian formulation appropriate for a quantum 
computer.

• Weak interactions aren’t weak at high energy… there are nonperturbative SM 
processes of interest for simulation, such as weak scale baryogenesis.

• The most interesting possibility: perhaps assumptions about universality are 
incorrect, and QCD as part of the SM is not equivalent to a stand-alone vector-like 
SU(3) gauge theory with quarks — LQCD might miss something important

 But how can conventional LQCD differ from QCD in the SM? It works so well!
Punchline: stand-alone QCD has a strong CP problem; SM QCD might not. 
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Anomalies on the lattice

• Heuristic picture for anomalies relies on a “Hilbert Hotel”…not an option for a lattice	

• Chiral symmetry must be broken on the lattice?…but in a way that permits chiral gauge 
theory?
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

wanted: massless Dirac fermion with chiral symmetry

consider Euclidian fermion action on a lattice: 
<latexit sha1_base64="YuNN57ycW5VfsWH5A73jLsyZSjE="></latexit>

S =

Z
ddp

(2⇡)d
 ̄(�p) eD(p) (p)

☜ locality
☜ correct continuum limit
☜ no doublers
☜ exact chiral symmetry (Γ = γ5)

Nielsen-Ninomiya theorem:  one can have at most three of these four desired attributes

Need #4 to project out a Weyl fermion from a massless Dirac fermion.  What else to sacrifice?

BZ

Nielsen-Ninomiya theorem
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Where else do chiral fermions appear in nature?
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Analog for Dirac fermions with domain wall mass    
[Jackiw & Rebbi]:

Has solutions:

<latexit sha1_base64="oVv2BqXHJFfUs0pmUD+IaXfVzmU="></latexit>

�±(x5) = e⌥
R x5 m(s) ds

x5

m

Chern-Simons current in the bulk accounts properly 
for the axial anomaly [Callan & Harvey]

RH

<latexit sha1_base64="G1IENzOcTSIaILszZAjJPrhysXU=">AAACSnicdZDPattAEMZXbtqk7j+nOfayxBRSCkZyYzmXQkgJ9OhAnAQsIUbrkb1kVxK7o1Aj/ER9lV56bPsOPeQWcukqcSAt6cDCx++bYXa+tFTSku//8FqP1h4/Wd942n72/MXLV53N1ye2qIzAsShUYc5SsKhkjmOSpPCsNAg6VXiann9q/NMLNFYW+TEtSow1zHKZSQHkUNI5jBRmNImsAjvHaR2VYEiCWvL3PJqB1pAM7lgycFDvfEkG7yIjZ3OKo5GV/CP3k07X7/n+MAxC7kR/GPh7jQj7ww8BD5zVVJetapR0fkfTQlQacxJus50Efklx3ewRCpftqLJYgjiHGU6czEGjjeubc5f8rSNTnhXGvZz4Db0/UYO2dqFT16mB5vZfr4EPeqsQHvImFWV7cS3zsiLMxe0nskpxKniTK59Kg4LUwgkQRro7uJiDAUEu/bYL6C4F/n9x0u8FYS882u3uH6yi2mBv2DbbYQEbsn32mY3YmAn2lX1nP9kv75t36V1517etLW81s8X+qtbaH6fAsmY=</latexit>⇥
/@ + �5@5 +m(x5)

⇤
 = 0

<latexit sha1_base64="nLNhPaymvhWcQsw/5ehfuwbpNuk=">AAACInicbVDLSsNAFJ3UV62vqEsRBotQNyXxkboRim5cVrAPaEKYTCbN0MmDmYlYQlf+ihu3+hfuxJXgN/gNTh+C2h64cO4598K9x0sZFdIwPrTCwuLS8kpxtbS2vrG5pW/vtESScUyaOGEJ73hIEEZj0pRUMtJJOUGRx0jb61+N/PYd4YIm8a0cpMSJUC+mAcVIKsnV9+2GoPAC2mlIXTuNKvfu2RG08aRz9bJRNcaAitSsE8uC5o/yQ8pgioarf9l+grOIxBIzJETXNFLp5IhLihkZluxMkBThPuqRrqIxiohw8vEbQ3ioFB8GCVcVSzhWf2/kKBJiEHlqMkIyFP+9kTjXE+qUkPjzvG4mg3Mnp3GaSRLjyRFBxqBM4Cgv6FNOsGQDRRDmVP0BcYg4wlKlWlIBzcQxS1rHVdOqWjen5frlNKoi2AMHoAJMUAN1cA0aoAkweABP4Bm8aI/aq/amvU9GC9p0Zxf8gfb5DSfgozk=</latexit>

 = �±(x5)�±
<latexit sha1_base64="O7QoNq5Zo11rgIOIzL6kScYQaiU=">AAACI3icbVDLSsNAFJ3UV62vqEtBBovgqiSi1Y1QdOOygn1AE8JkMmmGziRhZiKU0J2/4sat/oU7cePCX/AbnLYRtO2BGc4951649/gpo1JZ1qdRWlpeWV0rr1c2Nre2d8zdvbZMMoFJCycsEV0fScJoTFqKKka6qSCI+4x0/MHN2O88ECFpEt+rYUpcjvoxDSlGSkueeej0EefIO3dwRD0n5fAK6v+38syqVbMmgPPELkgVFGh65rcTJDjjJFaYISl7tpUqN0dCUczIqOJkkqQID1Cf9DSNESfSzSd3jOCxVgIYJkK/WMGJ+nciR1zKIfd1J0cqkrPeWFzoSb1KRIJFXi9T4aWb0zjNFInxdIkwY1AlcBwYDKggWLGhJggLqu+AOEICYaVjreiA7Nk45kn7tGbXa/W7s2rjuoiqDA7AETgBNrgADXALmqAFMHgEz+AFvBpPxpvxbnxMW0tGMbMP/sH4+gECMKRA</latexit>

�5�± = ±�±

Chiral edge states appear naturally in 
the Integer Quantum Hall Effect:

And the Hall current accounts 
properly for the axial anomaly
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Why does a Dirac equation have a massless chiral edge state?

• Because a QFT with a free massive Dirac fermion is in different 
topological phases depending on the sign of the mass

•…so a domain wall is a boundary between two topological phases…

•…the only way to connect two topological phases is for the theory to go 
gapless at the interface

Toy example:  topological insulator in 0+1 dimensions — quantum mechanics with a gap 
<latexit sha1_base64="cW6Qco2wEB/5p4WEHIZHxUgTds4="></latexit>

H(s) = E(s) , |E(s)| > �

•Define topological quantum number:  ν = # of negative energy states.  
• Theories with different parameter s are then topologically equivalent.   
• For the topology to change, theory has to go gapless.
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What is topologically quantized in a QFT of massive Dirac fermions?

In the Integer Quantum Hall Effect it is the Hall conductivity

The QFT analog is the coefficient of the Chern-Simons term 
obtained by integrating out the massive fermion in a background 
gauge field.

<latexit sha1_base64="vPvB2flDC1qZE11gAR3RoKv0TIs=">AAACI3icbVDLTgIxFO3gC/GFunTTSExcTQZjgLhC3bjEhFfCTCZ3SoGGzkzTdkzIhH9x46+4caEhblz4L3aAhYInaXJ6zr23vScQnCntOF9WbmNza3snv1vY2z84PCoen7RVnEhCWyTmsewGoChnEW1ppjntCkkhDDjtBOP7zO88UalYHDX1RFAvhGHEBoyANpJfvHHHIARglwrFuFFSCIht21OcujLETTnFt76xBUjNgPuBuRKX92Ot/GLJsZ1atebUsCFz4PIqKaElGn5x5vZjkoQ00oSDUr2yI7SXZpMJp9OCmygqgIxhSHuGRhBS5aXzHaf4wih9PIilOZHGc/V3RwqhUpMwMJUh6JFa9TLxP6+X6EHNS1kkEk0jsnhokHCsY5wFhvtMUqL5xBAgkpm/YjICCUSbWAsmhLWV10n7yi5X7Mrjdal+t4wjj87QObpEZVRFdfSAGqiFCHpGr+gdfVgv1ps1sz4XpTlr2XOK/sD6/gFp5qQp</latexit>
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What is topologically quantized in a QFT of massive Dirac fermions?

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator.  When the theory is regulated, this is a winding 
number for the map S-1(p) from Sd (momentum space) to Sd = SO(d+1)/SO(d)
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( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 
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In the Integer Quantum Hall Effect it is the Hall conductivity

The QFT analog is the coefficient of the Chern-Simons term 
obtained by integrating out the massive fermion in a background 
gauge field.
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Remarkable fact:  	

Since the topology is in momentum/spin space, topological phases and massless 
edge states appear at domain wall boundary on an infinite spacetime lattice
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Remarkable fact:  	

Since the topology is in momentum/spin space, topological phases and massless 
edge states appear at domain wall boundary on an infinite spacetime lattice

E.g. Wilson fermions (DBK 1992; K. Jansen, M. Schmaltz 1993; M. Golterman, K. Jansen, DBK, 1993):
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I. SUPPLEMENTAL MATERIAL FOR “WEYL FERMIONS ON A FINITE LATTICE”

We provide here a brief account of those details of the lattice calculations employed in our paper

which were deemed unremarkable enough to leave out of the text.

We use the term “square lattice” to refer to a conventional lattice whose fundamental cell is a

square; this is the only sort of lattice considered in this paper. By a lattice “cut into a square” or

“cut into a disc” we are describing the boundaries of the lattice. In the former case we describe a

lattice with L sites in each direction, with various possible boundary conditions. In the latter case

what we do operationally is first define a projection operator PR with the property

PRÂ(x) =

�
0 x Ø R

Â(x) x < R ,
(1)

and then we define the Hamiltonian on the disc to be

Hdisc = PRHL◊LPR , (2)

where HL◊L is the Wilson fermion Hamiltonian on an L ◊ L square lattice and R < L/2. We

then computed the eigensystem for Hdisc, and confirmed that all eigenvectors with exactly zero

eigenvalues corresponded to states outside the disc. We discarded the corresponding eigenvectors,

retaining those with nonzero eigenvalue to span our Hilbert space. For Figs. 2,3 we used L = 70
and R = 34. The resulting lattice is shown in Fig. ??.

The derivatives in eq. (1) are defined to be:

ˆµÂ(x) =
Â(x + aµ̂)- Â(x - aµ̂)

2a
,

∆Â(x) =
Â(x + aµ̂)- 2Â(x) + Â(x - aµ̂)

a2 , (3)

FIG. 1. The lattice cut into an approximate disc used for the calculation of Figures 2,3 in our paper with
L = 70, R = 34. The red points are those on the L ◊ L lattice that were excluded, while the black ones
were kept.
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —  
where to sit for chiral DWFs

m/r

(gauge coupling)

(ratio of mass to Wilson coupling)
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periodic BC

periodic BC

open BC (ψ=0) (Y. Shamir, 1993)

RH Weyl

LH Weyl

Obtain almost massless RH & LH Weyl 

fermions… mass  
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Me↵ ⇠ M cos p

At critical |pcrit| < π,  Mef changes sign, state delocalizes
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

What has been gained??  Wanted:

☜ locality
☜ correct continuum limit
☜ no doublers
☜ exact chiral symmetry (Γ = γ5)
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that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

What has been gained??  Wanted:

☜ locality
☜ correct continuum limit
☜ no doublers
☜ exact chiral symmetry (Γ = γ5)

With exponentially light Dirac fermion, #4 is violated.	

Any advantage of domain wall fermions over Wilson fermions?
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o
= D̃�D̃ Obeys “Ginsparg-Wilson” equation

•reproduces the correct chiral anomalies	
•but still enforces multiplicative mass renormalization
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A strip with two boundaries produced LH + RH chiral edge states. 	

Consider instead edge states on manifold with a single boundary.

Appearance of chiral fermions at topological phase boundaries is a robust phenomenon
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Dirac fermion in d+1 continuum dimensions:  

m

θ
r
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m(r) =

(
m r < R

�M r > R

A strip with two boundaries produced LH + RH chiral edge states. 	

Consider instead edge states on manifold with a single boundary.

Appearance of chiral fermions at topological phase boundaries is a robust phenomenon
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Shouldn’t this have a single Weyl fermion edge state?  	
Which must be exactly massless?	
Which can be realized with Wilson fermions on a lattice?

Dirac fermion in d+1 continuum dimensions:  

m

θ
r

<latexit sha1_base64="rA638HUCqEcXBHvD+wiAHxjzGms=">AAACFHicbZDNSsNAFIVv/K31p1GXbgaL4KYlEakui27cCBXsDzShTKaTduhkEmYmQih9DTdu9S3ciVv3voTP4LTNQtteGDiccy+c+YKEM6Ud59taW9/Y3Nou7BR39/YPSvbhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweh2mrefqFQsFo86S6gf4YFgISNYG6tnlyr3CHk6RhWPiVBnPbvsVJ3ZoGXh5qIM+TR69o/Xj0kaUaEJx0p1XSfR/hhLzQink6KXKppgMsID2jVS4IgqfzwrPkFnxumjMJbmCY1m7t+LMY6UyqLAbEZYD9ViNjVXZspUGdL+qqyb6vDaHzORpJoKMi8RphwZCFNCqM8kJZpnRmAimfkHIkMsMdGGY9EAchdxLIvWRdWtVWsPl+X6TY6qACdwCufgwhXU4Q4a0AQCKbzAK7xZz9a79WF9zlfXrPzmGP6N9fULRvadfQ==</latexit>�M ! �1

<latexit sha1_base64="S/lAFVR0D3mPVjiPCwjV1FmAeQQ="></latexit>
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m r < R

�M r > R
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Consider instead edge states on manifold with a single boundary.

Appearance of chiral fermions at topological phase boundaries is a robust phenomenon
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Lots of (wrong) reasons for why this shouldn’t work…so it took 30 years to check it 
out.	
Moral: Think less, calculate more
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Lots of (wrong) reasons for why this shouldn’t work…so it took 30 years to check it 
out.	
Moral: Think less, calculate more

m

θ
r

<latexit sha1_base64="rA638HUCqEcXBHvD+wiAHxjzGms=">AAACFHicbZDNSsNAFIVv/K31p1GXbgaL4KYlEakui27cCBXsDzShTKaTduhkEmYmQih9DTdu9S3ciVv3voTP4LTNQtteGDiccy+c+YKEM6Ud59taW9/Y3Nou7BR39/YPSvbhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweh2mrefqFQsFo86S6gf4YFgISNYG6tnlyr3CHk6RhWPiVBnPbvsVJ3ZoGXh5qIM+TR69o/Xj0kaUaEJx0p1XSfR/hhLzQink6KXKppgMsID2jVS4IgqfzwrPkFnxumjMJbmCY1m7t+LMY6UyqLAbEZYD9ViNjVXZspUGdL+qqyb6vDaHzORpJoKMi8RphwZCFNCqM8kJZpnRmAimfkHIkMsMdGGY9EAchdxLIvWRdWtVWsPl+X6TY6qACdwCufgwhXU4Q4a0AQCKbzAK7xZz9a79WF9zlfXrPzmGP6N9fULRvadfQ==</latexit>�M ! �1

Solve the Dirac equation with this mass profile  	
(DBK: Phys. Rev. Lett. 132 (2024) 141603, arXiv:2312.01494)
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Find:

•There is a Weyl edge mode circulating the disc in only one direction

• Its chiral symmetry is exact even at finite size: part of the exact U(1) fermion number 
symmetry of the higher dimension theory

•The total angular momentum  coordinate (-j/R) plays the role of linear momentum 
around the disc edge, j = ±1/2, ±3/2,…

•On an annulus (inner radius R’) there is a mirror Weyl state on inner boundary with 
momentum  (+j/R’)

Furthermore, the same physics works on the lattice…physics is like the continuum 
annulus with R’ = a = lattice spacing.  Thus mirror states to not have a continuous 
spectrum as R ➙∞, invalidating assumption of Nielsen-Ninomiya
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Work on a lattice disc with 
open BC 	

Weyl edge state? 	
Look at 1+1 dispersion relation

<latexit sha1_base64="QEMWE0OrXulxFdSa3teJEXBGLm4="></latexit>

Hdisc = PR HL⇥L PR

<latexit sha1_base64="4Fh9AideuBIen1FoU/d9FJJUf2U="></latexit>

PR =

(
0 x2 + y2 � R2

1 x2 + y2 < R2

We took L=70, R = 34.

If you want E vs p for the edge 
state, plot E vs J
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<latexit sha1_base64="iLHcXQ/ZeNsFZS8NTV98wf9XcWc="></latexit>

h n|Ĵ | ni

<latexit sha1_base64="boZelFz1OVaZkU13VUeCbSfq+pM=">AAAB73icdZDLSgMxFIYz9VbrrerSTbAIroZMtRd3RTcuK9gLtEPJpJk2NMmMSUYoQ1/CjQtF3Po67nwbM20FFf0h8POdc8g5fxBzpg1CH05uZXVtfSO/Wdja3tndK+4ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJldZvXNPlWaRvDXTmPoCjyQLGcHGom4/EnSEB3JQLCH3ApXP6jWIXIRqFeRlplKxDHqWZCqBpZqD4nt/GJFEUGkIx1r3PBQbP8XKMMLprNBPNI0xmeAR7VkrsaDaT+f7zuCJJUMYRso+aeCcfp9IsdB6KgLbKbAZ69+1DP5V6yUmrPspk3FiqCSLj8KEQxPB7Hg4ZIoSw6fWYKKY3RWSMVaYGBtRwYbwdSn837TLrld1qzfnpcblMo48OALH4BR4oAYa4Bo0QQsQwMEDeALPzp3z6Lw4r4vWnLOcOQQ/5Lx9AmyPkEA=</latexit>!n

DBK, S. Sen:   Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012



D. B. Kaplan ~ Regulating Chiral Gauge Theory and the Strong CP Problem~ ECT* 8/28/25

-30 -20 -10 0 10 20 30
J

-3

-2

-1

0

1

2

3
ωEnergy 	

eigenvalue

Angular 
momentum

<latexit sha1_base64="iLHcXQ/ZeNsFZS8NTV98wf9XcWc="></latexit>

h n|Ĵ | ni

<latexit sha1_base64="boZelFz1OVaZkU13VUeCbSfq+pM=">AAAB73icdZDLSgMxFIYz9VbrrerSTbAIroZMtRd3RTcuK9gLtEPJpJk2NMmMSUYoQ1/CjQtF3Po67nwbM20FFf0h8POdc8g5fxBzpg1CH05uZXVtfSO/Wdja3tndK+4ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJldZvXNPlWaRvDXTmPoCjyQLGcHGom4/EnSEB3JQLCH3ApXP6jWIXIRqFeRlplKxDHqWZCqBpZqD4nt/GJFEUGkIx1r3PBQbP8XKMMLprNBPNI0xmeAR7VkrsaDaT+f7zuCJJUMYRso+aeCcfp9IsdB6KgLbKbAZ69+1DP5V6yUmrPspk3FiqCSLj8KEQxPB7Hg4ZIoSw6fWYKKY3RWSMVaYGBtRwYbwdSn837TLrld1qzfnpcblMo48OALH4BR4oAYa4Bo0QQsQwMEDeALPzp3z6Lw4r4vWnLOcOQQ/5Lx9AmyPkEA=</latexit>!n

<latexit sha1_base64="1uU1rNCPAhoivRY41jj10EFkUxo=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWAR3BjSUtN2IRTdiKsq9gFNKJPppB06eTAzEUrMwl9x40IRt/6GO//GaRtBRQ9cOJxzL/fe40aMCmmaH1puYXFpeSW/Wlhb39jc0rd32iKMOSYtHLKQd10kCKMBaUkqGelGnCDfZaTjjs+nfueWcEHD4EZOIuL4aBhQj2IkldTX9+zQJ0MET+ExtD2OcHKZJtdpXy+aRs2qVswTaBrmDIrU6uV63YKlTCmCDM2+/m4PQhz7JJCYISF6JTOSToK4pJiRtGDHgkQIj9GQ9BQNkE+Ek8zuT+GhUgbQC7mqQMKZ+n0iQb4QE99VnT6SI/Hbm4p/eb1YejUnoUEUSxLg+SIvZlCGcBoGHFBOsGQTRRDmVN0K8QipFKSKrKBC+PoU/k/aZaNkGdZVpdg4y+LIg31wAI5ACVRBA1yAJmgBDO7AA3gCz9q99qi9aK/z1pyWzeyCH9DePgEW+ZWO</latexit>

! = � J

R
(Not a fit to data)

DBK, S. Sen:   Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012
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<latexit sha1_base64="iLHcXQ/ZeNsFZS8NTV98wf9XcWc="></latexit>

h n|Ĵ | ni

<latexit sha1_base64="boZelFz1OVaZkU13VUeCbSfq+pM=">AAAB73icdZDLSgMxFIYz9VbrrerSTbAIroZMtRd3RTcuK9gLtEPJpJk2NMmMSUYoQ1/CjQtF3Po67nwbM20FFf0h8POdc8g5fxBzpg1CH05uZXVtfSO/Wdja3tndK+4ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJldZvXNPlWaRvDXTmPoCjyQLGcHGom4/EnSEB3JQLCH3ApXP6jWIXIRqFeRlplKxDHqWZCqBpZqD4nt/GJFEUGkIx1r3PBQbP8XKMMLprNBPNI0xmeAR7VkrsaDaT+f7zuCJJUMYRso+aeCcfp9IsdB6KgLbKbAZ69+1DP5V6yUmrPspk3FiqCSLj8KEQxPB7Hg4ZIoSw6fWYKKY3RWSMVaYGBtRwYbwdSn837TLrld1qzfnpcblMo48OALH4BR4oAYa4Bo0QQsQwMEDeALPzp3z6Lw4r4vWnLOcOQQ/5Lx9AmyPkEA=</latexit>!n

Nielsen-Ninomiya would have you believe this is not possible for sensible system

<latexit sha1_base64="1uU1rNCPAhoivRY41jj10EFkUxo=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWAR3BjSUtN2IRTdiKsq9gFNKJPppB06eTAzEUrMwl9x40IRt/6GO//GaRtBRQ9cOJxzL/fe40aMCmmaH1puYXFpeSW/Wlhb39jc0rd32iKMOSYtHLKQd10kCKMBaUkqGelGnCDfZaTjjs+nfueWcEHD4EZOIuL4aBhQj2IkldTX9+zQJ0MET+ExtD2OcHKZJtdpXy+aRs2qVswTaBrmDIrU6uV63YKlTCmCDM2+/m4PQhz7JJCYISF6JTOSToK4pJiRtGDHgkQIj9GQ9BQNkE+Ek8zuT+GhUgbQC7mqQMKZ+n0iQb4QE99VnT6SI/Hbm4p/eb1YejUnoUEUSxLg+SIvZlCGcBoGHFBOsGQTRRDmVN0K8QipFKSKrKBC+PoU/k/aZaNkGdZVpdg4y+LIg31wAI5ACVRBA1yAJmgBDO7AA3gCz9q99qi9aK/z1pyWzeyCH9DePgEW+ZWO</latexit>

! = � J

R
(Not a fit to data)

DBK, S. Sen:   Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012
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γ5 ≡ r∙γ

Equivalent to finite disk	
with BC 	
(1+γ5)ψ(R)=0,	 ^

Back to the continuum.

m

θ
r

<latexit sha1_base64="rA638HUCqEcXBHvD+wiAHxjzGms=">AAACFHicbZDNSsNAFIVv/K31p1GXbgaL4KYlEakui27cCBXsDzShTKaTduhkEmYmQih9DTdu9S3ciVv3voTP4LTNQtteGDiccy+c+YKEM6Ud59taW9/Y3Nou7BR39/YPSvbhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweh2mrefqFQsFo86S6gf4YFgISNYG6tnlyr3CHk6RhWPiVBnPbvsVJ3ZoGXh5qIM+TR69o/Xj0kaUaEJx0p1XSfR/hhLzQink6KXKppgMsID2jVS4IgqfzwrPkFnxumjMJbmCY1m7t+LMY6UyqLAbEZYD9ViNjVXZspUGdL+qqyb6vDaHzORpJoKMi8RphwZCFNCqM8kJZpnRmAimfkHIkMsMdGGY9EAchdxLIvWRdWtVWsPl+X6TY6qACdwCufgwhXU4Q4a0AQCKbzAK7xZz9a79WF9zlfXrPzmGP6N9fULRvadfQ==</latexit>�M ! �1

• Add 5d background gauge field Bk, k=1,…,5.	
• Look at physics below gap m (integrate out massive fermion modes)	
• To tame divergences, include a Pauli-Villars field*, same BC but mass -m

* Role of PV field is crucial — it compactifies momentum space, required for topological 
interpretation, quantized Chern-Simons coefficient, anomaly inflow…
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Integrate out massive bulk fermion + PV field with background 5d gauge field Bk

χ = Weyl boundary mode with 4d action	
Δ = bulk fermion contribution to fermion determinant	
Δ* = Pauli-Villars contribution to fermion determinant

•Pauli-Villars has canceled the real part of the fermion contribution to log[Δ/Δ*]	
•The remaining imaginary part is proportional to the η-invariant of the bulk Dirac 
operator = (regulated) sum of λ/|λ|  … from:	 <latexit sha1_base64="ePNfrBEDRiPjII5N7S3LVbSZ1mE="></latexit>

lim
m!1

Im


ln

�+ im

�� im

�
= ⇡

�

|�|

•in perturbation theory,   η-invariant  = Chern-Simons operator

<latexit sha1_base64="NsklzPPmVCdDHhwq/BgTpg73ElA="></latexit>Z
d� d�̄

�[Bk]

�⇤[Bk]
e�S(�,�̄,Aµ) <latexit sha1_base64="S6jbOZC6XJx/Gu50fZ8lZBza65k=">AAACDnicbVDLSgMxFM3UV62vUZdugqXQgpQZkeqmUOvGZRX7gM4wZNK0Dc1khiQjlqFf4MZfceNCEbeu3fk3pu0stPVA4HDOPdzc40eMSmVZ30ZmZXVtfSO7mdva3tndM/cPWjKMBSZNHLJQdHwkCaOcNBVVjHQiQVDgM9L2R1dTv31PhKQhv1PjiLgBGnDapxgpLXlm4dJzgrj4UIJVWJ/TE1FyfDpgjs4pLxHV24ln5q2yNQNcJnZK8iBFwzO/nF6I44BwhRmSsmtbkXITJBTFjExyTixJhPAIDUhXU44CIt1kds4EFrTSg/1Q6McVnKm/EwkKpBwHvp4MkBrKRW8q/ud1Y9W/cBPKo1gRjueL+jGDKoTTbmCPCoIVG2uCsKD6rxAPkUBY6QZzugR78eRl0jot25Vy5eYsX6undWTBETgGRWCDc1AD16ABmgCDR/AMXsGb8WS8GO/Gx3w0Y6SZQ/AHxucPNXubAQ==</latexit>

Aµ(x) = Bµ(x, r)
��
r=R

= 4d boundary gauge     	
   field
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• Pauli-Villars has canceled the real part of the fermion contribution to log[Δ/Δ*]

• The remaining imaginary part is proportional to the η-invariant

• [in perturbation theory,   the η-invariant is proportional to the Chern-Simons 
operator]

• η-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984; 
Witten, Yonekura 2020].    It allows bulk physics to compensate for the gauge 
symmetry violation of the boundary theory.
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• η-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984; 
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symmetry violation of the boundary theory.

• When the boundary theory is free of gauge anomalies, the η-invariant only 
depends on the 4d boundary values of the gauge fields  Aµ(x) ≡ Bµ(x,R)
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• Pauli-Villars has canceled the real part of the fermion contribution to log[Δ/Δ*]

• The remaining imaginary part is proportional to the η-invariant

• [in perturbation theory,   the η-invariant is proportional to the Chern-Simons 
operator]

• η-invariant encodes all gauge anomalies of boundary theory [Callan, Harvey 1984; 
Witten, Yonekura 2020].    It allows bulk physics to compensate for the gauge 
symmetry violation of the boundary theory.

• When the boundary theory is free of gauge anomalies, the η-invariant only 
depends on the 4d boundary values of the gauge fields  Aµ(x) ≡ Bµ(x,R)

Boundary theory that is free of gauge anomalies is described by partition function that 
only depends on boundary values of the gauge fields

<latexit sha1_base64="NsklzPPmVCdDHhwq/BgTpg73ElA="></latexit>Z
d� d�̄

�[Bk]

�⇤[Bk]
e�S(�,�̄,Aµ)

<latexit sha1_base64="SVpgt5HGJLhvpe80Bm9erwoSDAk=">AAAB/XicdVDLSsNAFJ3UV62v+Ni5GSxC3ZRU+9xV3bisYB+QxDCZTtqhkwczE7GG4q+4caGIW//DnX/jtI2gogcuHM65l3vvcSNGhTSMDy2zsLi0vJJdza2tb2xu6ds7HRHGHJM2DlnIey4ShNGAtCWVjPQiTpDvMtJ1R+dTv3tDuKBhcCXHEbF9NAioRzGSSnL0PXKdUGhFQ2qeOpYfF26P7Imj541iw6jUyifQKBozTEml3GjUYSlV8iBFy9HfrX6IY58EEjMkhFkyImkniEuKGZnkrFiQCOERGhBT0QD5RNjJ7PoJPFRKH3ohVxVIOFO/TyTIF2Lsu6rTR3IofntT8S/PjKVXtxMaRLEkAZ4v8mIGZQinUcA+5QRLNlYEYU7VrRAPEUdYqsByKoSvT+H/pHNcLFWL1ctyvnmWxpEF++AAFEAJ1EATXIAWaAMM7sADeALP2r32qL1or/PWjJbO7IIf0N4+AQjqlP0=</latexit>

ei�[Aµ(x)]
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<latexit sha1_base64="NsklzPPmVCdDHhwq/BgTpg73ElA="></latexit>Z
d� d�̄

�[Bk]

�⇤[Bk]
e�S(�,�̄,Aµ)

<latexit sha1_base64="SVpgt5HGJLhvpe80Bm9erwoSDAk=">AAAB/XicdVDLSsNAFJ3UV62v+Ni5GSxC3ZRU+9xV3bisYB+QxDCZTtqhkwczE7GG4q+4caGIW//DnX/jtI2gogcuHM65l3vvcSNGhTSMDy2zsLi0vJJdza2tb2xu6ds7HRHGHJM2DlnIey4ShNGAtCWVjPQiTpDvMtJ1R+dTv3tDuKBhcCXHEbF9NAioRzGSSnL0PXKdUGhFQ2qeOpYfF26P7Imj541iw6jUyifQKBozTEml3GjUYSlV8iBFy9HfrX6IY58EEjMkhFkyImkniEuKGZnkrFiQCOERGhBT0QD5RNjJ7PoJPFRKH3ohVxVIOFO/TyTIF2Lsu6rTR3IofntT8S/PjKVXtxMaRLEkAZ4v8mIGZQinUcA+5QRLNlYEYU7VrRAPEUdYqsByKoSvT+H/pHNcLFWL1ctyvnmWxpEF++AAFEAJ1EATXIAWaAMM7sADeALP2r32qL1or/PWjJbO7IIf0N4+AQjqlP0=</latexit>

ei�[Aµ(x)]

It appears that we can weight by the 4d Yang-Mills action, integrate over the 
boundary gauge fields, and have a path integral for an chiral gauge theory:

<latexit sha1_base64="BCJXObel8JQcln+YQ43ga2NKEGA="></latexit>Z
dA e�SY M [A]

Z
d� d�̄ ei�[A] e�S(�,�̄,Aµ)
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This passes a critical common sense test: 	
Q: “What would go wrong if we tried to regulate a 4d theory that suffered from 
gauge anomalies?”	
A: “It would not look like a 4d gauge theory (η[Bk] depends on 5d gauge fields)”
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Proposal for defining chiral gauge theory:  phase of fermion measure determined 
from bulk physics, automatically fails if boundary gauge theory is anomalous
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Two important ingredients:

•Existence of robust chiral edge states	
•When anomalies cancel, bulk fermions contribute phase that only depends on boundary 
gauge field

Realizable on a lattice?

•Existence of robust chiral edge states

Yes.  Relies on boundary between topological phases, achievable with 
Wilson fermions on finite lattice.

•When anomalies cancel, bulk fermions contribute phase that only depends on 
boundary gauge field

Not automatic…
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The lattice is regulated; momentum space is a torus.  No need for a Pauli-Villars field 
from the point of view of requiring finite results & well defined topology.

However:  	
• Δ includes both bulk and edge contributions	
• The bulk contribution to the fermion determinant Δ[Β] is not a pure phase… the 
real part of log[Δ[B]] contributes to a bulk 5d Yang-Mills operator, for example, 
which will give a 5d Coulomb law between boundary charges instead of 4d.
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�[B] = detDw(B) Dw = Wilson operator with open BC
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We also need to cancel bulk contribution to Re[ log[ Δ[Β] ] for the theory to look 4d.	
• Must not remove boundary fermion contribution	
• Must not change imaginary part, which already correctly encodes anomalies	
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The continuum theory w/o gauge anomalies only depends on the boundary values of the 
gauge field —> can we just set the bulk gauge field to zero?  Or zero up to 4d gauge 
transformations?

No: To maintain bulk gap, cannot couple fermions to fields with large gradients (on scale 
of the gap, or on the scale of the inverse lattice spacing).

No.  Must address: “How do we realize the 5d gauge field configurations?”

Are we done?  

Can we always continue the boundary gauge field into the 5d bulk smoothly? 

No.  There can be topological obstructions to doing so.
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A concrete proposal to continuing boundary gauge field Aµ into the bulk:	

Bk(x,r) solves the 5d Euclidian Yang-Mills equations subject to BC  	
Bµ(x,R)=Aµ(x),  B5(x,R)=0
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• smooth 4d Aµ fields on boundary will ensure smooth 
Bk fields nearby in the bulk	

• Chiral edge states will not be destroyedAµ
Bk

But suppose Aµ has nontrivial topology… as one contracts interior 4d surface, winding 
number  must change discontinuously —> ensures that Bk has a singularity in the bulk

A concrete proposal to continuing boundary gauge field Aµ into the bulk:	

Bk(x,r) solves the 5d Euclidian Yang-Mills equations subject to BC  	
Bµ(x,R)=Aµ(x),  B5(x,R)=0
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field in interior

The inability to define interior gauge field 
smoothly is related to two objections to chiral 
boundary proposal:

• Existence of bulk fermion zeromodes  (Aoki et al)	
• Undesirable exact U(1) symmetries (Golterman & Shamir)
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One instanton in boundary theory, continued into bulk

χ

*

*

Singular gauge 	
field in interior

The inability to define interior gauge field 
smoothly is related to two objections to chiral 
boundary proposal:

• Existence of bulk fermion zeromodes  (Aoki et al)	
• Undesirable exact U(1) symmetries (Golterman & Shamir)

To understand the implications, consider simple case where boundary theory is supposed 
to look like Nf=1 QCD
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• Exact U(1)V  symmetry, 

• U(1)A is broken by explicitly by anomaly and quark mass, 
spontaneously by quark condensate

• Massive η’ meson, even in limit of zero quark mass

• Possible θ term and strong CP violation

What is Nf=1 QCD with nonzero quark mass supposed to look like?
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Heuristic picture of η’ physics:

If the U(1)A were only spontaneously broken	

• η’ would be the Nambu-Goldstone boson 	

• U(1)A realized as shift symmetry η’  -> η’  + f

9

where Jµ is their 4d exactly conserved and gauge invariant U(1) current, P (y) = q̄iω5q(y) is the pseudoscalar quark
density, and ! is the vacuum expectation value of the scalar quark density. The Fourier transform of this equation
evidently cannot hold as p → 0 unless ↑Jµ(p)P (↓p)↔ is proportional to pµ/p

2, which they argued mandates the
existence of a massless boson in the spectrum. If our above reasoning is correct for BεF , then there must be a flaw
in their argument.

It is instructive to construct the analogous WT identity for the exact U(1)A symmetry of the e!ective L̃ω→ theory
of eq. (23) to understand how it evades the requirement of a massless boson. By performing the change of variables
ϑ

→(x)/f → ϑ
→(x)/f + ϖ(x) and setting to zero the functional derivative of the partition function with respect to ϖ(x)

we generate the WT identity for this theory

↓! ϱµ ↑ϱµϑ
→(x)ϑ→(y)↔ + M

2
ω→!

〈(
ϑ

→(x) ↓ ϑ→
)

ϑ
→(y)

〉
= !ς

4(x ↓ y) . (25)

The above identity looks problematic if one integrates over x and y, the left side integrating to zero while the right
side integrates to V !, which seems to validate the Golterman-Shamir argument. However, in this case the problem is
due to the familiar fact that one cannot see spontaneous symmetry breaking in finite volume. To analyze the model
correctly we must reintroduce a small explicit symmetry breaking term – such as a quark mass Mq localized at the
outer boundary – and then take the combined chiral and thermodynamic limits with MqL → 0, Mq!V → ↗, where
V = L

4 10. The addition of the small quark mass modifies our e!ective Lagrangian in eq. (23), which now becomes
at leading order in Mq

L̃ω→(Mq) = 1
2 ϱµϑ

→(x)ϱµϑ
→(x) ↓ Mq! cos ϑ

→(x)
f

↓ M
2
ω→f

2
[
1 ↓

1
2

(
ϑ

→(x) ↓ ϑ→
)2 + . . .

]

= 1
2 ϱµϑ

→(x)ϱµϑ
→(x) + Mq!

2f2
(
↓2f

2 + ϑ
→(x)2 + O(ϑ→4

/f
2)

)
↓ M

2
ω→f

2
[
1 ↓

1
2

(
ϑ

→(x) ↓ ϑ→
)2 + . . .

]
, (26)

giving rise to the modified WT identity

↓! ϱµ ↑ϱµϑ
→(x)ϑ→(y)↔ + M

2
ω→!

〈(
ϑ

→(x) ↓ ϑ→
)

ϑ
→(y)

〉
+ Mq!2

f
↑ϑ

→(x)ϑ→(y)↔ = !ς
4(x ↓ y). (27)

Now on integrating over x and y one obtains

V
2 Mq!2

f2

〈(
ϑ→

)2〉
= !V . (28)

The ϑ→ degree of freedom appears in L̃ω→(Mq) only in the Mq term and is seen to be a Gaussian variable with〈(
ϑ→

)2〉
= f

2
/(Mq!V ), and so we see that it saturates the WT identity properly, in a way that persists as Mq → 0

and explicit symmetry breaking is removed (simultaneously taking V → ↗ such that Mq!V is large enough to justify
expanding L to quadratic order in ϑ→).

The lesson this model teaches us is that when one has a spontaneously broken global symmetry, the requirement is
not that there must be a massless boson, but simply that the e!ective theory must realize the symmetry nonlinearly
as a shift symmetry. In a local theory those two statements are equivalent, but not in the nonlocal theory we are
studying, where the p = 0 mode of the ϑ

→ is an exact and isolated zeromode.
Our argument has not addressed the specific current devised by GS in eq. (24), a 4d current derived by integrating

with respect to r the first four components of a 5d bulk current, which they showed was exactly conserved. We
argue that this is not a reliable current to use when concluding that a 1/p

2 pole must be generated by a massless
particle to saturate the identity. This is because it is a nonlocal object which invalidates the conclusions. The GS
current can be constructed directly from the conserved 5d current in eq. (8) following their procedure of integrating
over the extra dimension, and that current depends on the bulk gauge fields from the Chern-Simons operator. In the
BεF construction those bulk gauge fields depend nonlocally on the dynamical gluon field at the boundary via the
gapless Green function for the classical Yang-Mills field. Thus we should not be surprised to find poles at p = 0 in its
matrix elements as they are built into the operator; their existence does not require a massless boson in the spectrum.
In fact it is easy to construct an example of such a current in the e!ective theory of the ϑ

→. The equation of motion
for the ϑ

→ in that theory is of the form

ϱ
2
ϑ

→(x) + A(x) = 0 . (29)

10 This discussion follows reasoning similar to that found in Ref. [26].
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where Jµ is their 4d exactly conserved and gauge invariant U(1) current, P (y) = q̄iω5q(y) is the pseudoscalar quark
density, and ! is the vacuum expectation value of the scalar quark density. The Fourier transform of this equation
evidently cannot hold as p → 0 unless ↑Jµ(p)P (↓p)↔ is proportional to pµ/p

2, which they argued mandates the
existence of a massless boson in the spectrum. If our above reasoning is correct for BεF , then there must be a flaw
in their argument.

It is instructive to construct the analogous WT identity for the exact U(1)A symmetry of the e!ective L̃ω→ theory
of eq. (23) to understand how it evades the requirement of a massless boson. By performing the change of variables
ϑ

→(x)/f → ϑ
→(x)/f + ϖ(x) and setting to zero the functional derivative of the partition function with respect to ϖ(x)

we generate the WT identity for this theory

↓! ϱµ ↑ϱµϑ
→(x)ϑ→(y)↔ + M

2
ω→!

〈(
ϑ

→(x) ↓ ϑ→
)

ϑ
→(y)

〉
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4(x ↓ y) . (25)

The above identity looks problematic if one integrates over x and y, the left side integrating to zero while the right
side integrates to V !, which seems to validate the Golterman-Shamir argument. However, in this case the problem is
due to the familiar fact that one cannot see spontaneous symmetry breaking in finite volume. To analyze the model
correctly we must reintroduce a small explicit symmetry breaking term – such as a quark mass Mq localized at the
outer boundary – and then take the combined chiral and thermodynamic limits with MqL → 0, Mq!V → ↗, where
V = L

4 10. The addition of the small quark mass modifies our e!ective Lagrangian in eq. (23), which now becomes
at leading order in Mq

L̃ω→(Mq) = 1
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Now on integrating over x and y one obtains

V
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The ϑ→ degree of freedom appears in L̃ω→(Mq) only in the Mq term and is seen to be a Gaussian variable with〈(
ϑ→

)2〉
= f

2
/(Mq!V ), and so we see that it saturates the WT identity properly, in a way that persists as Mq → 0

and explicit symmetry breaking is removed (simultaneously taking V → ↗ such that Mq!V is large enough to justify
expanding L to quadratic order in ϑ→).

The lesson this model teaches us is that when one has a spontaneously broken global symmetry, the requirement is
not that there must be a massless boson, but simply that the e!ective theory must realize the symmetry nonlinearly
as a shift symmetry. In a local theory those two statements are equivalent, but not in the nonlocal theory we are
studying, where the p = 0 mode of the ϑ

→ is an exact and isolated zeromode.
Our argument has not addressed the specific current devised by GS in eq. (24), a 4d current derived by integrating

with respect to r the first four components of a 5d bulk current, which they showed was exactly conserved. We
argue that this is not a reliable current to use when concluding that a 1/p

2 pole must be generated by a massless
particle to saturate the identity. This is because it is a nonlocal object which invalidates the conclusions. The GS
current can be constructed directly from the conserved 5d current in eq. (8) following their procedure of integrating
over the extra dimension, and that current depends on the bulk gauge fields from the Chern-Simons operator. In the
BεF construction those bulk gauge fields depend nonlocally on the dynamical gluon field at the boundary via the
gapless Green function for the classical Yang-Mills field. Thus we should not be surprised to find poles at p = 0 in its
matrix elements as they are built into the operator; their existence does not require a massless boson in the spectrum.
In fact it is easy to construct an example of such a current in the e!ective theory of the ϑ

→. The equation of motion
for the ϑ

→ in that theory is of the form

ϱ
2
ϑ

→(x) + A(x) = 0 . (29)

10 This discussion follows reasoning similar to that found in Ref. [26].
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If the U(1)A were only spontaneously broken + explicitly broken by small complex quark 
mass Mqeiθ	
• U(1)A realized as approximate shift symmetry η’  -> η’  + f 	
• η’ would be the pseudo Nambu-Goldstone boson, mass proportional to √Mq 	
• The angle θ appears…but can be shifted away by η’  -> η’  + θ f  … no CP violation if 

one ignores the anomaly
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off exactly like quark propagator, so instantons behave 
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’t Hooft’s model for how the η’ gets a mass contribution from instantons via anomaly

quark zeromode wave function outside of instanton falls 
off exactly like quark propagator, so instantons behave 
like qRqL vertices

Anomaly enters through index theorem:   quark zeromodes associated with nonzero 
winding number

summing over all unique instanton & anti-instanton positions exponentiates 
effective vertex and contributes U(1)A - violating term to action

(Λ = QCD mass scale not computable in instanton model)

5

In general, precisely for theories where the boundary theory is free of gauge anomalies, the Chern-Simons contribution
to the imaginary part of ln !(B)/!→(B) vanishes when sources vanish, and therefore the fermion path integral only
depends on the 4d boundary values of the gauge fields. This opens the possibility that this 5d construction can behave
like a conventional 4d gauge theory.

At finite bulk gap m, the ω- and ε-functions in eq. (6) would be smooth functions characterizing the normalized
profile of the domain wall mode and its integral over to r respectively, which would be di!cult to compute precisely,
but they become perfectly localized in the infinite m limit and defined at the boundary by5

∫ R

R↑ω
ω(R → r) dr = 1 , ε(R → r) =

{
1 r < R

0 r = R
, ω(R → r) = →ϑrε(R → r) . (7)

To obtain eq. (4) we have integrated by parts and discarded the surface terms, justified by the vanishing of ε(0).
Di"erentiating L with respect to the source J yields, the conserved current in the e"ective theory,

Jµ = ϑL

ϑJµ(x) = ω(R → r)q̄ϖ
µ
ϖ5q →

3iϱ

2 ε(R → r)ςµijkεTr [FijFkε] , µ = 1, . . . 4

J5 = ϑL

ϑJ5(x) = →
3iϱ

2 ε(R → r)ς5ijkεTr FijFkε , (8)

where Fij = F
a
ijTa and hermitian Ta. Conservation of the 5d current ϑkJk = 0 yields

ϑϑ q̄ϖ
ϑ

ϖ5q = 1
16φ2 ς5µϖϱςTr FµϖFϱς

∣∣∣∣∣
r=R

(9)

making use of the value of ϱ in eq. (4). In this way the Ward-Takahashi (WT) identity of the exactly conserved U(1)
“isospin” current in the bulk theory with two Dirac fermions becomes the conventional anomalous WT identity for
the U(1)A symmetry of the boundary theory with a single massless Dirac fermion, the Callan-Harvey result.

We are now in a position to reproduce the GS argument. We have found the fermion determinant !(B)/!→(B) to
depend only on the boundary gauge field A in the absence of source J , and that with the source the phase is given
perturbatively by the Chern-Simons operators which correctly reproduce the 4d mixed gauge-axial symmetry anomaly
and the U(1)3 ’t Hooft anomalies. Subsequent integration over the boundary SU(3) gauge fields should therefore give
conventional Nf = 1 QCD in 4d. In particular, following ’t Hooft’s argument for a solution to the U(1)A problem
[20] we can model the symmetry structure of the low energy theory by summing over fermion zeromode contributions
in the dilute instanton gas model and then matching to an e"ective Lagrangian6. The conventional calculation yields

e
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, (10)

where ” is some nonperturbative QCD mass scale inserted by hand to give the correct dimension. We can now match
onto the e"ective theory of the ↼

↔ meson with the replacement

q̄RqL(x) ↑
#
2 e

iφ→(x)/f
, q̄LqR(x) ↑

#
2 e

↑iφ→(x)/f
,

”#
f2 = M

2
φ→ , (11)

where # = ↓q̄q↔ is the quark condensate. The resultant e"ective theory for the ↼
↔ is then

Lφ→ = 1
2 ϑµ↼

↔
ϑµ↼

↔
→ M

2
φ→f

2 cos ↼
↔

f
, (12)

describing an ↼
↔ boson with mass Mφ→ .

Obviously something is wrong with the above analysis because the exact U(1)A symmetry in the 5d theory is not
realized in eq. (12), neither linearly nor nonlinearly as a shift symmetry of the ↼

↔. Yet this e"ective theory is what

5 For example, these ω and ε can be regulated as the infinite m limit of the functions ωm = me→m(R→r), εm = 1 → e→m(R→r).
6 Chiral symmetry breaking in finite volume requires introducing a small quark mass for the boundary fermions and taking the appropriate

limit that this mass goes to zero as the volume goes to infinity. We discuss this further in the present context in the next section. An
e!ective Lagrangian for the ϑ↑ is motivational at best, unless one invokes a 1/Nc expansion, precisely because it is not an approximate
Goldstone boson and there is no other parametrically small parameter to expand in. Nevertheless, considered as a toy model for the ϑ↑,
our Lagrangian serves to explain its qualitative features.
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In general, precisely for theories where the boundary theory is free of gauge anomalies, the Chern-Simons contribution
to the imaginary part of ln !(B)/!→(B) vanishes when sources vanish, and therefore the fermion path integral only
depends on the 4d boundary values of the gauge fields. This opens the possibility that this 5d construction can behave
like a conventional 4d gauge theory.

At finite bulk gap m, the ω- and ε-functions in eq. (6) would be smooth functions characterizing the normalized
profile of the domain wall mode and its integral over to r respectively, which would be di!cult to compute precisely,
but they become perfectly localized in the infinite m limit and defined at the boundary by5

∫ R

R↑ω
ω(R → r) dr = 1 , ε(R → r) =

{
1 r < R

0 r = R
, ω(R → r) = →ϑrε(R → r) . (7)

To obtain eq. (4) we have integrated by parts and discarded the surface terms, justified by the vanishing of ε(0).
Di"erentiating L with respect to the source J yields, the conserved current in the e"ective theory,

Jµ = ϑL

ϑJµ(x) = ω(R → r)q̄ϖ
µ
ϖ5q →
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2 ε(R → r)ςµijkεTr [FijFkε] , µ = 1, . . . 4

J5 = ϑL
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2 ε(R → r)ς5ijkεTr FijFkε , (8)

where Fij = F
a
ijTa and hermitian Ta. Conservation of the 5d current ϑkJk = 0 yields
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ϖ5q = 1
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making use of the value of ϱ in eq. (4). In this way the Ward-Takahashi (WT) identity of the exactly conserved U(1)
“isospin” current in the bulk theory with two Dirac fermions becomes the conventional anomalous WT identity for
the U(1)A symmetry of the boundary theory with a single massless Dirac fermion, the Callan-Harvey result.

We are now in a position to reproduce the GS argument. We have found the fermion determinant !(B)/!→(B) to
depend only on the boundary gauge field A in the absence of source J , and that with the source the phase is given
perturbatively by the Chern-Simons operators which correctly reproduce the 4d mixed gauge-axial symmetry anomaly
and the U(1)3 ’t Hooft anomalies. Subsequent integration over the boundary SU(3) gauge fields should therefore give
conventional Nf = 1 QCD in 4d. In particular, following ’t Hooft’s argument for a solution to the U(1)A problem
[20] we can model the symmetry structure of the low energy theory by summing over fermion zeromode contributions
in the dilute instanton gas model and then matching to an e"ective Lagrangian6. The conventional calculation yields
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where ” is some nonperturbative QCD mass scale inserted by hand to give the correct dimension. We can now match
onto the e"ective theory of the ↼

↔ meson with the replacement

q̄RqL(x) ↑
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where # = ↓q̄q↔ is the quark condensate. The resultant e"ective theory for the ↼
↔ is then

Lφ→ = 1
2 ϑµ↼
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2
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describing an ↼
↔ boson with mass Mφ→ .

Obviously something is wrong with the above analysis because the exact U(1)A symmetry in the 5d theory is not
realized in eq. (12), neither linearly nor nonlinearly as a shift symmetry of the ↼

↔. Yet this e"ective theory is what

5 For example, these ω and ε can be regulated as the infinite m limit of the functions ωm = me→m(R→r), εm = 1 → e→m(R→r).
6 Chiral symmetry breaking in finite volume requires introducing a small quark mass for the boundary fermions and taking the appropriate

limit that this mass goes to zero as the volume goes to infinity. We discuss this further in the present context in the next section. An
e!ective Lagrangian for the ϑ↑ is motivational at best, unless one invokes a 1/Nc expansion, precisely because it is not an approximate
Goldstone boson and there is no other parametrically small parameter to expand in. Nevertheless, considered as a toy model for the ϑ↑,
our Lagrangian serves to explain its qualitative features.
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In general, precisely for theories where the boundary theory is free of gauge anomalies, the Chern-Simons contribution
to the imaginary part of ln !(B)/!→(B) vanishes when sources vanish, and therefore the fermion path integral only
depends on the 4d boundary values of the gauge fields. This opens the possibility that this 5d construction can behave
like a conventional 4d gauge theory.

At finite bulk gap m, the ω- and ε-functions in eq. (6) would be smooth functions characterizing the normalized
profile of the domain wall mode and its integral over to r respectively, which would be di!cult to compute precisely,
but they become perfectly localized in the infinite m limit and defined at the boundary by5

∫ R

R↑ω
ω(R → r) dr = 1 , ε(R → r) =

{
1 r < R

0 r = R
, ω(R → r) = →ϑrε(R → r) . (7)

To obtain eq. (4) we have integrated by parts and discarded the surface terms, justified by the vanishing of ε(0).
Di"erentiating L with respect to the source J yields, the conserved current in the e"ective theory,
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where Fij = F
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ϖ5q = 1
16φ2 ς5µϖϱςTr FµϖFϱς
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(9)

making use of the value of ϱ in eq. (4). In this way the Ward-Takahashi (WT) identity of the exactly conserved U(1)
“isospin” current in the bulk theory with two Dirac fermions becomes the conventional anomalous WT identity for
the U(1)A symmetry of the boundary theory with a single massless Dirac fermion, the Callan-Harvey result.

We are now in a position to reproduce the GS argument. We have found the fermion determinant !(B)/!→(B) to
depend only on the boundary gauge field A in the absence of source J , and that with the source the phase is given
perturbatively by the Chern-Simons operators which correctly reproduce the 4d mixed gauge-axial symmetry anomaly
and the U(1)3 ’t Hooft anomalies. Subsequent integration over the boundary SU(3) gauge fields should therefore give
conventional Nf = 1 QCD in 4d. In particular, following ’t Hooft’s argument for a solution to the U(1)A problem
[20] we can model the symmetry structure of the low energy theory by summing over fermion zeromode contributions
in the dilute instanton gas model and then matching to an e"ective Lagrangian6. The conventional calculation yields
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↓∑
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∫
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, (10)

where ” is some nonperturbative QCD mass scale inserted by hand to give the correct dimension. We can now match
onto the e"ective theory of the ↼

↔ meson with the replacement

q̄RqL(x) ↑
#
2 e

iφ→(x)/f
, q̄LqR(x) ↑

#
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↑iφ→(x)/f
,
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f2 = M

2
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where # = ↓q̄q↔ is the quark condensate. The resultant e"ective theory for the ↼
↔ is then

Lφ→ = 1
2 ϑµ↼

↔
ϑµ↼

↔
→ M

2
φ→f

2 cos ↼
↔

f
, (12)

describing an ↼
↔ boson with mass Mφ→ .

Obviously something is wrong with the above analysis because the exact U(1)A symmetry in the 5d theory is not
realized in eq. (12), neither linearly nor nonlinearly as a shift symmetry of the ↼

↔. Yet this e"ective theory is what

5 For example, these ω and ε can be regulated as the infinite m limit of the functions ωm = me→m(R→r), εm = 1 → e→m(R→r).
6 Chiral symmetry breaking in finite volume requires introducing a small quark mass for the boundary fermions and taking the appropriate

limit that this mass goes to zero as the volume goes to infinity. We discuss this further in the present context in the next section. An
e!ective Lagrangian for the ϑ↑ is motivational at best, unless one invokes a 1/Nc expansion, precisely because it is not an approximate
Goldstone boson and there is no other parametrically small parameter to expand in. Nevertheless, considered as a toy model for the ϑ↑,
our Lagrangian serves to explain its qualitative features.
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In general, precisely for theories where the boundary theory is free of gauge anomalies, the Chern-Simons contribution
to the imaginary part of ln !(B)/!→(B) vanishes when sources vanish, and therefore the fermion path integral only
depends on the 4d boundary values of the gauge fields. This opens the possibility that this 5d construction can behave
like a conventional 4d gauge theory.

At finite bulk gap m, the ω- and ε-functions in eq. (6) would be smooth functions characterizing the normalized
profile of the domain wall mode and its integral over to r respectively, which would be di!cult to compute precisely,
but they become perfectly localized in the infinite m limit and defined at the boundary by5

∫ R

R↑ω
ω(R → r) dr = 1 , ε(R → r) =

{
1 r < R

0 r = R
, ω(R → r) = →ϑrε(R → r) . (7)

To obtain eq. (4) we have integrated by parts and discarded the surface terms, justified by the vanishing of ε(0).
Di"erentiating L with respect to the source J yields, the conserved current in the e"ective theory,

Jµ = ϑL

ϑJµ(x) = ω(R → r)q̄ϖ
µ
ϖ5q →

3iϱ

2 ε(R → r)ςµijkεTr [FijFkε] , µ = 1, . . . 4

J5 = ϑL

ϑJ5(x) = →
3iϱ

2 ε(R → r)ς5ijkεTr FijFkε , (8)

where Fij = F
a
ijTa and hermitian Ta. Conservation of the 5d current ϑkJk = 0 yields

ϑϑ q̄ϖ
ϑ

ϖ5q = 1
16φ2 ς5µϖϱςTr FµϖFϱς

∣∣∣∣∣
r=R

(9)

making use of the value of ϱ in eq. (4). In this way the Ward-Takahashi (WT) identity of the exactly conserved U(1)
“isospin” current in the bulk theory with two Dirac fermions becomes the conventional anomalous WT identity for
the U(1)A symmetry of the boundary theory with a single massless Dirac fermion, the Callan-Harvey result.

We are now in a position to reproduce the GS argument. We have found the fermion determinant !(B)/!→(B) to
depend only on the boundary gauge field A in the absence of source J , and that with the source the phase is given
perturbatively by the Chern-Simons operators which correctly reproduce the 4d mixed gauge-axial symmetry anomaly
and the U(1)3 ’t Hooft anomalies. Subsequent integration over the boundary SU(3) gauge fields should therefore give
conventional Nf = 1 QCD in 4d. In particular, following ’t Hooft’s argument for a solution to the U(1)A problem
[20] we can model the symmetry structure of the low energy theory by summing over fermion zeromode contributions
in the dilute instanton gas model and then matching to an e"ective Lagrangian6. The conventional calculation yields

e
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↓∑
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∫
(q̄RqL(x)+q̄LqR(x)) dx

, (10)

where ” is some nonperturbative QCD mass scale inserted by hand to give the correct dimension. We can now match
onto the e"ective theory of the ↼

↔ meson with the replacement

q̄RqL(x) ↑
#
2 e

iφ→(x)/f
, q̄LqR(x) ↑

#
2 e

↑iφ→(x)/f
,

”#
f2 = M

2
φ→ , (11)

where # = ↓q̄q↔ is the quark condensate. The resultant e"ective theory for the ↼
↔ is then

Lφ→ = 1
2 ϑµ↼

↔
ϑµ↼

↔
→ M

2
φ→f

2 cos ↼
↔

f
, (12)

describing an ↼
↔ boson with mass Mφ→ .

Obviously something is wrong with the above analysis because the exact U(1)A symmetry in the 5d theory is not
realized in eq. (12), neither linearly nor nonlinearly as a shift symmetry of the ↼

↔. Yet this e"ective theory is what

5 For example, these ω and ε can be regulated as the infinite m limit of the functions ωm = me→m(R→r), εm = 1 → e→m(R→r).
6 Chiral symmetry breaking in finite volume requires introducing a small quark mass for the boundary fermions and taking the appropriate

limit that this mass goes to zero as the volume goes to infinity. We discuss this further in the present context in the next section. An
e!ective Lagrangian for the ϑ↑ is motivational at best, unless one invokes a 1/Nc expansion, precisely because it is not an approximate
Goldstone boson and there is no other parametrically small parameter to expand in. Nevertheless, considered as a toy model for the ϑ↑,
our Lagrangian serves to explain its qualitative features.
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In general, precisely for theories where the boundary theory is free of gauge anomalies, the Chern-Simons contribution
to the imaginary part of ln !(B)/!→(B) vanishes when sources vanish, and therefore the fermion path integral only
depends on the 4d boundary values of the gauge fields. This opens the possibility that this 5d construction can behave
like a conventional 4d gauge theory.

At finite bulk gap m, the ω- and ε-functions in eq. (6) would be smooth functions characterizing the normalized
profile of the domain wall mode and its integral over to r respectively, which would be di!cult to compute precisely,
but they become perfectly localized in the infinite m limit and defined at the boundary by5

∫ R

R↑ω
ω(R → r) dr = 1 , ε(R → r) =

{
1 r < R

0 r = R
, ω(R → r) = →ϑrε(R → r) . (7)

To obtain eq. (4) we have integrated by parts and discarded the surface terms, justified by the vanishing of ε(0).
Di"erentiating L with respect to the source J yields, the conserved current in the e"ective theory,
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µ
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making use of the value of ϱ in eq. (4). In this way the Ward-Takahashi (WT) identity of the exactly conserved U(1)
“isospin” current in the bulk theory with two Dirac fermions becomes the conventional anomalous WT identity for
the U(1)A symmetry of the boundary theory with a single massless Dirac fermion, the Callan-Harvey result.

We are now in a position to reproduce the GS argument. We have found the fermion determinant !(B)/!→(B) to
depend only on the boundary gauge field A in the absence of source J , and that with the source the phase is given
perturbatively by the Chern-Simons operators which correctly reproduce the 4d mixed gauge-axial symmetry anomaly
and the U(1)3 ’t Hooft anomalies. Subsequent integration over the boundary SU(3) gauge fields should therefore give
conventional Nf = 1 QCD in 4d. In particular, following ’t Hooft’s argument for a solution to the U(1)A problem
[20] we can model the symmetry structure of the low energy theory by summing over fermion zeromode contributions
in the dilute instanton gas model and then matching to an e"ective Lagrangian6. The conventional calculation yields

e
↑Sinst. =

↓∑

n,n̄=1

(
”

∫
q̄RqL(x) dx

)n

n!

(
”

∫
q̄LqR(y) dy

)n̄

n̄! = e
!

∫
(q̄RqL(x)+q̄LqR(x)) dx

, (10)

where ” is some nonperturbative QCD mass scale inserted by hand to give the correct dimension. We can now match
onto the e"ective theory of the ↼

↔ meson with the replacement

q̄RqL(x) ↑
#
2 e

iφ→(x)/f
, q̄LqR(x) ↑

#
2 e

↑iφ→(x)/f
,

”#
f2 = M

2
φ→ , (11)

where # = ↓q̄q↔ is the quark condensate. The resultant e"ective theory for the ↼
↔ is then

Lφ→ = 1
2 ϑµ↼

↔
ϑµ↼

↔
→ M

2
φ→f

2 cos ↼
↔

f
, (12)

describing an ↼
↔ boson with mass Mφ→ .

Obviously something is wrong with the above analysis because the exact U(1)A symmetry in the 5d theory is not
realized in eq. (12), neither linearly nor nonlinearly as a shift symmetry of the ↼

↔. Yet this e"ective theory is what

5 For example, these ω and ε can be regulated as the infinite m limit of the functions ωm = me→m(R→r), εm = 1 → e→m(R→r).
6 Chiral symmetry breaking in finite volume requires introducing a small quark mass for the boundary fermions and taking the appropriate

limit that this mass goes to zero as the volume goes to infinity. We discuss this further in the present context in the next section. An
e!ective Lagrangian for the ϑ↑ is motivational at best, unless one invokes a 1/Nc expansion, precisely because it is not an approximate
Goldstone boson and there is no other parametrically small parameter to expand in. Nevertheless, considered as a toy model for the ϑ↑,
our Lagrangian serves to explain its qualitative features.
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The GS conclusion: 	
• the true boundary theory one obtains must actually have an exact U(1)A symmetry	
• when U(1)A spontaneously breaks there must be a massless NGB

Our conclusion: 	
• the true boundary theory one obtains must actually have an exact U(1)A symmetry	
• when U(1)A spontaneously breaks there is not a massless NGB 	
• Furthermore, the theory does not exhibit strong CP violation	
• The existence of bulk gauge field singularities and bulk fermion zeromodes play central 
role
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χ

*

One instanton in boundary theory, continued into bulk

fermion 
zeromode 	
on boundary *

Singular gauge 	
field in interior

fermion zeromode	
in bulk (Aoki et al.)  Will 
be exponentially 
localized due to gap.

Callan-Harvey analysis assumed all bulk fermions gapped, integrated them out.	
Not true in the presence of nontrivial topology.

Fermion zeromodes must exist in bulk: index of of Dirac operator on 4d manifold which is the 
boundary of 5d manifold must vanish (singularity is disconnected part of boundary)
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To redo the ’t Hooft analysis including bulk fermion zeromodes make assumption about 
gauge field flow into the interior (“annealing flow”): 

Gauge field singularities in the bulk are the minimal number required by topology
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To redo the ’t Hooft analysis including bulk fermion zeromodes simplify analysis by 
considering annulus, with no singularities in the bulk:

χ

*RH fermion 
zeromodes q 	
on outer 
boundary * χ

LH fermion 
zeromode Q 	
on inner 
boundary

*

*

LH fermion 
zeromode q 	
on outer 
boundary
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gauge field somewhere in the bulk – albeit, far from the boundary if one defines the flow of the gauge fields from a
smooth boundary configuration via the equations of motion.

Once one admits bulk gauge configurations that can have singularities, it is no longer evident that the theory remains
gapped in the bulk, calling into question the Callan-Harvey analysis of the previous section where one integrates out
the bulk fermions. Furthermore, there is nothing universal about the number and locations of the singularities, which
will depend not only on the boundary gauge field, but also on the exact implementation of the gauge field flow used
to define the bulk gauge field.

For simplicity we will use the dilute instanton gas model to illustrate the e!ects of nontrivial gauge topology.
Furthermore, since gauge field singularities e!ectively create disconnected boundaries in the bulk, it is convenient
to start by discussing an annulus rather than a disk (this discussion is similar to that for a 5d strip with two
boundaries discussing in Ref. [13]), the inner boundary representing more generally the boundary created by gauge
field singularities deep withing the bulk. If the outer boundary configuration includes n instantons and n̄ anti-
instantons, then since this configuration is not an exact solution to the 4d Euclidian equations of motion, we would
expect instantons and anti-instantons to flow together and annihilate pairwise as the gauge field evolves into the
bulk. If the flow continues long enough before reaching the inner boundary of the annulus and encounters no gauge
field singularities, it is plausible that one is left with only the minimal instanton configuration on the inner boundary
required for winding number ω = (n → n̄). We refer to this type of flow as annealing flow, and assume that it can be
realized on the lattice: maximally e"cient damping out of local topological features in the bulk, consistent with global
topological constraints. Such flow will give rise to ω fermion zeromodes on the inner boundary; we will refer to these
zeromodes as Q fields, to distinguish them from q on the outer boundary. They must be included in the low energy
e!ective theory after the gapped bulk modes have been integrated out. Our assumption of annealing flow di!ers from
from the equally valid flow GS assumed, which is responsible in part for why we reach di!erent conclusions. Whether
annealing flow can be achieved in a realistic lattice simulation is something that needs to be explored; studies of
instanton cooling suggest that it may be possible [23, 24].

IV. RESOLUTION OF THE UA(1) PROBLEM

We can now redo the analysis in §II, assuming the geometry of an annulus and taking into account the e!ect of
the Q zeromodes on the inner boundary, making use of ’t Hooft’s qualitative analysis of the U(1)A problem in the
context of the dilute instanton gas model. We will work at finite but large volume V and begin with the theory of
eq. (1) with its exact U(1) ↑ U(1) symmetry. The assumption of annealing flow for defining the bulk gauge fields
ensures that (i) the only gauge configurations that survive to the deep interior are the minimal number |ω| instantons
or anti-instantons required by topology preservation; and (ii) the spatial locations of the surviving |ω| instantons
or anti-instantons at the inner boundary are decorrelated with the spatial locations of the |n + n̄| instantons and
anti-instantons on the outer boundary, due to the nonlinearity of the flow and typically large n and n̄ appearing in
large volume at the outer boundary.

The analog of eq. (10) now involves both q and Q fields,

e
→S̃int ↓ Ztopo =

∑

n,n̄

e
i(n→n̄)ω (V O)n

n!
(V Ō)n̄

n̄!

(
(V ↑

X)(n→n̄)!(n → n̄) + (V ↑
X̄)(n̄→n)!(n̄ → n) + εn,n̄

)

= Z1 + Z2 + Z3 (14)

with V and V
↑ being the 4-volumes of the outer and inner boundaries respectively, ! defined as

!(n) =
{

1 n > 0
0 n ↔ 0

, (15)

and the dimension 4 operators given by

O = ”
∫

V

d
4
x

V
q̄RqL , Ō = ”

∫

V

d
4
x

V
q̄LqR , X = ”

∫

V →

d
4
y

V ↑ Q̄RQL , X̄ = ”
∫

V →

d
4
y

V ↑ Q̄LQR , (16)

where ” is an infrared scale put in by hand, by dimensional analysis. For simplicity we assume without justification
the same scale for both O and X operators, but this assumption will not a!ect our analysis. For O and Ō the x

integral is over the outer surface with 4-volume V , while for X and X̄ the y integral is over the inner surface with
4-volume V

↑, which is assumed to be fixed and small as V gets large.
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to define the bulk gauge field.

For simplicity we will use the dilute instanton gas model to illustrate the e!ects of nontrivial gauge topology.
Furthermore, since gauge field singularities e!ectively create disconnected boundaries in the bulk, it is convenient
to start by discussing an annulus rather than a disk (this discussion is similar to that for a 5d strip with two
boundaries discussing in Ref. [13]), the inner boundary representing more generally the boundary created by gauge
field singularities deep withing the bulk. If the outer boundary configuration includes n instantons and n̄ anti-
instantons, then since this configuration is not an exact solution to the 4d Euclidian equations of motion, we would
expect instantons and anti-instantons to flow together and annihilate pairwise as the gauge field evolves into the
bulk. If the flow continues long enough before reaching the inner boundary of the annulus and encounters no gauge
field singularities, it is plausible that one is left with only the minimal instanton configuration on the inner boundary
required for winding number ω = (n → n̄). We refer to this type of flow as annealing flow, and assume that it can be
realized on the lattice: maximally e"cient damping out of local topological features in the bulk, consistent with global
topological constraints. Such flow will give rise to ω fermion zeromodes on the inner boundary; we will refer to these
zeromodes as Q fields, to distinguish them from q on the outer boundary. They must be included in the low energy
e!ective theory after the gapped bulk modes have been integrated out. Our assumption of annealing flow di!ers from
from the equally valid flow GS assumed, which is responsible in part for why we reach di!erent conclusions. Whether
annealing flow can be achieved in a realistic lattice simulation is something that needs to be explored; studies of
instanton cooling suggest that it may be possible [23, 24].

IV. RESOLUTION OF THE UA(1) PROBLEM

We can now redo the analysis in §II, assuming the geometry of an annulus and taking into account the e!ect of
the Q zeromodes on the inner boundary, making use of ’t Hooft’s qualitative analysis of the U(1)A problem in the
context of the dilute instanton gas model. We will work at finite but large volume V and begin with the theory of
eq. (1) with its exact U(1) ↑ U(1) symmetry. The assumption of annealing flow for defining the bulk gauge fields
ensures that (i) the only gauge configurations that survive to the deep interior are the minimal number |ω| instantons
or anti-instantons required by topology preservation; and (ii) the spatial locations of the surviving |ω| instantons
or anti-instantons at the inner boundary are decorrelated with the spatial locations of the |n + n̄| instantons and
anti-instantons on the outer boundary, due to the nonlinearity of the flow and typically large n and n̄ appearing in
large volume at the outer boundary.

The analog of eq. (10) now involves both q and Q fields,
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(V Ō)n̄

n̄!

(
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= Z1 + Z2 + Z3 (14)

with V and V
↑ being the 4-volumes of the outer and inner boundaries respectively, ! defined as

!(n) =
{

1 n > 0
0 n ↔ 0

, (15)

and the dimension 4 operators given by
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∫

V

d
4
x

V
q̄LqR , X = ”

∫

V →

d
4
y

V ↑ Q̄RQL , X̄ = ”
∫

V →

d
4
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V ↑ Q̄LQR , (16)

where ” is an infrared scale put in by hand, by dimensional analysis. For simplicity we assume without justification
the same scale for both O and X operators, but this assumption will not a!ect our analysis. For O and Ō the x

integral is over the outer surface with 4-volume V , while for X and X̄ the y integral is over the inner surface with
4-volume V

↑, which is assumed to be fixed and small as V gets large.
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integral is over the outer surface with 4-volume V , while for X and X̄ the y integral is over the inner surface with
4-volume V

↑, which is assumed to be fixed and small as V gets large.

Each term in sum is invariant under the exact 5d U(1)A : 

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
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ϱ
x
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9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

Sum the instanton contributions: 	
•n/n instantons/anti-instantons on outer boundary	
•|n-n| instantons or anti-instantons on inner boundary
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gauge field somewhere in the bulk – albeit, far from the boundary if one defines the flow of the gauge fields from a
smooth boundary configuration via the equations of motion.

Once one admits bulk gauge configurations that can have singularities, it is no longer evident that the theory remains
gapped in the bulk, calling into question the Callan-Harvey analysis of the previous section where one integrates out
the bulk fermions. Furthermore, there is nothing universal about the number and locations of the singularities, which
will depend not only on the boundary gauge field, but also on the exact implementation of the gauge field flow used
to define the bulk gauge field.

For simplicity we will use the dilute instanton gas model to illustrate the e!ects of nontrivial gauge topology.
Furthermore, since gauge field singularities e!ectively create disconnected boundaries in the bulk, it is convenient
to start by discussing an annulus rather than a disk (this discussion is similar to that for a 5d strip with two
boundaries discussing in Ref. [13]), the inner boundary representing more generally the boundary created by gauge
field singularities deep withing the bulk. If the outer boundary configuration includes n instantons and n̄ anti-
instantons, then since this configuration is not an exact solution to the 4d Euclidian equations of motion, we would
expect instantons and anti-instantons to flow together and annihilate pairwise as the gauge field evolves into the
bulk. If the flow continues long enough before reaching the inner boundary of the annulus and encounters no gauge
field singularities, it is plausible that one is left with only the minimal instanton configuration on the inner boundary
required for winding number ω = (n → n̄). We refer to this type of flow as annealing flow, and assume that it can be
realized on the lattice: maximally e"cient damping out of local topological features in the bulk, consistent with global
topological constraints. Such flow will give rise to ω fermion zeromodes on the inner boundary; we will refer to these
zeromodes as Q fields, to distinguish them from q on the outer boundary. They must be included in the low energy
e!ective theory after the gapped bulk modes have been integrated out. Our assumption of annealing flow di!ers from
from the equally valid flow GS assumed, which is responsible in part for why we reach di!erent conclusions. Whether
annealing flow can be achieved in a realistic lattice simulation is something that needs to be explored; studies of
instanton cooling suggest that it may be possible [23, 24].

IV. RESOLUTION OF THE UA(1) PROBLEM

We can now redo the analysis in §II, assuming the geometry of an annulus and taking into account the e!ect of
the Q zeromodes on the inner boundary, making use of ’t Hooft’s qualitative analysis of the U(1)A problem in the
context of the dilute instanton gas model. We will work at finite but large volume V and begin with the theory of
eq. (1) with its exact U(1) ↑ U(1) symmetry. The assumption of annealing flow for defining the bulk gauge fields
ensures that (i) the only gauge configurations that survive to the deep interior are the minimal number |ω| instantons
or anti-instantons required by topology preservation; and (ii) the spatial locations of the surviving |ω| instantons
or anti-instantons at the inner boundary are decorrelated with the spatial locations of the |n + n̄| instantons and
anti-instantons on the outer boundary, due to the nonlinearity of the flow and typically large n and n̄ appearing in
large volume at the outer boundary.

The analog of eq. (10) now involves both q and Q fields,

e
→S̃int ↓ Ztopo =

∑

n,n̄

e
i(n→n̄)ω (V O)n

n!
(V Ō)n̄

n̄!

(
(V ↑

X)(n→n̄)!(n → n̄) + (V ↑
X̄)(n̄→n)!(n̄ → n) + εn,n̄

)

= Z1 + Z2 + Z3 (14)

with V and V
↑ being the 4-volumes of the outer and inner boundaries respectively, ! defined as

!(n) =
{

1 n > 0
0 n ↔ 0

, (15)

and the dimension 4 operators given by

O = ”
∫

V

d
4
x

V
q̄RqL , Ō = ”

∫

V

d
4
x

V
q̄LqR , X = ”

∫

V →

d
4
y

V ↑ Q̄RQL , X̄ = ”
∫

V →

d
4
y

V ↑ Q̄LQR , (16)

where ” is an infrared scale put in by hand, by dimensional analysis. For simplicity we assume without justification
the same scale for both O and X operators, but this assumption will not a!ect our analysis. For O and Ō the x

integral is over the outer surface with 4-volume V , while for X and X̄ the y integral is over the inner surface with
4-volume V

↑, which is assumed to be fixed and small as V gets large.
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The X operators involve Q zeromodes highly localized on inner boundary of annulus (or 
at singularity deep in the bulk); O operators are on outer boundary
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gauge field somewhere in the bulk – albeit, far from the boundary if one defines the flow of the gauge fields from a
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bulk. If the flow continues long enough before reaching the inner boundary of the annulus and encounters no gauge
field singularities, it is plausible that one is left with only the minimal instanton configuration on the inner boundary
required for winding number ω = (n → n̄). We refer to this type of flow as annealing flow, and assume that it can be
realized on the lattice: maximally e"cient damping out of local topological features in the bulk, consistent with global
topological constraints. Such flow will give rise to ω fermion zeromodes on the inner boundary; we will refer to these
zeromodes as Q fields, to distinguish them from q on the outer boundary. They must be included in the low energy
e!ective theory after the gapped bulk modes have been integrated out. Our assumption of annealing flow di!ers from
from the equally valid flow GS assumed, which is responsible in part for why we reach di!erent conclusions. Whether
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The X operators involve Q zeromodes highly localized on inner boundary of annulus (or 
at singularity deep in the bulk); O operators are on outer boundary

X operators do not contribute to Green functions that only involve fields on the outer 
boundary, where “we live”
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(V Ō)n̄

n̄!

(
(V ↑

X)(n→n̄)!(n → n̄) + (V ↑
X̄)(n̄→n)!(n̄ → n) + εn,n̄

)

= Z1 + Z2 + Z3 (14)

with V and V
↑ being the 4-volumes of the outer and inner boundaries respectively, ! defined as

!(n) =
{

1 n > 0
0 n ↔ 0

, (15)

and the dimension 4 operators given by

O = ”
∫

V

d
4
x

V
q̄RqL , Ō = ”
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The X operators involve Q zeromodes highly localized on inner boundary of annulus (or 
at singularity deep in the bulk); O operators are on outer boundary

X operators do not contribute to Green functions that only involve fields on the outer 
boundary, where “we live”

So only the 3rd sum Z3 without X operators is experimentally accessible to us.  This 
comes entirely from contributions where n = n; we see topological fluctuations, but net 
topology is zero.
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The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.
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Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
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with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.
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Bar notation = spatial average:
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The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.
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± and their associated edge states q and Q is
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so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0
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In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to
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[
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Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as
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This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.
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The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by
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+
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iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
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QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

Now assume chiral symmetry breaking and match to the η’ Lagrangian as before
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The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
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+
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2 ϱµϖ

↔
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↔(x) d
4
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where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density
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2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
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2
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ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω
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so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where
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In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,
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In the large-V limit the expression for S̃inst. in eq. (19) simplifies to
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Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
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S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.



D. B. Kaplan ~ Regulating Chiral Gauge Theory and the Strong CP Problem~ ECT* 8/28/25

<latexit sha1_base64="OIFxRmATFVDoB8o6JNfWvXU1gBs=">AAACF3icbVC7SgNBFJ31GeMramFhMxgEq7ArEm2EoI2FRQTzgOwSZic3yZDZBzN3xbDsh1jb6jfYia2ln+BfOHkUJvHAhcO593A5x4+l0Gjb39bS8srq2npuI7+5tb2zW9jbr+soURxqPJKRavpMgxQh1FCghGasgAW+hIY/uBntG4+gtIjCBxzG4AWsF4qu4AyN1C4cpi5nkt5lbRfhCVMRaixl9KpdKNolewy6SJwpKZIpqu3Cj9uJeBJAiFwyrVuOHaOXMoWCS8jybqIhZnzAetAyNGQBaC8dB8joiVE6tBspMyHSsfrXkbJA62Hgm8uAYV/P7LR514dORum8ZXT7n6WVYPfSM1njBCHkk//dRFKM6Kgk2hEKOMqhIYwrYSJQ3meKcTRV5k03znwTi6R+VnLKpfL9ebFyPW0pR47IMTklDrkgFXJLqqRGOMnIC3klb9az9W59WJ+T0yVr6jkgM7C+fgEUB59y</latexit>

Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
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The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

…. η’ has a normal (anomalously) heavy dispersion relation, except for p=0 mode, 
which sees that the total topology of the world is trivial

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

…. η’ has a normal (anomalously) heavy dispersion relation, except for p=0 mode, 
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that 
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

…. η’ has a normal (anomalously) heavy dispersion relation, except for p=0 mode, 
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that 
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If I now add a quark mass with a complex phase, the shift symmetry allows me to remove it.

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

…. η’ has a normal (anomalously) heavy dispersion relation, except for p=0 mode, 
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that 
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If I now add a quark mass with a complex phase, the shift symmetry allows me to remove it.

➤ NO strong CP problem in this world, and no light 0-+ meson (η’, axion…)

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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Linst. =

8

The action of the U(1) → U(1) symmetry on the 5d Dirac fermions ω
± and their associated edge states q and Q is

given by

ω
+

↑ e
iω

ω
+ : {qL ↑ e

iω
qL , QR ↑ e

iω
QR} , ω

→
↑ e

iε
ω

→ : {qR ↑ e
iε

qR , QL ↑ e
iε

QL} , (17)

so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as

O ↑ e
2iω

O , Ō ↑ e
→2iω

Ō , X ↑ e
→2iω

X , X̄ ↑ e
2iω

X̄ . (18)

The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
q – then we can restrict our attention in eq. (14) to just the Z3 term, where

Z3 ↔ e
→S̃inst. =

↑∑

n=0

(
!

∫
q̄RqL(x) dx

)n

n!

(
!

∫
q̄LqR(y) dy

)n

n! = I0

(
2!V

√
q̄RqL q̄LqR

)
. (19)

In this expression I0 is a modified Bessel function and the bar notation indicates an average over Euclidian spacetime,

O ↔

∫
d

4
x

V
O(x) . (20)

In the large-V limit the expression for S̃inst. in eq. (19) simplifies to

S̃inst.
V ↓↑
↓↓↓↓↑ V

[
↓2!

√
q̄RqL q̄LqR + O

(
ln V

V

)]
. (21)

Below the chiral symmetry breaking scale we can use the substitutions in eq. (11) to model the theory of the ϖ
↔ as

S̃ϑ→ = ↓V M
2
ϑ→f

2
√(

eiϑ→/f
) (

e→iϑ→/f
)

+
∫

1
2 ϱµϖ

↔
ϱµϖ

↔(x) d
4
x , (22)

where as before M
2
ϑ→f

2 = 2!”. This can be represented by a nonlocal Lagrange density

L̃ϑ→ = 1
2 ϱµϖ

↔
ϱµϖ

↔(x) + M
2
ϑ→f

2
[
↓1 + 1

2
(
ϖ

↔(x) ↓ ϖ↔
)2 + O(ϖ↔4)

]
. (23)

This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.
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so that the operators O and X are invariant when ε = ϑ (interpreted as a U(1)V transformation in the boundary
theory), while under the U(1)A transformation with ε = ↓ϑ they transform as
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The instanton sum in eq. (14) is therefore properly U(1) → U(1) invariant, like the underlying theory and unlike the
naive attempt in eq. (10).

If we are only interested in the boundary physics – e.g. correlation functions that involve only the boundary fermions
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This nonlocal action S̃ϑ→ evidently possesses two desirable features which are not mutually compatible in local theories:
(i) the ϖ

↔ is massive, and (ii) the theory possesses the exact U(1)A symmetry under which the ϖ
↔ field transforms as

ϖ
↔(x)/f ↑ ϖ

↔(x)/f + ε, where ε is an arbitrary x-independent angle. This is possible because of the existence of an
isolated zeromode at p = 0, the ϖ↔ degree of freedom9.

The remaining contributions in eq. (14) involving bulk zeromodes via the X operators will not contribute to
vacuum matrix elements of operators only involving fields on the outer boundary. Because of the gap in the bulk, the
Q zeromodes are highly localized and do not propagate to the outer boundary. Furthermore, the X operators will not
develop vacuum expectation values because there cannot be spontaneous symmetry breaking on the inner boundary
with its small volume, which is kept finite as V ↑ ↗.

We have shown how chiral symmetry breaking and a massive ϖ
↔ meson in the boundary spectrum can be consistent

with the existence of an exact U(1)A symmetry, at least with the assumption of annealing flow for the bulk continuation
of the boundary gauge fields. However, we have not addressed the specific spectral argument of Ref. [17] where GS
constructed a spontaneously broken and exactly conserved 4d U(1) current by integrating a 5d current over the fifth
dimension, and argued – in the spirit of proofs of the Goldstone theorem – that spontaneous breaking of the symmetry
generated by the current was inconsistent with a gapless spectrum. In particular they considered the WT identity

ϱ
x
µ ↘Jµ(x)P (y)≃ = ς(x ↓ y)” , (24)

9 This action S̃ω→ is identical to the e!ective action for the irrational axion in Ref. [25] after integration over ω.

…. η’ has a normal (anomalously) heavy dispersion relation, except for p=0 mode, 
which sees that the total topology of the world is trivial

Gluon configurations with nontrivial topology can only contribute to Green functions that 
involve both our matter and highly localized fermion zeromodes far away in the 5th dimension

If I now add a quark mass with a complex phase, the shift symmetry allows me to remove it.

➤ NO strong CP problem in this world, and no light 0-+ meson (η’, axion…) 🤯

Without quark mass, theory possesses exact shift symmetry η’ —> η’ + f corresponding to 
exact U(1)A symmetry… 
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An excitingly simple picture is emerging:  	
Regulated chiral gauge theory as a boundary theory, without requiring new dynamics

The Nielsen-Ninomiya theorem is no longer an obstacle.

Conclusions

An extra dimension is a natural UV completion for anomalies, and with described 
construction,  local 4D theory emerges only if 4d gauge anomalies cancel (discrete and 
perturbative)

  It appears that this theory is not purely 4d when gauge field topology is 
nontrivial (The η’ portal 🤔)

Only correlation functions between matter in this world and highly localized 
fields deep in the 5th dimension can see CP violation… no strong CP problem

  …yet at the same time, the η’ is heavy and there is no axion

 Perhaps QCD embedded in SM is not equivalent to standard LQCD at nontrivial 
topology?
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To do: lattice

 Is the method of eliminating the modulus of the fermion determinant local? 

 Is the ideal form of annealing flow achievable on the lattice?

 Is a Hamiltonian formulation possible?  (Desirable for quantum computing)

 If a Hamiltonian formulation is possible, there will be a dynamical Minkowski 
spacetime version of the theory… it will be weird, given that only 4d gauge fields 
are dynamical.  Can one construct a cosmological model for 5d BSM physics? 

To do: beyond the lattice


